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Abstract

Deep learning-based methods have shown great potential in image inpainting, especially
when dealing with large missing regions. However, the inpainted results often suffer from
blurring, and improper textures can be created without an understanding of semantic infor-
mation. In order to extract more features from the known regions, we propose a multi-level
feature integration (MFI) network for image inpainting. We complete hole regions by
two generators. For each generator, we use the MFI network to fill the hole region with
multi-level skip connections. With multi-level feature integration, the network gains more
knowledge about the global semantic structures and local fine details. Moreover, instead of
a deconvolution layer or an interpolation algorithm, we adopt a sub-pixel layer to up-sample
feature maps and produce more coherent results. We use PatchGAN to support the refine-
ment generator network to produce more discriminative detail. Our experiments done with
the Paris StreetView, CelebA-HQ and Places2 datasets demonstrate the effectiveness of our
MFTI network for producing visually pleasing results with semantically ordered textures.

Keywords Image inpainting - Multi-level - Feature integration - Skip connection

1 Introduction

Image inpainting is an important research topic in the fields of computer vision and image
processing. Image inpainting has various applications, such as image restoration, photo
editing, image encoding, transmission, etc. Specifically, image inpainting aims to generate
convincing content by filling missing pixels according to the contextual information and
feature distribution of the image.

Broadly speaking, existing image inpainting methods can be divided into two categories,
traditional methods and deep learning based methods. Traditional methods [4, 7, 8, 18, 22,
38, 47] synthesize new pixels with explicit image features and priors. For example, the
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diffusion based methods [1, 31] grow the known neighbor information inward the missing
region with smooth assumption. The basic idea of example based methods [5, 7, 47, 48]
search for similar image patches from the source region and use them to fill the missing
regions. Moreover, low rank priors [9, 22, 38] and sparsity priors [15, 46] are also used
for solving image inpainting problem. For images with simple texture and small missing
regions, traditional methods can realistically complete the image with high visual quality.
However, for images with complex scenes and non-repeatable textures, traditional methods
cannot inpaint the missing region with semantically reasonable contents.

Deep learning-based methods [12, 25, 28, 42] generally combine generator networks
with discriminator networks to learn high-level features and the distributions of image
dataset, and predict the missing regions through generator which has strong mapping capa-
bilities. Those methods can generate semantic objects and complex textures, but blurry
boundaries inconsistent with surrounding areas and disordered structures still remain in
generated images. Inspired by attention mechanism successfully used in natural language
processing, contextual attention models [17, 20, 41, 45] are proposed to capture semantic
relevance in images. Specifically, the attention mechanism models the relationship between
unknown patches and spatially global patches to generate more details at the cost of high
complexity.

The generator networks in the existing methods are based on encoder-decoder archi-
tecture. The encoder part maps the image to high-level latent feature space by several
convolutional layers with down-sampling at the same time, while the decoder part is respon-
sible for reconstructing the encoded features to image space with hole region synthesized.
Some methods [17, 26, 45] strengthen the generator by adding long skip connection between
encoder layers and decoder layers which producing the same resolution features. This struc-
ture is known as U-Net [27]. However, these models can not make the best of the semantic
information in the known regions. The local and global coherence is important for the visual
quality of the generated image. To this end, we propose the Multi-level Feature Integration
(MFI) network for generating plausible content in image holes. Our work is inspired by
papers [3, 6] which prove that having both long and short skip connections is beneficial for
feature extraction.

We adopt a rough-to-fine architecture [41] and synthesize the content for the hole region
in two stages. Specifically, the first stage completes the missing regions with global struc-
tures and rough textures. The coarse result of this first stage is the input of the second stage.
In this way, the second stage has a larger receptive field and can generate more fine details.
To better extract and integrate the contextual information from different levels, we apply
both adaptive long skip connections and multi-level short skip connections to the generator
network. Especially, with the long skip connections, the features extracted by the encoder
layers are adaptively integrated into the decoder features, which can improve fine details in
generated images and also stabilize the training process. We use the multi-level short skip
connection in both encoder blocks and decoder blocks to integrate low-level features and
high-level features for better coherence. Moreover, we propose to use a sub-pixel layer [29]
in the decoder part to restore spatial information by incorporating features skipped at various
levels, which improves the accuracy and stability of the network. Both the first and second
stages use the proposed MFI network as the generator network, which integrates multi-level
contextual information and is effective in generating semantically consistent structures and
well-ordered textures. We combine reconstruction loss, structure loss and adversary loss
with PatchGAN to optimize our inpainting model. We conducted extensive experiments
for comparisons, an ablation study and a user study using different datasets. The results
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demonstrate the superiority of our proposed network. The major contributions presented in
this paper are:

®  We propose a Multi-level Feature Integration (MFI) network to complete the missing
regions in images. MFI network can produce sharp structures, semantically ordered
textures and consistent boundaries.

