
Computer-Aided Design 146 (2022) 103232

a

b

c
d
c
t
b
i
m
u
e
i
i
c
c
F
s
s
i
f
a
s
t
b
b

h
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Application paper

A finite-element basedmeshmorphing approach for surfacemeshes
Felix Claus a,∗, Bernd Hamann b, Hans Hagen a

TU Kaiserslautern, Computergraphics & HCI Lab, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
Department of Computer Science, University of California, Davis, CA 95616-8562, USA

a r t i c l e i n f o

Article history:
Received 30 August 2021
Received in revised form 24 January 2022
Accepted 1 February 2022

Keywords:
Digital twin
Mesh morphing
Sheet metal simulation

a b s t r a c t

We present a finite element (FE) approach that deforms a given meshed CAD-based simulation model
to a shape represented by a triangulation. We use an FE solver to calculate a smooth deformation
field that we apply to the simulation mesh. The FE load case derives displacement boundaries from
computed distance estimates between source and target meshes. We reduce mesh distortions via an
iterative approach until a specified required mesh quality threshold is achieved. Our specific application
is concerned with meshes used for sheet metal simulations arising in automotive applications where
one wants to construct digital twins of measured sheet metal parts or entire assemblies. The approach
is validated for parts and assemblies, considering simulation as well as experimental data. Our
computational experiments produce errors below ±0.05 mm, which is on the order of measurement
uncertainty of common optical measurement devices. We provide test results for fully and partially
measured parts to document the robustness of our implementation.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Today’s production processes use computer simulations con-
erning multiple manufacturing levels for optimization or pre-
iction purposes. In contrast to physical testing, simulations are
heaper and more economical for process optimization. Due to
he affordability of powerful hardware, simulation models have
ecome sufficiently suitable to deal with real-world complexity,
.e., they are now capable of computing high-fidelity simulation
odels or supporting processes in real-time [1]. To make sim-
lations more realistic sensor data from a real-world process
nvironment can be integrated. This kind of simulation model
s commonly called ‘‘digital twin’’, because the simulation model
s improved by using sensor data from the actual process. The
oncept of a digital twin has recently become very popular and
an be applied to various problems; a review can be found in [2].
or instance, in the automotive industry assembly processes of
heet metals are optimized using realistic finite-element (FE)
imulation models. The challenge for proper processes model-
ng is the fact that the desired geometrical tolerances of the
inal assembly are on a smaller scale than the geometric devi-
tions of single assembly components. Observed deviations of
ingle components are generally caused by production uncertain-
ies of previous production steps. To achieve acceptable assem-
ly quality, every assembly needs to be optimized individually,
ased on the distortions of the components being assembled. To

∗ Corresponding author.
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ttps://doi.org/10.1016/j.cad.2022.103232
010-4485/© 2022 Elsevier Ltd. All rights reserved.
make high-fidelity predictions for process parameters, or to de-
rive countermeasures, a digital twin preserving the real geometry
of assembly components can be used, see [3,4].

To capture the free-form surfaces of assembly components
with high resolution, optical measurement devices are necessary
to acquire a point cloud representation. From the acquired point
clouds, geometric information is obtained to derive a digital twin
that is used to predict optimal assembly parameters. Converting
the geometric information captured via a point cloud to the
format required by a numerical simulation is a challenging and
crucial process. This process is often done manually by using re-
verse engineering solutions, or the model is drastically abstracted,
i.e., only offsets to mechanical boundaries are applied. Several
methods can be used to create a simulation mesh based on a
given point cloud, which, unfortunately, is often incomplete or
noisy, making manual corrections inevitable. We introduce an
automated FE-based mesh morphing algorithm that can handle
measurement noise and incomplete measurements. A high-level
description of the workflow is shown in Fig. 1. A tessellated point
cloud and an FE model, established via a CAD definition of the
‘‘nominal geometry’’, are the inputs. The ‘‘nominal geometry’’ de-
scribes the desired geometry that is defined by a CAD model and
technical drawings. The FE model is composed of FE meshes, the
definition of element types, the definition of material properties,
the interconnection between single meshed components, and the
definition of load case. The tessellation of the point cloud is the
representation of an actual geometry that differs from the ‘‘nomi-
nal geometry’’. Our method transforms the FE mesh to match the

measurement data and produces a morphed FE model as output.
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Fig. 1. Workflow for BMW engine hood. A tessellated point cloud and an FE model generated for the ‘‘nominal CAD geometry’’ serve as input. The output is a
morphed FE model. Right: distances between FE model and measurement before and after morphing. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
The color-coded pictures on the right of Fig. 1 show a comparison
between measurement and FE model, before and after morphing.
Our goal is to approximate a target geometry within ±0.05 mm
hich is the measurement uncertainty for commonly used 3D
canning systems.

. Background

This section summarizes topics that are related to our method
r motivate the need for solution approaches. The main challenge
aced by methods covered in the literature is the need to handle
eal geometries acquired by optical measurement devices for
stablishing precise prediction models. We categorize existing
pproaches into those based on (1) reverse Engineering, (2) direct
eshing, or (3) morphing.

.1. Reverse engineering

An intuitive approach for generating a model of a measured
hape utilizes reverse engineering (RE) methods to obtain a CAD
epresentation of the acquired point cloud. Based on the CAD
odel, a simulation mesh can be generated that preserves mea-
ured geometry. By modeling the simulation model, based on
he CAD representation obtained with RE, a geometric digital
win can be established. RE is used for many different application
reas, e.g., manufacturing [5,6], medicine [7,8], civil engineering
9,10], and design processes [11]. A review is provided in [12].
E can be time-consuming and costly. To speed up this pro-
ess, dynamic approaches, e.g., the one described in [13], focus
n optimizing data acquisition and reconstruction at the same
ime. In [14] multi-sensor data fusion is utilized to increase
peed and precision. Although RE methods are well-established
or generating virtual representations of complex free-form sur-
aces, additional model generation steps are often necessary to
btain the desired quality of a digital twin. Unfortunately, this
odel generation approach requires manual involvement. Thus,

he pipeline from acquiring point cloud data to digital twin gen-

ration becomes costly and error-prone.

2

2.2. Direct mesh generation

To eliminate the need for RE, direct mesh generation methods
produce FE meshes directly from a point cloud. This can be a
challenging task, see [15]. The method discussed in [16] addresses
this problem by coarsening an acquired point cloud using bubble
packing [17]. A coarsened point cloud is triangulated to define
the required FE shell elements. The resulting FE model is used to
predict post-assembly shapes. A voxel-based approach for direct
mesh generation is described in [18], capable of generating high-
quality quadrilateral (quad) surface meshes from the acquired
data. Although generating meshes directly from measured point
clouds is beneficial, it does not directly address the problem of
handling geometry that has not been captured entirely.