®  We design the multi-level skip connections including adaptive long skip connection and
multi-level short connection to integrate different level features to achieve local and
global coherence.

®  We use sub-pixel layer for up-sampling instead of a deconvolution layer or interpolation
algorithm to alleviate checkerboard and fuzzy artifacts.

®  Experiments on multiple datasets demonstrate the effectiveness of our proposed method.

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3
introduces the detailed architecture and key components of the proposed image inpaint-
ing method. Section 4 presents experimental results and analysis, including qualitative and
quantitative comparisons, a user study and an ablation study. Section 5 draws conclusions
and points out possibilities for future work. In the Appendix Section, we present the detailed
architecture and all parameters used in the proposed model.

2 Related work
2.1 Deep learning-based image inpainting

Deep learning based image inpainting methods mainly use convolutional network and gen-
erative adversarial strategy for completing images with holes. Context encoders method [25]
is the pioneer work for incorporating encoder-decoder generative network with discrimi-
native network for image inpainting. This method is able to generate semantic contents,
but also produce perceptual discontinuities. lizuka et al. [12] extended this idea and intro-
duced the globally and locally consistent discriminators. Unfortunately, this approach has
limitations on complex structural textures and needs blending post-process to keep bound-
ary coherence. Yang et al. [40] proposed a joint optimization model of content and texture
networks to synthesize sharp structures and fine details. However, the texture constraints in
this method needs to search the most similar patch for each unknown patch, which is time-
consuming. Moreover, two-stage architectures are explored with different kinds of priors,
such as edges [24], smooth images [26] and segmentation map [30]. These additional net-
works predicting the prior information can guide the image generative network to generate
more semantically plausible details. But they are also probable to introduce noise informa-
tion if the prediction accuracy is not high enough. Yu et al. [41] proposed a rough-to-fine
architecture by cascading two generative networks, which can enlarge the receptive field and
produce more refined texture details. How to make full use of low-level semantic informa-
tion is also of concern, such as multi-level generative network by liu et al. [19] and densely
connected generative networks by Shen et al. [28].

In addition, the attention mechanism has been studied in the context of image generation.
Various attention-related modules are designed to improve the visual quality of generated
images, such as the variants [33, 36, 39] of contextual attention [41], self-attention [32],
coherent semantic attention [17], learnable bidirectional attention maps [37] and the atten-
tion transfer network [45]. The attention module uses known features to fill in the unknown
regions, which is effective for generating visually pleasing images but has high computa-
tional complexity. Novel feature normalization methods [34, 43, 50] differentiate the valid
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and hole regions when calculating feature statistics. However, region normalization tends to
produce blurred results [43].

The above image inpainting methods make impressive progress for image inpainting
with large area holes, and can produce more plausible content than traditional methods.
However, due to the lack of deep semantic understanding, the generated images mostly
have fuzzy boundaries and distorted structures. Some methods try to use post-processing
or spatial attention mechanism for further improvement, but the complexity also increases.
Therefore, we propose a novel multi-level feature integration method, which is presented in
detail in Section 3.

2.2 Skip connections

Skip connections are commonly used in network structures. On the one hand, they integrate
the features from shallow layers into features from deeper layers, and support the network
maintain more contextual semantic information. On the other hand, they make the training
process stable by passing the gradients from layers to layers and alleviate degradation phe-
nomenon. In the following, we introduce long skip connections and short skip connections,
which are relevant to our work.

Long skip connection The early deep learning-based image inpainting methods [12, 25,
40, 41] adopt the encoder-decoder structure for the generator network without skip con-
nections. Thus, abundant low-level features extracted by the shallow layers are lost when
the network goes deeper. U-Net [27] is a popular network in image semantic segmentation
field. It adds long skip connections between the corresponding encoder layers and decoder
layers. The features from encoder layers are concatenated to the features from decoder lay-
ers in channel dimension. The image inpainting methods [17, 26, 39] which are recently
proposed prefer to adopt U-Net structure to design their generative networks, and they are
able to synthesize contents with more contextual details. However, the concatenation of two
feature maps from encoder part and decoder part results in redundancy of information and
parameters.

Short skip connection is proposed in ResNet [10]. It acts as an identity mapping in
residual blocks. Short skip connections is capable of stabilizing gradient updates and speed-
ing up the convergence of deep architectures. It also enables feature re-usability as the long
skip connection. The inpainting methods [17, 26] adopt residual blocks with short skip
connections in the generative network to strengthen their models.

3 Approach

We use a rough-to-fine architecture [41] to stabilize the training process and increase the
receptive field of the model. As shown in Fig. 1, we first obtain a coarsely inpainted image
through the use of the rough generator network G,. Then the texture details are enriched
through the fine generator network Gp. We propose a multi-level feature integration (MFI)
network and use it in both networks, G, and G, Finally, the inpainted results and ground
truth are used as input to a patch discriminator network for classifying them as real or
fake, which enforces the generators to synthesize more high-frequency information. Before
introducing the architecture in detail, we define our notations in Table 1.
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Fig. 1 Architecture of the proposed method. The corrupted image with the mask image are fed into a rough
generator G, which uses the proposed MFI network. The generated rough image /, along with the mask
image is sent to a fine generator G, and produce the inpainted image /. I, and the ground truth image are
then sent to patch discriminator to be classified as real or fake

3.1 Rough-to-fine architecture

As shown in Fig. 1, the generating model in our architecture includes two MFI generators
G, and Gp. The network G, takes the concatenation of the input image /;, with holes and
the mask image I, as input, and generates a rough prediction 1,

I, = Ga(fcat(lin: Im))- (1)

As the network G, has a limited perspective field, the predicted image I, is blurry and con-
tains insufficient high-frequency details. Thus, the inpainted image with the mask image is
subsequently used as input for the fine generator network G. Based on the initial prediction

Table 1 Notations — Used acronyms and symbols

Notation Description

MFI Multi-level Feature Integration

G, rough generator network

Gy fine generator network

1, rough image generated by network G,

Iy fine image generated by network Gy,

I, ground truth

I; input image with hole regions

I, mask image with 1 indicating hole region and 0 indicating valid region
Sfeonv convolutional operation

Sfdown convolutional operation with down-sampling
Seonvix1 convolutional operation with 1 x 1 kernel
Jfear concatenate along channel dimension

Sos pixel shuffle operation

!
¢description
L
(pdesz,'ription
Lye, Lus.ssims La, L

features from / — th layer in encoder part
features from L — th layer in decoder part

loss function
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image I, the network Gy, is capable of capturing more global information and synthesizing
refined details for image 1,

Iy = Gb(fcat(la Ay + i - (1 = L), Iny)). ()

Furthermore, the completed image I, along with the ground truth image I, is passed
through the discriminator network, which enforces the generating model to produce more
discriminative information.

3.2 The multi-level feature integration network

We propose the MFI network as the structure of the generators G, and generator Gj. The
structure of the MFI network is shown in Fig. 2. Specifically, adaptive long skip connections
and multi-level short connections are applied to the encoder-decoder generator network.
In the encoder part, we use five down-sampling modules to capture contextual features at
different scales, and we map the input to high-dimensional latent feature space. Accordingly,
five up-sampling modules are cascaded to decode the high-level features back to the pixel
domain, and the hole region is gradually completed.

There are two main differences between our MFI network with the U-Net [27] and the
existing encoder-decoder generative networks [12, 17, 25, 28, 41, 42, 45]: First, for the long
skip connection proposed in U-Net architecture, instead of simply adding or concatenating
features from encoder layers and decoder layers, we include a feature integration block that
incorporates encoder and decoder features with learnable weights along the channel dimen-
sion. The features capturing more information have higher assigned weights, while the less
important features receive less attention. Second, for the components of the encoder and
decoder, we propose a multi-level module, which consists of two branches for extracting
high-level and low-level features, respectively. By contrast, most existing encoder-decoder
image inpainting networks employ one-branch convolutional modules. The multi-level
module makes our MFI network capable of capturing richer features, which improves the
visual quality of generated images.

3.2.1 Adaptive long skip connection
As shown in Fig. 2, we add adaptive long skip connections between encoder and decoder

layers. Compared to the decoder part, there is more low-level information, like edges,
colors and contours, in the feature maps extracted by the encoder layers. This low-level

Multi-level Feature Integration Network

CHNR G ———

m
=)
Q
o
Q.
@
=

__Multi-level Down-sampling Module lliMulti-level Up-sampling Module

Fig.2 Structure of Multi-level Feature Integration Network
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information can help synthesize boundaries and detailed textures. Without these long skip
connections, the low-level information will be lost gradually when the network progresses
more deeply. Features extracted by the decoder lie in high-level and high-dimensional fea-
ture space. Thus, we design the adaptive long skip connection to concatenate corresponding
feature maps from the encoder and decoder layers. In contrast to the vanilla U-Net [27], we
use a 1 x1 convolution layer to adaptively integrate features from two different layers. Each
channel of the integrated feature is the sum of features from the encoder layer and features
the from decoder layer along the channel dimension with learnable weights that adapt to the
goals. The details and formulations are described in Section 3.2.3. The long skip connection
integrates low-level features into the decoder part to enrich multi-level semantic informa-
tion. With the adaptive long skip connections, the network converges faster and generates
more plausible detail information.