2.3. Morphing

To change the shape of digitized geometry in a smooth and
controlled manner, morphing can be used, see [19]. Morphing
is relevant for our approach as it can be used for transforming
geometry in such a way that it matches a target shape. Morphing
methods perform (1) CAD data-based morphing or (2) mesh-
based morphing. CAD data-based morphing algorithms apply a
transformation to CAD surfaces. The topology and number of
faces of the CAD model remain the same during morphing. As
mesh and modeling rules for automated model generation work-
flows are commonly defined together with a CAD definition, the
update of the simulation model can be performed efficiently and
robustly. This principle can be used for different applications,
i.e. see, [20,21]. CAD data-based morphing has also been used
to generate a digital twin from measured geometries. In [22],
a parametric model for compressor blades is described where
the model is obtained by fitting scanned data. The model was
used to evaluate the impact of manufacturing variability on the
performance of a multi-stage high-pressure compressor [23].

In contrast, a mesh-based morphing method calculates a de-
formation field that is applied directly to the vertex positions of
a simulation mesh. This method does not require any re-meshing

or re-modeling steps. Typically, mesh-based morphing is used to
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ake rapid changes in a simulation mesh in the design phase,
ee [24]. In [25] mesh morphing is used to generate simulation
odels with shape deviations based on CMM measurements.
summary of mesh morphing algorithms is given in [26] and

n [27]. A widely used branch of methods for mesh-based morph-
ng approaches is called ‘‘spring analogy model’’. While the spring
nalogy model uses mathematical formulations for calculating a
eformation field, FE-based methods solve the linear elasticity
quations for calculating the vertex displacements [28]. Our ap-
roach is closely related to this branch of research as it classifies
s an FE-based mesh morphing method.
When approximating a free-form surface discretely with a set

f linear elements, deviations occur in areas with high curvature
beaded edges). To improve representation in these areas, adap-
ive mesh sizes are used. This can lead to an excessive amount
f elements resulting in large computational costs for solving FE
roblems on the generated mesh. To reduce the number of ele-
ents while still preserving a highly accurate representation of
ontinuous geometries, higher order-meshing can be employed.
uring the generation of curvilinear meshes, morphing is used to
hape a piece-wise linear approximation to ‘‘resemble’’ more and
ore a higher-order representation, see [29]. In the following, we
nly use linear mesh elements. However, approximation errors
aused by linear elements are discussed, and curvilinear meshes
ould be used to improve achieved results.
Based on the reviewed literature, we identified the following

echnological gap. Although the generation of CAD surfaces or
eshes from acquired point clouds can be considered as a solved
roblem – solved satisfactorily by RE or direct mesh generation
ethods – it still requires manual interventions. Especially, when
arts cannot entirely be captured by scanning, significant man-
al work is necessary. Finalizing a simulation model from an
utomatically generated CAD representation or mesh minimally
equires manual quality control of the model. CAD-based mor-
hing approaches are more robust in terms of automated model
eneration, as meshing and modeling can be updated efficiently
nd reliably. However, these approaches are limited in terms of
recision and flexibility, especially when complex geometries are
nvolved. While mesh-based morphing provides the necessary
lexibility, available methods either cannot be used to match
easurement data or have problems maintaining mesh quality
hen morphing complex geometries. We address this technology
ap via an iterative simulation-based mesh morphing algorithm.
ur algorithm is designed for surface meshes and applied to use
ases from the automotive industry. Our contributions are the
ollowing:

• An iterative FE simulation-based mesh morphing algorithm
that handles complex geometries, measurement errors, and
only partially measured geometries.
• Real-world validations with simulation and experimental

data, showing approximation errors below ±0.05 mm.

he novelty of this work is the high degree of automation of our
pproach. In contrast to available approaches where substantial
anual work is necessary to achieve a geometrical digital twin
erived from 3D scans, our approach only needs to be set up once
er part.

. Method

Our approach falls in the class of FE-based mesh morphing
ethods. As kernel for the displacement field calculation, we use
n FE simulation. The definition of the simulation problem is
rucial for describing the method. First, a high-level description
f the approach is given. An overview of the processing steps
s presented by discussing a pseudo code, see Algorithm 1. We
lso discuss the mathematical details of the various functions
nvolved.
3

Fig. 2. Computational progression of the proposed algorithm. The input of the
algorithm consists of an FE-mesh based on the nominal geometry and tessellated
measurement data of the actual part. A distance field is computed establishing
a load case, subsequently applied to the FE model. The output updates the FE-
model. The algorithm terminates when FE-model and measurement geometries
match.

3.1. High level description

Fig. 2 provides a high-level overview of the computational
scheme. The basic idea of the FE-based morphing approach is
to calculate distances between FE mesh nodes and a measured
target geometry; these distances define an FE-load case. The
displacement of the simulation output is used to adjust node
positions of the FE-model. This process is repeated until the
geometries of FE-model and measurement match. Most crucial
is the calculation of the distance field and the placement of
FE-boundary conditions. Fig. 3 shows how the placement of FE-
boundaries is carried out, based on a calculated distance field.
Following common meshing terminology, the phrases ‘‘source’’
and ‘‘target’’ are introduced to differentiate between meshes,
finite elements, and vertices belonging to different inputs. For the
use case, the source mesh is related to the FE mesh representation
of the ‘‘nominal geometry’’, while the target mesh is a tessellation
of the point cloud of the measured, actual geometry. Based on
the calculated distances, FE boundary conditions (displacements)
are associated with the FE mesh. We divide the boundary condi-
tions into two groups: (a) restrictive boundaries with prescribed
movement conditions in all three dimensions, and (b) bound-
aries considered in node normal direction only, allowing in-plane
movement. In Fig. 3, restrictive boundaries (blue) are used for
nodes belonging to mesh perimeters. The zone marked in gray is a
row of elements next to the mesh perimeter. To prevent collision
of restrictive perimeter boundaries and boundaries applied only
in normal direction, this zone is introduced. For mesh nodes
belonging to this zone, the placement of boundary conditions is
restricted to perimeter boundaries only.

When the simulation problem is set up, an FE solver can
calculate nodal displacements, bringing the FE mesh closer to
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Fig. 3. High-level illustration showing different types of boundaries applied to the FE-mesh which is used for morphing. Types of boundaries differentiated by (blue)
perimeter vector boundaries and (green) displacement boundaries applied only in surface normal direction. The magnitude of displacements is calculated based on
the local distance to target geometry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the measurement data, thereby reducing distance. This step is
repeated until the distance value satisfies a specified minimum
threshold value.