3.2.2 The multi-level down-sampling module

For the encoder, we have designed a multi-level residual module for extracting high-level
features with down-sampling. The structure is shown in Fig. 3. The input features from the
immediately previous layer pass through two branches. The lower branch obtains the high-
level features by cascading a down-sampling convolution block and a no-stride convolution
block. The upper branch is used for short skip connection. Different from the identity map
used in the original ResNet [10], we use a down-sampling convolution block for a short skip
connection to make the integrated features from two branches have the same resolution. As
the upper branches have only one convolution block, we consider its output as low-level
features with respect to the high-level features obtained by two convolution blocks in the
lower branch. Formally, we use q’)f , to denote the input feature map from the /;, layer; faown
refers to the down-sampling convolution operation, which is implemented by setting the
stride parameter in the convolution layer as 2. f,,,, refers to the convolution layer with a
stride of one. The low-level feature ¢llo+u¥7 leve 1N the upper branch is calculated as

DY oot = Faown(@h). 3)

The high-level feature ¢£;T;h7 lever 1 the lower branch is obtained by first down-sampling
Jfdown and then performing a convolution f,y,y, i.€.,

Brten—tever = FeonvFaoun(@},))- “)

short skip connection long skip connection

S \ ’
. Cow3x3 Reu oo
i ; > elU .-
i / . low-level "\ |
N feature )

gy

high-level ——  multi-level

feature _ feature
integration

RelU
RelLU

down-sampling

Fig. 3 Multi-level down-sampling module in encoder part. The input feature map is sent to two branches:
upper branch as short skip connection extracts low-level features and lower branch extracts high-level features
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Finally, the output feature of this layer ¢£”. gh—level is obtained by adding the low-level
and high-level features. Further, information is transmitted to the decoder through the long
skip connection, i.e.,

I+1 I+1 141
¢ d)lowflevel + ¢highflevel’ (5)

In our multi-level down-sampling module, both low-level and high-level features are
fused to extract more semantic information.

3.2.3 The multi-level up-sampling module

The structure of the multi-level up-sampling module is shown in Fig. 4. In this module,
the input feature map ‘»"ilh from the immediately previous layer, the L, layer, is used as
input to a two-branch residual block, which is similar to the multi-level down-sampling
module. The difference is that there is no down-sampling operation in this residual block.
The convolution layers in this block apply 3 x 3 kernels with a stride of one. The output

(pj“ is calculated as

L+1 _ L
(plfw —level — fconv((ﬂl-n)

+1 L
whtgh level — = feonv(feonv (@) (6)
_ L+1 + L+1
(pde = Plow—level gDhigh—level'

We integrate the feature qbéj{l from the encoder layer with the feature goL‘H from the
decoder layer via an adaptive long skip connection, i.e.,

Pl ko = Feomvixd (fear @, 05), )

where feonvix1 refers to the convolution layer with kernel size 1 x 1. This convolution
layer works on the channel dimension integration. Assume that the size of ¢>Z +1 and ¢L+1
is N x C x H x W, where N is the batch size, C represents the channel number and A and
W indicate spatial size (height and width). After concatenating feature ¢%+! and ¢/} in the
channel dimension, the feature size becomes N x 2C x H x W. The 1 x 1 convolution layer

short skip connection Iong skip connectlon

high-level feature feature from encoder :

i-1-

up-sampling

-fi-

Fig.4 Multi-level up-sampling module in decoder part. The former part is a two-branch residual block with
short skip connection. The latter part uses a 1 x 1 convolution layer to learn how to optimally integrate the
multi-level features from previous layer and the features from encoder. Then, features are up-sampled via a
pixel shuffle layer

low-level multi-level feature
feature |ntegratlon

—
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adaptively integrates the 2C channels of features into C channels of features, i.e., wﬁjsli(m.

The 1 x 1 convolution layer has C kernels, and each kernel is of size 2C x 1 x 1. The i-th

channel of ‘/’;E on 18 the adaptive sum of all 2C channels of features

m=C n=C
@ fusion-Ci = Z ki X Pen_cm + Z kn X @de_cn, (®)
m=1 n=1

where @ f,5ion_ci 1s the i-th channel feature of (ijc:s]l on» Pen_cm is the m-th channel feature
of ¢>é,;l"1 and ¢g._cn is the n-th channel feature of (pLH kyn, withm = 1,2...,C and k,

withn = C + 1,C + 2,..2C are the parameters {nuggré kernel of the convolution layer
Jfeonvix1. On the one hand, the integration process can learn how to optimally fuse these
features channel-wisely by learnable weights. On the other hand, it can remove redundant
information adaptively by lowering the number of channels.