3.2. Algorithm

Algorithm 1 Outline of the morphing algorithm. Input: measured
point cloud and simulation mesh; Output: morphed simulation
mesh.
1: Data loading
2: X ← Target mesh ▷ Tessellated point Cloud as trimesh-obj
3: Y ← Source mesh ▷ Tessellated FE mesh as trimesh-obj
4: Parameter
5: ϵ ← Termination criterion
6: max-angle← Maximal normal angle difference
7: weight_function(a)← Magnitude weight function
8: c_params← Coarsening parameters
9: Pre-processing

10: perims=extract_and_match_perimeters(X , Y )
11: disp_perims=register(perims) ▷ perimeter displacement

vectors
12: disp=disp*weight_function(mag(disp)) for disp in

disp_perims
13: Main loop
14: while ϵ < error do :
15: magnitudes=[ ]
16: for all vert in Y .vertices do:
17: Xtri, distance_vector = find closest triangle(vert , X)
18: angle = angle(vert.normal , Xtri.normal)
19: if angle > max-angle then skip ▷ Filter out bad

matches
20: b = ⟨ distance_vector , vert.normal ⟩
21: magnitudes.append(weight_function(b))
22: end for
23: magnitudes = coarsening(magnitudes , c_params)
24: write_solver_deck(Y , magnitudes , disp_perims)
25: run_FE_solver()
26: update_verticies(Y )
27: error=RMS(X , Y )
28: end while
29: Output: write_out_morphed_model(Y )

In the following, the algorithm implementation is described
sing the pseudocode Algorithm 1.
4

As input, two Trimesh [30] objects must be created — lines
(2) and (3). While 3D scans usually are handled as tessellated
data and can be directly loaded via Trimesh, the simulation mesh
of the ‘‘nominal geometry’’, needs to be converted. Therefore,
nodes and elements are parsed from the solver deck from which
a Trimesh object can be created. In lines (5)–(8), the parame-
ters that can be defined by the user are listed. These are: (5)
termination criterion (ϵ) – floating-point value that is compared
each iteration with the Root-Mean-Square(RMS) error value – see
Eq. (1), (6) max-angle — floating-point value that represents the
aximum acceptable angle between normal of source mesh node
nd matched triangle of target mesh during distance computa-
ion, (7) weight function — a continuous function that returns a
eighted value for a given displacement magnitude, (8) coars-

ening parameters — a set of parameters for coarsening a list of
displacements. The first calculation steps are performed during
pre-processing. In line (10), the perimeters of both input meshes
are extracted and matched. A perimeter is considered a topologi-
cal boundary of the geometry. Next, the extracted perimeters are
parameterized and up-sampled, if necessary, and the point set
registration problem is solved in line (11), resulting in a target
displacement vector for each perimeter node on the source mesh.
The target displacement vectors are scaled by the weight_function
defined in line (7). Matching perimeters and calculating tar-
get displacements are optional and can only be applied if the
perimeter curves are represented accurately in the target mesh.

RMS =

√∑n
i=1 di

2

n
(1)

Eq. (1): Calculating RMS error. Distance di is the distance error
per node and n the number of nodes.

The main loop of the algorithm iterates until the RMS error
is below ϵ – line (14) – which is calculated at the end of each
iteration — line (27). In the body of the main loop the following
steps are performed: For each vertex of the source mesh, the
nearest triangle of the target mesh is searched — line (16). This
function in native, provided by the library Trimesh, returns the
closest point, distance as a scalar, and closest triangle-ID. Next,
the vertex normal of the source mesh is compared to the identi-
fied triangle normal. If the angle between those normals exceeds
the user-defined value max-angle (6) the pair will be considered a
mismatch and will not be considered further in the current loop —
line (18). If the difference in normal direction is within the allow-
able tolerance a, the displacement magnitude for FE computations
will be calculated in two steps. First, the scalar product between
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he distance vector and normal vector of the source mesh vertex
s computed in line (20). Computing the scalar product is done
o obtain only the portion of displacement in normal direction.
econd, the obtained scalar value b is weighted by the weight

function defined in line (7). The weighted scalar value is stored
in a list — line (21). Before performing the FE computation, the
list of magnitudes is coarsened – line (23) – to ensure that
one does not apply boundary conditions to every single vertex.
The coarsening function thresholds the list and selects every nth
lement of remaining entries. The coarsened list of displacements,
erimeter displacements, and current mesh node positions are
sed to generate a solver deck. We note that the values held
y the list magnitudes are scalar values while disp_perims are
isplacement vectors. Both are used for generating displacement
oundary conditions. The difference is that the scalar values from
agnitudes are used to displace the corresponding mesh node in
ormal direction while the in-plane degrees of freedom (DOFs)
emain unrestricted so the mesh can move in-plane. In contrast,
he vectors of disp_perims are used to move corresponding nodes
long a pre-defined vector by defining all three translational
OFs. When boundaries and vertex positions are written to the
ew solver deck, the FE computation can be performed. The FE
roblem is defined as a mechanical linear elastic problem, see
q. (2), which is solved by the simulation software. The resulting
isplacement field is used to update the vertex positions of Y,
sed to evaluate an RMS error by comparing with X. At this point,
ne iteration has been performed. The steps line (15)–(27) are
epeated until the RMS error is below ϵ. The final mesh is written
o an output file.

= Ku⃗+ f⃗ (2)

Eq. (2): Equilibrium formulation of linear elastic problem. The
matrix K is the stiffness matrix of the mesh, u⃗ are nodal displace-
ments, and f⃗ are nodal forces.

3.3. Mathematical description of calculation steps

Important mathematical functions used in the pseudo code
Algorithm 1 are explained in more depth. In particular, these are:
(a) perimeter matching and point set registration — line (10)/(11);
(b) distance computations and filtering — line (17)–(21); (c) user-
defined weight function — line (7); (d) coarsening the calculated
distances with user defined parameters — line (8) and (23); and
(e) handling edge cases — not mentioned in the pseudo code.