Finally, the fused feature <pJLJS11 on 18 up-sampled with the same ratio as done in the corre-
sponding encoder layer. Instead of using a common deconvolution operation or traditional
interpolation operation like bi-cubic interpolation, we use the efficient sub-pixel convolu-
tion layer used in the PixelShuffle method [29] for image super-resolution to up-sample the
feature (p]Lc;rst,on, ie.,

¢1fp+1 = fps (fconlel(ﬁojlf‘;lion))’ )

where f),s is a periodic shuffle operation that re-arranges the feature elements. In pixel
shuffling operation, the spatial size increases by decreasing the channel numbers. There-
fore, feonvix1 is employed to make channel number consistent. With the use of learnable
up-sampling filters, the sub-pixel convolution is adaptive to different feature maps, and
it is therefore more effective for synthesizing semantic and well-ordered information. By
contrast, the common interpolation algorithms have fixed weights for a local patch and
often blur high-frequency information. Moreover, we have conducted an ablation study and
present it in Section 4.5 to compare images generated with and without sub-pixel convolu-
tion layers. As the results in Fig. 10 show, with the sub-pixel convolution layer our model
can generate highly detailed and fine structures, with desirable visible edges in regions of
abrupt and high contrast. The generated textures are also of high quality.

3.3 Patch GAN

The traditional discriminator returns a singular value between zero and one for each input
image, which cannot fully reflect the local characteristics of images. Therefore, we use
Patch GAN [14] to extract local high-frequency features. The discriminator in Patch GAN
generates an N x N matrix X for each input image. Each element X;; represents a local
patch in the input image, and the discriminator judges each patch as real or fake. The imple-
mentation of our discriminator is shown in Fig. 5. We use five convolutional layers C1 —C5
for feature extraction. The first four layers C1 — C4 use Leaky Relu as activation function,
and layers C2 — C4 use the BatchNorm [13] layer to stabilize the training process. The dis-
criminator maps the image to feature space by multiple down-sampling steps, with a stride
value of two in the convolutional layers. Finally, we calculate the discriminative loss in fea-
ture space directly, which is efficient and makes the training process more stable. Further, it
enables the refinement network to synthesize more meaningful high-frequency detail. The
adversarial loss is discussed in detail in Section 3.4.
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Inpainted image

Fig.5 Structure of the patch discriminator network

3.4 Loss function

Ly loss We understand L loss as reconstruction loss L, to ensure pixel-wise consistency
of a rough image I, and a fine image I}, with a ground truth image I, i.e.,

Lre=E[”Ia_Ig||1+||1b_1g||1]~ (10)

Multi-scale SSIM Loss In order to increase structural similarity between inpainted images
and the ground truth, we incorporate multi-scale structural similarity (MS_SSIM) loss [35].
The SSIM metric measures similarities for brightness, contrast and structure between two
images. MS_SSIM loss L5 _ssim is calculated as

N
1

Lins ssim (I, Ig) = 1= = Zl SSIM(Dy(Ip, Ig)), (1)

n=
where D, (-) is the average pooling operation for down-sampling the inpainted image [,
and the ground truth I; 2"=1 is the down-sampling ratio. We calculate the MS_SSIM loss
for five scales. Based on the MS_SSIM loss, both local and global structure similarity

constraints are used to guide the network to produce visually more acceptable images.

Adversarial Loss We use a least squares GAN [23] to improve the visual quality of gener-
ated images, where the objective function L; of minimizing least squares errors is defined
as

ming Eppp, [DUg) = 17 + 3 E,~py [D(G i)

Ly = . ’
d ming Epy~p, [D(G (i) = 172

12)

where D(-) denotes the discriminator network and G(-) represents the generator network.
Py defines the distribution of an input image I;;, with holes, and P, is the distribution of the
real image /. The constant 1 labels the real image, and 0 labels are used for the generated
image. The least squares discriminative loss improves training stability and performance of
the generator.

Overall Loss Our loss function L is defined as
L= Ar Lre + )LmSJsim LmSJsim + )Lde, (13)

where A, Ans_ssim andAiy are adaptive weights for reconstruction loss, structural loss and
adversarial loss, respectively.
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4 Experiments

We conduct extensive experiments to verify the effectiveness of our proposed method,
including qualitative comparisons in Section 4.2, quantitative comparisons in Section 4.3,
user study in Section 4.4 and ablation study in Section 4.5.

4.1 Basic settings
4.1.1 Datasets

We evaluate our method and the comparison methods on three commonly used public
datasets: Paris StreetView dataset [44], CelebA-HQ dataset [21], and Places2 dataset [49].

—  Paris StreetView dataset comes from Google StreetView. The dataset focuses on build-
ings in Paris and contains structural information such as stacked buildings, doors and
windows. We divide the dataset according to the original split strategy: 14,900 images
for training and 100 images for testing.

— CelebA-HQ dataset contains 30,000 high-resolution face images. We sequentially
divide the dataset into 2000 testing images and 28,000 training images according to the
split strategy from paper [19].

— Places2 dataset [49] is a scene images dataset containing 10 million images for 365
scene categories. Each scene has 5,000 images for training and 100 images for test-
ing. We use images from four scenes, including tree farm, valley, mountain path and
mountain, for training and testing.