Matching perimeters and point set registration — In analogy to
mass–spring models, the morphing approach matches the mesh
perimeters and applies strict displacement conditions. The nodes
on perimeters can be identified easily and matched robustly. This
property is used to prevent overlapping of the mesh perimeters
in the final result. First, all target and source mesh element edges
that belong only to one element are extracted from both meshes.
Next, resulting edges are grouped by connectivity. Each group of
connected edges is a mesh representation of a perimeter. To elim-
inate mesh influence each perimeter is re-sampled. Re-sampling
is carried out by parametrizing each edge-list of perimeters by
scaling accumulated edge lengths to one. Equidistant sampling
is performed, generating new nodes by linear interpolation of
corresponding edges. For each re-sampled perimeter, the charac-
teristics length (l) and center of mass (c) are calculated, see Fig. 4.
Based on these calculated characteristics, perimeters of source
and target mesh are matched. After the matching of perime-
ters is done, a point set registration is performed to find target
displacement vectors for each vertex on the perimeters of the
source mesh. The used registration method is called ‘‘coherent
point drift’’ (CPD) [31], implemented in the library ‘‘Probreg’’ [32].
5

CPD is a state-of-the-art non-rigid point set registration method.
CPD solves the point set registration problem by viewing it as
a probability density estimation problem to which a Gaussian
mixture model (GMM) is applied. The GMM centroids of the
source point cloud are fitted to the target point cloud while
the movement of GMM centroids is restricted to be coherent to
maintain topological structure. The original paper provides more
details. CPD can handle outliers and noisy data very well, which is
important for our problem. Fig. 5 shows a simple example for reg-
istering two matched perimeters that are discretized by vertices.
By applying the transformation calculated with CPD to the source
point cloud, the transformed source vertices are obtained. While
the source point cloud preserves the original vertices from its
mesh, the target point cloud is a dense equidistant re-sampling of
the parameterized perimeter curve. The re-sampling of the target
perimeter is done to achieve the best possible representation
of the target curve, as the information of edges connecting the
points or order of points is not used by the CPD algorithm. In
contrast, the source point cloud is not re-sampled since we are in-
terested in a target displacement vector for exact these vertices. If
necessary, additional nodes on the perimeter edges of the source
mesh could be interpolated for the registration step. However,
this was not necessary for the use cases covered in this paper,
and we did not implement this step. The advantage of using a
point cloud representation for registering the nodes of matched
perimeters is that orientation, the starting point of the curve,
or distribution of vertices along the curve do not matter. The
output of CPD provides the desired transformation of the source
points. Based on this transformation, the desired displacement
vectors are computed and are used to define nodal displacement
boundary conditions on the perimeter vertices of the FE mesh
(source).

Distance computation and filtering — The distance computation
for the vertices not contained in the perimeters is carried out
by using a proximity function implemented in Trimesh. This
implementation also does resolve ambiguous distances internally.
As input, this function needs a mesh object (target) and a list
of vertices (source). For each source vertex, the closest triangle
of target mesh, the point on this triangle, and distance as scalar
are returned. As we are interested in distances between the
FE mesh vertices and the measurement, we use the tessellated
measurement as target input mesh and the vertices of the FE
mesh as source input points for distance calculations. On the left
side in Fig. 6, the components of the distance computation are
visualized. Just finding the triangle closest to a vertex might result
in mismatches for various cases. For example, incomplete meshes
or large in-plane shifts between meshes lead to wrong matches
that cause errors when deriving boundaries for the subsequent
FE computations. To handle mismatches, two filters are used,
see right side of Fig. 6. First, the normal vector of the source
vertex is compared to the normal of the matched triangle. If the
angle between the two normal vectors is above the user-defined
threshold – line (6) – the vertex will not be considered for ap-
plying displacement boundary. To deal with large in-plane shifts,
a second filter is applied. This second filter calculates the scalar
product between the distance vector and source vertex normal
vector. As every normal vector is automatically normalized by
Trimesh, this scalar product can be geometrically interpreted as
the component of the distance vector in vertex normal direction.
The reason for only considering distances in vertex normal direc-
tion is this: The displacement boundaries for the FE problem are
only applied perpendicularly to the mesh surface. All other DOFs
are unrestricted. Thus, the mesh can slide during FE analysis,
automatically resolving in-plane shifts.
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Fig. 4. Matching perimeters (1–3) of source and target meshes. Perimeters with different shapes, lengths, and locations are matched using as characteristics center
of mass (C) and length (l) for comparison.
Fig. 5. Point set registration using non-rigid CPD algorithm. This algorithm does not consider the order of vertices or orientation of the perimeter curve.
Fig. 6. Left: distance computation used for finding distances for each source mesh vertex. Right: filters used to remove mismatches (normal-filter), and handle
in-plane shifts (scalar product).
User-defined weight function — To prevent mesh distortions
aused by largely displaced mesh nodes during the FE calcula-
ions, a weight function is applied to the magnitude of calculated
istances. This approach generates a smooth displacement field
ith smaller displacement magnitudes. Between iterations, the
istance to target geometry is re-evaluated and updated. The
6

function used in our method is plotted in Fig. 7. For small dis-
tance magnitudes, the function weights magnitude of the corre-
sponding displacement boundary with a factor near 1. For large
distances, the magnitude gets weighted down, but never towards
zero as this would pin down single mesh nodes resulting in
slow convergence of shape optimization problems. For different
applications, the weight function needs to be scaled according
to element size. The weight function could also be used to ac-
celerate convergence as this function has a direct impact on
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Fig. 7. Weight function f (x) for scaling matched distance values. Small distances have weights close to 1, while large distances have weights of approximately 0.5.
Fig. 8. One iteration step with weighted boundaries. Blue: displacement vectors of perimeter mesh vertices. Red: displacement applied to mesh nodes in normal
direction. Transparent: updated mesh node positions after FE simulation. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
2
z

the choice of either more or less aggressive displacement mag-
nitudes. The effect of applying such a weight function to the
calculated displacement magnitudes is depicted in Fig. 8. In the
figure, the source mesh is considered as FE simulation mesh, to
which boundary conditions are applied, while the target mesh
corresponds to a tessellated representation of the actual mea-
sured geometry. The length of each displacement boundary is
scaled by the weighting function. The boundaries placed on the
perimeters are shown in blue. These boundaries have a pre-
described vector calculated by the point set registration. The red
boundaries are displacements for the source mesh nodes that do
not belong to perimeters. These boundaries only displace the cor-
responding mesh node in normal direction during FE calculations.
This is achieved via the second applied filter, see Fig. 6, and is
done so the node can slide perpendicular to the surface normal.
This sliding has the effect, that the mesh can relax to avoid
distortions. After each iteration, the mesh node positions are
updated, shown via reduced opacity. The new shape is closer to
the target mesh. Due to the mesh update, vertex normal vectors
change as well. This leads to fewer mismatches when filtering
distances in the next iteration. As matches and normal directions
do change between iterations, the weighting function does define
how aggressively the FE computation changes the mesh.

Coarsening matched distances — Before defining boundary con-
itions from the calculated and filtered distances, the identified
atches are thresholded and coarsened. For thresholding and
oarsening, different user-defined values can be set, considered
s a set of coarsening parameters in line (8) of Algorithm 1. First,
ll distance values are thresholded by a certain value. This is

one to only consider mesh nodes that are in a defined range t

7

of the target surface. Thus, mesh nodes far away from the target
mesh are not considered until they move close enough due to
previous iterations. Next, a margin can be defined by a number
of rows. This number defines the number of element rows next to
perimeters that must not have any boundary conditions, compare
Fig. 3. As the perimeters have restrictive displacement conditions,
additional boundaries near perimeters can cause mesh distor-
tions, especially during the first iterations. This value can be set
to 0 towards the last iterations. All remaining values that are
not classified as a mismatch by the distance computations or
removed due to proximity to perimeter mesh nodes are clustered
using three classes (a,b,c). For each class, different density pa-
rameters for boundary placements are defined. The purpose of
this classification and varying densities for boundary placement
is illustrated in Fig. 9: Class (a), nodes that are already inside
the target range. These nodes are kept in position (only normal
direction restricted) — displacement value is set to zero; Class (b),
nodes that are used mainly to pull the source mesh towards the
measurement during the current iteration; Class (c) remaining
nodes below the threshold, but outside class (a) and (b). For each
class, distance value ranges and a coarsening number n must be
defined by the user. Coarsening for each class is performed by
selecting every nth node for placing a boundary condition. For
class (a) and (c), a higher value, e.g. n = 5, can be selected. The
rationale is that in class (a) almost no deformations occur. Thus,
only a few boundary conditions must hold for the source nodes
near the target surface. In class (b), most of the deformations take
place. Therefore, dense sampling of boundaries is chosen, i.e., n =
. Class (c) is used to guide the area adjacent to the deformation
one. As distance computations might be less robust and discon-
inuous in this class, only a few boundaries are placed. The reason
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Fig. 9. Placement of weighted displacement boundaries, classified by distances into three classes: (a) close to target, held in position; (b) in deformation zone and
dense placement of boundaries; (c) coarse placement to guide source mesh towards target.
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for selecting only every nth node for placing a boundary is this:
The simulation result becomes ‘‘smoothed’’ as the part’s stiffness
acts similarly to a cubic spline between restricted nodes. With
each iteration, the classes shift. Class (a) permanently grows until
the whole part is covered.

Edge cases — Although the proposed algorithm is reliable and
robust, some edge cases should be considered to improve results.
The phrase ‘‘edge case’’ is meant in the context of computer
programming. One edge case occurs in areas with high surface
curvature. In these areas, the comparison between node normal
and mesh element normal leads to errors. These errors are caused
by the node normal not matching an adjacent element normal.
This leads to a ‘‘mismatch’’ classification when the difference
in normal angle exceeds the specified threshold for filtering.
Specifically, when calculating the scalar product, see Fig. 6, the
resulting displacement vector is generally quite small. To com-
pensate for such errors the calculation of the scalar product is
skipped when the computed distance value is below local mesh
resolution (maximum edge length of surrounding elements). The
second edge case occurs when the target mesh does not cover the
whole surface of the source mesh (incomplete measurements).
In this case, perimeters might not be captured. Further, mea-
surement values are often noisier near perimeters. To handle
such problems, we remove rows near perimeters from the candi-
dates for boundary placement. This applies to elements that are
between class (c) and thresholded nodes, see Fig. 9. As all not-
measured areas have large distances to the next triangle on the
measurement, there exists a high degree of change of distance
near the outline of the measurement. This property can be used
to shrink the nodes where boundaries can be placed. The user
can define how many rows of elements are discarded to adjust
the algorithm to measurement quality.

3.4. Parameters used to adjust algorithm

The proposed algorithm is based on various parameters that
can be used to improve morphing quality for individual use cases.
This section introduces parameters that need to be defined by the
user. Their impact on the morphing algorithm is discussed as well.

Search distance — This parameter defines the maximally al-
lowed distance magnitude, calculated by trimesh, see, ‘‘Distance
Computation and Filtering’’. All distance values above the search
distance are not considered for placing boundary conditions. This
value only thresholds distances for nodes that do not belong to
a perimeter of the geometry. Varying this value has a significant
impact on the number of boundary conditions being placed.

Normal angle — This parameter is used for the comparison of
node normal (source) and triangle normal (target), determined
with the distance computation. If the angle between node normal
and triangle normal exceeds the parameter value, the match is
classified as a mismatch and discarded, see Fig. 6. This param-
eter impacts the number of node candidates that are kept for
boundary placement greatly.

Class (a–c) — This set of parameters controls the density of
boundary placement for each class introduced in ‘‘Edge Cases’’.
 l

8

For each class, a range of distances as well as a number n must
be defined. The distance range is used to generate a list that is a
subset of all mesh nodes, where the calculated distance values are
within the defined range. The number n is used to coarsen the list
by selecting every nth element. By selecting different ranges and
ampling densities, the main deformation zone can be controlled,
ompare Fig. 9.

emove rows — This parameter is an integer that defines how
any rows of elements next to perimeters must not contain
oundary conditions, except perimeter boundaries. In Fig. 3, el-
ments colored in gray show where this parameter is set to one.
y increasing the number of element rows being excluded from
oundary placement, the distance between the different kinds of
oundary conditions is increased. In this zone (compare Fig. 3)
o boundary conditions except perimeter boundaries are placed.
ubsequently, nodal displacements only result from deformation
alculated by the FE simulation.

elaxing parameters — This condition determines when an in-
ermediate morphing step is close enough to the target geometry
n order to relax parameters, which were listed before. For ex-
mple, this condition could be an RMS error value, maximum
rror value, or fixed iteration steps. The idea is to use moderate
arameter sets in the beginning and switch to more aggressive
arameters when getting close to the final step. For instance, by
ncreasing the ‘‘normal angle’’ criterion, lowering ‘‘remove rows’’
nd increasing sampling density n for all classes, faster conver-
ence, and higher geometric precision result. When applying such
onditions too early, the FE mesh can become distorted, resulting
n low-quality results. The choice of this condition is problem-
ependent. However, to achieve the desired behavior we apply
hem as early as possible, i.e., when perimeter boundaries have
eached their target position. In general, it would be also doable
o introduce multiple relaxing criteria that allow a successive
hange from moderate parameter sets towards restrictive ones.

. Case study

For verification and validation, three different case studies
re presented. First, a verification with simulated input data is
rovided. Single sheet metal parts with different features and
izes are morphed with an artificially created geometry as target.
he second case study investigates an assembly of an engine hood
hat is morphed, using only a target geometry for the outer skin.
his study is also performed with simulated input data to be able
o evaluate the morphing of the underlying structure. The third
ase study presents a validation where the method is applied
o real, imperfect measurement data, generated via 3D scanning.
dditional verification investigating surface defects and lateral
isplacements is provided in Appendix.