4.1.2 Training settings

All models are tested and trained on Ubuntu 18.04 operating system, which is powered by a
server with two Intel(R) Xeon(R) Silver 4108 @ 1.80GHz CPU and four NVIDIA GeForce
RTX 2080Ti 11GB GPUs. The version of Python is 3.6.7. The batch size of our experiment
is 22. For both training images and testing images, the resolution is 256 x256. We use resize
and random cropping transform for training dataset. Concerning hyper-parameters, we set
loss function weights as A, = 4, Ay = 2, Aps_ssim = 1; we set the learning rate as Ir =
0.0002, based on experiments. It takes 82,000 iterations, 150,000 iterations and 100,000
iterations, respectively, to train our model for the Paris StreetView, CelebA-HQ and Places2
datasets. For the comparison methods, we use the same parameter settings as in their papers.
Note that we present the detailed architecture and all parameters settings the proposed MFI
network in the Appendix Section.

4.1.3 Comparison methods

We compare our method with the following four methods.

—  PM: Patch Match, a traditional exemplar-based method proposed by Barnes et al. [2].
The continuity of the image and the surrounding patch are used to vote for image
completion.

— GL: Global and Local, proposed by Lizuka et al. [12]. Globally and locally consistent
discriminators are proposed to increase the local consistency and global consistency of
image completion.

— CA: Contextual Attention, proposed by Yu et al. [41]. The features of the non-missing
patches are used as convolution kernels to generate the missing patches to refine the
fuzzy inpainting results.
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—  ML: Multi-Level generative network, proposed by Liu et al. [19]. A three branches gene-
rative network is built to capture features of various levels while reducing training time.

In terms of model size, there are 6.1 million, 3.6 million, 15.1 million and 15.0 million
learnable parameters for the GL, CA and ML methods and our method, respectively. The
average times for inpainting one image of resolution 256 x 256 are 0.182 second, 0.041
second, 0.037 second and 0.012 second for the GL, CA and ML methods and our method.
Method GL adopts Poisson image blending as a post-processing step, which improves the
consistency but also increases the inpainting time. Method CA has a non-local attention
layer, which is beneficial to generate sharp and clear textures, but very time-consuming. By
contrast, our method is high-efficiency regarding the inpainting time.

4.2 Qualitative comparison

We conduct experiments with two different masking strategies, including rectangle mask
and irregular mask.

Firstly, we train our model and the comparison models with rectangle masks on Paris
StreetView dataset. Visual testing results are shown in Fig. 6. The size for missing region
is 128 x 128, accounts for 25% pixels. From Fig. 6b and ¢, GL method [12] and ML
method [19] can generate semantic content, but the inpainted regions are very blurry and
lack details. These two methods are based on generative network, but they use only one gen-
erator network and have no skip connections, which makes the network less powerful. As
presented in Fig. 6d, PM method [2] can produce sharp restoration in some simple and regu-
lar pattern scenes by using similar neighbor patches. However, in complex scenes, like trees
in the first and fourth images, windows in the second and third images, the results of PM
method suffer from disordered textures and unreasonable contents. Observed from Fig. 6d,
CA method [41] can synthesize plausible result at the semantic level, but it also generate
disordered textures and colors. For example, the repetition tree texture in the first image,
the green color propagated to the building wall in the fourth image and the inconsistent
boundary in the fifth image. Compared with these methods, our model achieves better visual
effect. As shown in Fig. 6e, our model generates sharp and semantically reasonable textures
and consistent boundaries. This benefits from the adaptive long and short skip connections
in the proposed multi-level feature integration network, and the rough-to-fine architecture
also helps extract more semantic features.

Secondly, we use the irregular mask dataset provided in the paper [16] to train and test our
method on CelebA-HQ dataset and Places2 dataset. The mask dataset contains more than
50 thousand mask images for training, and has six different missing pixel ratio ranges for
12 thousand test mask images. The training masks and testing masks are randomly assigned
to the training and testing images. From the inpainted results shown in Fig. 7, we can see
that our method can generate plausible content with irregular masks on different datasets.

4.3 Quantitative comparisons

We evaluate quantitatively our method and the comparison methods on Paris StreetView
dataset with center rectangle mask, in terms of five metrics, i.e., L error, L error, PSNR
(peak signal-to-noise ratio), SSIM (structure similarity index) and FID (Fréchet incep-
tion distance) [11]. The first four metrics are calculated in RGB space, and indicate the
pixel domain accuracy between the inpainted image and the ground truth. The metric FID
calculates the perceptual distance in high level feature space. We feed the inpainted image
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(b)

(d)

(8)

Fig. 6 Qualitative comparisons on Paris StreetView dataset with center rectangle mask. Images from top to
bottom are: (a) Input (b) GL (¢) ML (d) PM (e) CA (f) ours (g) Ground Truth

and the ground truth to the pre-trained Inception-V3 model to extract features, and then
conduct FID calculation. For image inpainting task with large missing areas, for exam-
ple, object removal, the task is to generate reasonable content with high visual perception
quality, not pixel-wise restoration with the ground truth. Thus, as the L error, L error,
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Fig.7 Visual results with irregular masks. The first two rows are the test results for CelebA-HQ dataset and

the last two rows are the test results for the Places2 dataset

PSNR and SSIM metrics can reflect texture distortions to some extent, the FID metric is

more consistent with human visual perception.

Table 2 lists the evaluation results, and shows that our method performs best in terms
of FID metric, indicating that our method can generate superior visual effects compared to
other methods. The quantitative evaluation results are also consistent with the qualitative

Table 2 Numerical comparison for Paris StreetView dataset

Method L (%) L; (%) SSIM™* PSNR™ FID~-
PM [2] 5.37 2.74 0.84 23.21 55.60
GL[12] 436 1.71 0.86 25.26 79.82
CA [41] 5.13 2.53 0.85 23.83 59.96
ML [19] 437 1.72 0.87 25.18 82.72
Ours_MFI 4.33 1.67 0.87 25.38 64.73
Ours 4.68 2.00 0.86 24.93 49.94

Best results for each metric are shown in bold numbers. The notation ~ stands for “lower value is the better
method” and T stands for “higher value is the better method”. The method called Ours_MFI network has one

MFI network, while the method called Ours refers to the whole architecture with two MFI networks
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Table 3 The average subjective
evaluations for five inpainting Method PM GL CA ML Ours

methods from 60 volunteers

average score 6.92 5.11 6.48 5.00 7.15

results in Section 4.2. In terms of L error, Ly error, PSNR and SSIM metrics, our method
with one MFI (Multi-level Feature Integration) network achieves the highest values, as pre-
sented in the second row from the bottom in Table 2. The evaluation results demonstrate
that our proposed MFI network with adaptive long and short skip connections is effective
in capturing multi-level semantic information and achieves high reconstruct accuracy in
pixel domain. But for better visual quality, we suggest the two-stage architecture. By incor-
porating MFI network with rough-to-fine architecture, our proposed method can generate
fine-detailed and semantically reasonable textures.

4.4 User study

In order to better evaluate the perceptual visual qualities of image inpainting, we conduct
the user study experiment with 60 volunteers. We use the 100 test images from the Paris
StreetView dataset and ask the volunteers to grade for 20 random sets of images based
on their subjective visual perceptions. Each set has five inpainted images randomly from
methods PM [2], GL [12], ML [19], CA [41] and our method. The grade ranges from 1 to
10, and grade 10 is for ground truth with the best visual qualities. The average subjective
scores of five methods are shown in Table 3. Our method gets highest subjective evaluation
7.15. Method PM gets the second place as they use the known patches to fill the hole which
is much sharper than methods GL and ML. The smoothed curve for the average user score
for each test image is shown in Fig. 8. For images with natural landscapes or buildings, our
model scores far more than other methods. For the completion of some advertising signs,
our method still has some room for improvement.

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

0 10 20 30 40 50 60 70 80 90 100

Fig.8 The average subjective score curve after smoothing for 100 test images from Paris StreetView dataset
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(a) M1 (b) Ours (c) M1 (d) Ours

Fig.9 Visual comparisons between M1 (without the refinement network) and our integrated method

(c) M2 (d) Ours

Fig. 10 Visual comparisons between M2 (using nearest interpolation not sub-pixel upsampling layer) and
our integrated method

(c) M3 (d) Ours

Fig. 11 Visual comparisons between M3 (without short skip connections) and our integrated method

Table 4 Numerical comparison for ablation study performed for Paris Streetview dataset

Method L (%) L5 (%) SSIM™* PSNR* FID™
M1 (without refinement network) 4.33 1.67 0.87 25.38 64.73
M2(without sub-pixel) 4.78 2.18 0.85 24.21 50.47
M3(without short skip connection) 4.71 2.13 0.85 24.08 55.37
ours 4.68 2.00 0.86 24.93 49.94

Best results for each group are shown in bold numbers
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4.5 Ablation study

We conduct three groups of ablation experiments to further study the effects of different
parts in our method. We denote the method without the refinement network as M1, the
method using nearest interpolation instead of sub-pixel upsampling layer as M2 and the
method without short skip connections as M3. The visual results are shown in Figs. 9, 10
and 11, and the quantitative evaluations are presented in Table 4.