.1. Case 1 — Verification: Morphing single sheet metal parts

Fig. 10 shows three different sheet metal parts. All parts be-

ong to the sub-structure of an engine hood of a BMW E46. These
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Fig. 10. Different input geometries for validation. Shown are deviations of up to 8 mm compared to target geometry. These parts were chosen to verify proper
orphing of different geometrical features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
arts were selected because they have different characteristics
ike size, number of perimeters, and geometric features. The parts
re represented by an FE mesh with first-order shell elements.
he material model was chosen as linear elastic with Young’s
odulus of 210 GPa and a Poisson’s ratio of 0.3. The simulation
oftware used is ABAQUS from Dassault Systèmes. In the figure,
he distance between the FE mesh and the target geometry is
hown, encoded in color in the pictures. The target geometry
as created by performing an FE simulation deforming the orig-

nal mesh. The simulation result was extracted and converted
o a triangulated mesh acting as a pseudo-measurement. These
E-generated pseudo-measurements have ideal properties, like
moothness and completeness, compared to real measurement
ata. The verification is performed to determine whether the
roposed method works with ideal input data for different kinds
f geometries.

xecution parameter — The user-defined parameter values for
xecution are listed in Table 1. In addition to the computation
teps discussed in Algorithm 1, adaptive parameters (‘‘Relaxing
arameters’’) are employed. Per iteration, the maximum distance
s determined and parameters are switched to more aggressive
tates when an already good approximation is achieved. This
s done to increase convergence speed and handle unwanted
lind spots that are filtered out when using moderate parame-
ers. Finding suitable parameter values for a given geometry and
easurement quality can be done by performing a parameter
tudy. Performing a parameter study is time-consuming but is
ot necessary for every part. For most geometries, a well-chosen
tandard set of parameters is sufficient (e.g. parameter values
or Part 2). Whether it is worth performing a parameter study
an be determined by the complexity of the part and quality of
easurement.

.1.1. Results
The results of the verification are shown in Fig. 11. The first

hree iterations and the last iteration are shown. For this verifi-
ation, the number of iterations was fixed to analyze convergence
ehavior and robustness of the method. After three iterations, no
eviations above 0.2 mm can be observed. The ninth iteration
s analyzed on the scale of ±0.05 mm, which is at the scale
of measurement uncertainty of commonly used measurement
devices for this application. Even at this small scale, only single
elements show a noticeable difference which is explained by the
mesh’s resolution.
9

Table 1
Parameter sets for validation.
Parameter Part 1 Part 2 Part 3

n Class a [0 mm, 0.05 mm] 3 3 3
n Class b ]0.05 mm, 1 mm] 2 2 2
n Class c 1 mm< 2 2 2
Search distance 10 mm 10 mm 10 mm
Remove rows 2 2 1
Normal angle 10◦ 30◦ 30◦

Relaxing parameter

Relax if max dist < 0.5 mm 2 mm 2 mm
Remove rows 0 0 0
Normal angle 30◦ 40◦ 40◦

4.2. Case 2 — Verification: Morphing a partially scanned assembly

To determine whether the proposed method can handle par-
tially scanned parts or even assemblies, the simulation model of
the whole engine hood is morphed, only using the information
of the outer skin that can be captured in an assembled situation.
The morphing result of the inner structure is compared with the
deformed target model. Again, the target geometry is created
using an FE simulation deforming the ‘‘nominal model’’. We do
not expect a high-precision reconstruction of the hidden areas
but at least a plausible representation of the parts not captured in
a 3D scan. Fig. 12 shows an exploded view of the assembly. The
engine hood consists of seven individual sheet metal components
with different thicknesses. Besides the visible outer skin, four re-
inforcement and two inner parts are components of the assembly.
All parts are made from steel sheet metal and are modeled with
365152 first-order shell elements. The components are joined to-
gether by modeling spot welds, acoustic and structural adhesives.

4.2.1. Results
The results of morphing the assembly only using geometrical

information of the outer skin are shown in Fig. 13. The left
side of the figure shows the mesh with ‘‘nominal geometry’’
compared to the deformed mesh created with an FE simulation.
The deformed mesh is triangulated and exported, serving as a
pseudo-measurement. Only the triangulated outer skin is used as
input of the algorithm as target geometry. After morphing (right
side), the outer skin is well-approximated, within ±0.05 mm. The

underlying sub-structure is only deformed by interacting with
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Fig. 11. Series of iterations for three parts. Color represents signed distance to the target geometry. Iterations 1–3 are measured at a scale of ±1 mm, and iteration
at a scale of ±0.05 mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. (This figure was published in [33], licensed under Attribution 4.0 International (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/; changes: figure
shows only one sub-figure.)
the outer skin during the FE simulation. The results for the sub-
structure have errors of up to ±0.5 mm compared to the target
eometry. A much better approximation is obtained compared to
he situation before morphing.

.3. Case 3 — Validation: Morphing with experimental data

To validate the performance of our method for real-world
se cases, 3D scan data is used as input. We consider this val-
dation as crucially important: When working with real sensor
ata, additional challenges are expected that do not arise when
orking with artificial test data. For acquiring the point cloud
he experimental setup shown in Fig. 14 is used. The left side
f the figure shows the part mounted on an aluminum profile
rame using the original hinges and locks. To be able to adjust
ttachment positions, one hinge is mounted onto a compound
lide. A dial gauge is used to tune the positions of locks and
uffers. The frame is attached with markers used for aligning
oint clouds. To reduce reflection effects a light gray spray paint
s applied to the engine hood. The right side of Fig. 14 shows the
10
setup of the 3D scanner. An HP pro S3 structured light scanner is
used to capture the whole part in one picture. To handle such a
large scan window the scanner is set up using custom calibration
panels and the hardware arrangement shown. The reason for
capturing the whole part in one scan is the desire to avoid errors
caused by point cloud registration. The downside of this scan
setup is the fact that the acquired point clouds become noisy
on an order of around ±0.1 mm. We consider a noisy scan as
a challenge for the algorithm and argue that a higher-resolution
measurement is more easily processed, which makes the chosen
setup sufficient for validation purposes. The acquired point cloud
consists of 4.9 million points, generated by merging multiple
scans using different exposure times. Points with a high degree
of uncertainty are automatically removed by the software. The
point cloud is tessellated and smoothed, and unnecessary points
are removed, resulting in a triangle mesh with 700,000 vertices.
This number is about four times the density of the simulation
mesh. The smoothing, coarsening, and tessellation steps applied
to the scan data were performed with the commercial software

https://creativecommons.org/licenses/by/4.0/
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Fig. 13. Morphing full assembly only using target geometry for outer skin. Inner parts are morphed indirectly by interacting with the outer skin via FE simulation..
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Experimental setup. Left: fixture and specimen. Right: room layout for capturing the whole part in one picture. (This figure was published in [33], licensed
under Attribution 4.0 International (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/, changes: spelling.)
tool ‘‘GOM Inspect’’, which is commonly used in the industry for
post-processing scan data.

Before using the generated mesh as morphing target, align-
ent between the FE model and measurement must be per-

ormed. Different methods can be used to perform this step.
e decided to use a best-fit approach with specified tolerances,
erformed with the commercial software tool ‘‘GOM Inspect’’.
he reason for using a best-fit approach for alignment is the
act that the average distance between ‘‘nominal geometry’’ and
ctual geometry is minimized; the maximally possible number of
oundary conditions for the FE model can be achieved for the first
teration of the morphing algorithm, see distance computations
n Fig. 6. However, the best-fit alignment of the measurement
s performed without a specific reference frame. Conventional 3-
-1 alignment must be performed after morphing to embed the
esulting model in the reference frame used for vehicle definition.

The parameter set used for the morphing algorithm is listed
n Table 2. The relaxing conditions were chosen dependent on
he iteration number and changed two times. This was chosen
uch that the sampling density was increased and the number of
istances discarded by the normal filter was decreased with rising
teration number.

.3.1. Results
In Fig. 15 the results of the morphing with actual measure-

ent data are shown. The left side of the figure shows the differ-
nce between the simulation mesh based on ‘‘nominal geometry’’
11
and the actual measured part; differences of up to ±7 mm can
be observed. The right side shows the result of the morphing
algorithm. For consistency, nine iterations are performed. The
results show that only areas near perimeters of the measurement
exhibit error values of over ±0.05 mm. The average error is
0.0002 mm and RMS is 0.0017 mm (Areas near mesh perimeters
not considered). The morphing process uses the simulation model
of the whole assembly. However, the sub-structure cannot be
evaluated as it is not captured in the available measurement data.
Nevertheless, the sub-structure is morphed to a plausible shape
by manually assessing the geometry.

4.4. Run times

To benchmark our method in terms of computational cost, we
provide execution times. All times are based on the computing
environment summarized in Table 3. Fig. 16 provides an overview
of all measured computing times. Each donut diagram represents
run times for nine iterations per part/assembly. The times con-
sider times for sub-tasks: (a) initial preparation, (b) FE solver
pre-processing, (c) FE simulation, and (d) other computations. The
initial preparation time concerns data-loading and extracting and
matching mesh perimeters. As these operations have to be done
one time only, the preparation of the first iteration is listed sep-
arately. The FE solver pre-processing time relates to preparations
and I/O operations performed by the used simulation software,
while FE simulation time considers the actual run time of the

https://creativecommons.org/licenses/by/4.0/
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Table 2
Parameter set used for morphing scan data.
Parameter Iteration 1–3 Iteration 4–6 Iteration 7 Iteration 8-9

n Class a [0 mm, 0.05 mm] 5 3 3 1
n Class b ]0.05 mm, 1 mm] 3 3 3 3
n Class c 1 mm< 3 3 3 3
Search distance 5 mm 5 mm 5 mm 5 mm
Remove rows 3 1 1 1
Normal angle 15◦ 30◦ 50◦ 60◦
Fig. 15. Left: distance between measurement and nominal geometry; right: morphed simulation mesh compared to measurement.. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. Measured run times. Total times consider times for (a) initial preparation, (b) FE solver pre-processing, (c) FE simulation and (d) other computations. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
FE solver. The other computations cover the run times of the
proposed method, in particular the main loop of Algorithm 1.
The figure shows the composition of run times for different levels
of model complexity. For the single sheet metal parts discussed,
run times are between six and 36 min The numbers of mesh
elements used are drastically different, see Fig. 10. Morphing the
full assembly requires about 51 min for the experiment, with
simulated data. The run time of the morphing using real sensor
data took with 120 min way longer.

4.5. Loss of element quality during iterations and convergence be-
havior

To assess the convergence behavior of our method and impact
on element quality of the transformation, different quantities are
evaluated from the experiments. For the convergence behavior,
the RMS error between the current state and target geometry
is evaluated after each iteration. The change of element quality
is measured by counting the number of elements that fail the
quality checks defined in Table 4. The values in the table for
12
the quality checks are ABAQUS standard values for elements not
ideal but still acceptable for simulation. The choices of displace-
ment magnitude and placement have a substantial impact on
element quality. In our verification and validation, the minimal
edge length of small elements is 0.048 mm, and the maximal
displacement value of 3.6 mm is about two orders of magnitude
larger. To prevent elements from distorting during the calcula-
tion, the method takes advantage of element stiffness properties.
Most importantly, one must avoid the placement of inconsistent
boundary conditions close to each other. This is prevented by
applying the filter, coarsening, and weighting steps, described in
Section 3.3.

Our evaluation results for element quality and RMS are sum-
marized in Fig. 17. The upper graphs show that the amount of
elements considered badly shaped does not change significantly
and remains almost constant. The lower graphs show conver-
gence behavior. For all cases, a similar convergence behavior
is observed. The approximation changes most substantially in
the first three iterations. In the following iterations, the RMS
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Fig. 17. Evaluation of element quality and convergence behavior for all experiments. Top: number of badly shaped elements in % across all iterations; bottom:
convergence behavior of proposed algorithm using RMS error per iteration. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Table 3
Specification of computing environment used to measure run times.
Processor Intel i7-5820k@3.6 GHz
Memory 64 Gb DRR4@2100 MHz
Storage M.2 SSD read; write 3200 MB/s;1400 MB/s
Graphics card 2x Nvidia GTX 1070 8 GB GDDR5
Operating system Microsoft Windows 10 Professional
Finite element solver ABAQUS - Dassault Systèmes

Table 4
Standard element criteria used by ABAQUS for evaluating mesh quality.
Quality criterion Value

Shape factor (triangles) less than 0.01
Triangle corner angle less than 5◦
Triangle corner angle greater than 170◦
Quadrilateral corner angle less than 10◦
Quadrilateral corner angle greater than 160◦
Aspect ratio greater than 10
Edge length shorter than 0.01 mm

value still decreases towards zero but with smaller changes per
iteration.