As shown in the Fig. 9a and c, method M1 with one single proposed MFI (Multi-level
Feature Integration) network generates blurry completions. Our rough-to-fine architecture
integrating two MFI generative networks inpaints the missing regions with fine detailed
textures and sharp structures in Fig. 9b and d. Although M1 achieves better evaluations
in terms of metrics L; error, PSNR and SSIM, it has much lower FID values than our
integrated method. Figure 10 presents the comparisons between M2 and our integrated
method. Observed from these visual results, we can get the conclusion that sub-pixel lay-
ers contribute to keep the semantically reasonable and ordered textures and structures. As
shown in Fig. 11, results generated by M3 method show obvious fuzzy and disordered tex-
tures, such as speckled stripes on the wall in Fig. 11a and chaotic textures for the door in
Fig. 11c.

5 Conclusions

We have introduced an effective Multi-level Feature Integration (MFI) network for image
inpainting. As components of the encoder and decoder in the MFI network, we have
designed a multi-level down-sampling module and upsampling module. The two-branch
structure is used to capture and integrate multi-level semantic features. Features from shal-
lower layers are adaptively fused with features from deeper layers with learnable weights.
Concerning the overall architecture, two MFI networks are cascaded to fill in hole regions in
a progressive way. A joint-trained patch-discriminator guides the MFI network to synthesize
higher-frequency information. Our presented experiments demonstrate that our method per-
forms better than other methods regarding the completion of regions with “highly ordered
textures” and “sharp, high-contrast structures”.

The focus of our presented method is the design of a generative network, i.e., a net-
work that is effective in capturing rich multi-level features. However, when large irregular
hole regions must be filled in, performance still should be improved. First, the convolution
operation has limited ability of modelling long-range dependencies. Second, valid and hole
regions are not differently treated, which may introduce “blurry artifacts”; this aspect could
be addressed in future research. Third, the receptive field is limited for each MFI network.
The parallel dilated convolutional module can be combined with our architecture. It is our
plan to incorporate advanced self-attention, a mask-aware strategy and a receptive field-
aware framework with our MFI network to expand the applicability to a wider spectrum of
image classes.

Appendix

The detailed architecture and used parameter values of our approach are provided in Table
5- Table 8. We use the following abbreviations in the table: Size_in stands for the spatial
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size of the input in one dimension; Size_out stands for the spatial size of the output in one
dimension; C_in refers to the channel number of the input; C_out is the channel number of
the output; Act refers to the non-linear activation function; Norm refers to the normalization
method; Conv stands for convolution layer; K stands for kernel size; S stands for stride; and
P stands for padding.

Table 5 Architecture of the MFI (multi-level feature integration) network

Architecture of MFI network

Layer Input Size_in Size_out C.in C_out Act Operator
Eng cat(Image, Mask) 256 256 4 32 Relu Conv
Enj F_Enog 256 128 32 64 Relu MD
Eny F_En; 128 64 64 128 Relu MD
Ens F_Enp 64 32 128 256 Relu MD
Eny F_Enj 32 16 256 256 Relu MD
Ens F_Eny 16 512 256 Relu MD
Eng F_Ens 256 256 Relu Conv
Dey cat(F _Eng, F_Ens) 256 256 Relu MU
De; cat(F_Dey, F_Eny) 16 256 256 Relu MU
De3 cat(F_Dey, F_Enz) 16 32 256 256 Relu MU
Dey cat(F_Des, F_Enj) 32 64 256 128 Relu MU
Des cat(F_Dey, F_Eny) 64 128 128 64 Relu MU
Deg cat(Des, Enyp) 64 128 64 32 Relu Conv
De; F_Deg 128 256 32 3 Sigmoid Conv

Conv represents convolution operation, MD represents multi-level down-sampling, and MU represents multi-
level up-sampling. F_layer indicates the output feature of the layer

Table 6 Architecture of encoder module En;

Architecture of encoder module En;

Layer  Operator  Input Output Act S C.in C_out
Upper  Conv F_En;_, F_Upper ReLu 2 min(2i3,28)  min2/+4,28)
Lower Conv F_En;_ F_Lower0 ReLu 1 min(2+3,28)  min(2i+4,28)
W . .
Conv F_Lower0 F.Lower  ReLu 1 min(2+4,28)  min(2i+4, 28)

The input is the output feature of the previous module En;_;. The output is F_Upper + F_Lower. F_layer
indicates the output feature of the layer
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Table 8 Architecture of Patch GAN

Architecture of PatchGan

Layer  Operator  Input Output  Act Norm K S P Inc Outc
Cl1 Conv Image F.Cl LeakyReLu  None 4 2 1 3 64
C2 Conv FCl F.C2 LeakyReLu  BatchNorm 4 1 1 64 128
C3 Conv F.C2 FC3 LeakyReLu  BatchNorm 4 1 1 128 256
C4 Conv F.C3 F.C4 LeakyReLu  BatchNorm 4 1 1 256 512
C5 Conv F_C4 F_C5 None None 4 1 1 512 1

The input is the real image or fake image. Output is an 124 x 124 matrix X for each input image, which
judges each patch as real or fake. F_layer indicates the output feature of the layer
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