5. Discussion

We discuss the following aspects: (a) parameters of Algo-
ithm 1, (b) the results of different validations, (c) computational
imes, (d) convergence behavior, (e) simulation parameters, and
f) drawbacks and limitations of the approach.

arameter of Algorithm 1 — A common problem with flexi-
le algorithms is the fact that for every new case a suitable
et of parameters must be found. This is time-consuming and
sually carried out with a trial-and-error method. Although our
lgorithm has several parameters that must be defined, it is
ot difficult to find suitable values, as parameters are related
o understandable geometric measures, compare Section 3.4. Se-
ecting not-quite-ideal parameter values mostly results in bad
onvergence behavior and longer run times, but not in a failure
f the method.

erification results — The presented verification results docu-
ent the applicability of our approach to real-world cases. The
implest use case morphs a single sheet metal part to a noise-
ree target mesh that fully covers the geometry. The results are
hown in Fig. 11. The final result shows, for all morphed part
hapes, error values below ±0.05 mm, which is the measurement
ncertainty for 3D scanning devices commonly used in industrial
13
applications. Single spots with minor deviations below±0.05 mm
occur due to mesh resolution. The mesh nodes are close to the
target surface, but the element edge deviated from the target
mesh and shows a difference in the surface-to-surface distance
comparison. An example for this problem is given in Fig. A.18.
This is a minor weak point of the method that would be worth
improving, but for most applications, the sub-mesh resolution
approximation is not relevant. We conclude that the precision
target defined in Section 1 has been achieved.

In the second verification, presented in Section 4.2.1, a full
assembly was morphed only using a target mesh for the outer
skin. This experiment was chosen to show how the proposed
method handles not-measured sub-structures that often cannot
be scanned, especially in assembled situations. The goal was
to obtain at least a realistic approximation of the underlying
structure. The established goal of ±0.05 mm cannot be kept for
not-measured areas, as information for performing high-fidelity
morphing is not contained in the measurement. This verification
demonstrates that, during the deformation of the underlying
structure, no effects like buckling occur. We can accept error
values up to ±1 mm. The results of this verification are shown in
Fig. 13. The comparison between target and morphed assembly
parts does not show any deviations above ±0.5 mm. All parts of
the sub-structure are of a plausible shape. Although the digital
twin is not accurate in terms of geometry, we argue that the
results are better compared to not updating the sub-structure.

Validation results — The validation presented in Section 4.3
was performed to show the applicability to real sensor data.
The results are shown in Fig. 15. In this case, the measurement
covers only the outer skin, but not entirely. Especially, perime-
ters and areas not visible for both cameras of the scanner are
not captured. For morphing, the perimeters were not considered
and only boundary conditions perpendicular to the surface were
applied. The results have errors that are below 0.05 mm, which
meets the established precision target. Only small areas towards
mesh perimeters of the measurement show higher approximation
errors. Closer examination has revealed that observed differences
in these areas are caused by measurement errors. At these loca-
tions, the tessellation of the point cloud has outliers that are not
removed by previous smoothing or cleaning steps. However, since
it is forbidden to place FE-boundaries near perimeters by the
selected parameters for the mesh morphing, the result remains
smooth, causing the observed differences in the comparison. This
leads to a higher RMS error value the result is converging to —
see Fig. 17.

Computational times — The computing times of our method
could be further improved, and there exists a great potential for
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Fig. A.18. Artificial example of morphing surface defects of different sizes. Top: target geometry compared to FE mesh (plane). The cross section shows radii and
eights of dents. Bottom: morphed results compared to target geometry. The cross section shows approximation errors for small dents below mesh resolution. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
mprovements in this regard. The run times are summarized in
ig. 16. With the rising complexity of the FE problem, run times
re increasing. It is striking that most of the overall computation
ime is spent in the FE pre-processing step. This step is performed
y the simulation software and could only be improved by turn-
ng off checks performed by the pre-processor, or by switching
o another simulation software. We consider this part of run
ime behavior as a high potential for improvements. We want to
ighlight the difference in run times between the full assembly
ith simulated and measured target geometry. Although model
ize is exactly the same, run times are different. This can be
xplained by the different densities of the target meshes, having
n impact on the other necessary computations. However, the
ajor computing time was spent on the last iterations where the
ensity of boundary placement was raised to achieve good local
pproximation results. For these iterations, almost three times
ore boundary conditions were used which resulted in very large
re-processing times while solver times stayed on the same scale.

onvergence behavior — The convergence behavior of the algo-
rithm is shown in Fig. 17. We measure convergence as a function
of RMS depending on iteration, which should converge towards
zero. The convergence behaviors for all experiments are similar
to each other. The largest improvements are achieved during the
first two iterations. From iteration three, RMS values only change
in a small way, converging to zero stably. It is important to have
stable and fast-converging behavior of the algorithm; otherwise,
an optimal number of iterations would have to be defined instead
of a minimum error value.
14
Concerning convergence of the FE problem, we discuss factors
affecting numerical stability. Most crucial for the stability of the
simulation problem is the choice of displacement boundary con-
ditions. If boundaries that are close to each other are inconsistent
or even conflicting, then mesh distortions will occur and the FE
problem will not converge. To prevent such conflicts, different
precautions were made:

• Controlling density of boundary placement by coarsening
matches
• Application of weight function to prevent excessive dis-

placements
• Thresholds applied to displacements

In addition, a single linear-order element formulation and linear
elastic material model are used, and non-linear effects are ne-
glected to improve the robustness of the FE calculations further.

Simulation parameter — Different parameters for the FE com-
putations can influence the final shape of the morphed mesh
and the computation times. Especially the material model de-
fines the behavior of the part/assembly and thus influences the
output. In our validations, we used a linear elastic model and
did not consider geometric non-linearity for the FE computations.
A cubic interpolation between mesh nodes with boundaries can
be achieved, as the flexible behavior of the simulation mesh
minimizes bending energy. As the real behavior of the part is not
of interest during morphing, different simulation parameters can
be used to change the behavior of the mesh and control element
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Fig. A.19. Evaluation of cross section at emblem position during iteration steps 0–5. ‘‘Iteration 0’’ represents the initial situation and ‘‘Iteration 5’’ is an intermediate
result close to a morphed situation. It can be observed that the emblem is offset at ‘‘Iteration 0’’. This offset is removed during morphing. This evaluation results is
based on scan data from Section 4.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
o
v
c
r
i

e
F
m
r
c
q
m

D

c
t

A

s
2

distortions. We did not perform investigations concerning this
issue and consider it as potential future research.

Drawbacks and limitations of the approach — The presented
orphing approach provides a high-fidelity output and hardly re-
uires any manual interventions. Nevertheless, some drawbacks
nd limitations should be pointed out. Further improvements are
esirable concerning computational cost and scalability. Compu-
ational times could already be reduced as discussed; unfortu-
ately, each iteration involves the execution of the FE-solver to
imulate displacements for the full simulation model. Executing
he FE-solver is essential and cannot be avoided or drastically ac-
elerated. Another issue is the fact that no mesh quality controls
re implemented. This can lead to errors when mesh elements
re poorly shaped. The current implementation of the proposed
lgorithm does not address the issue of poorly shaped elements.
he proposed method was designed and only validated for surface
eshes. Using the method for volume meshes was not assessed,
nd modifications and extensions would be necessary to extend
he method to volume meshes.

. Conclusions

We have described an FE-based mesh morphing algorithm
hat uses a simulation mesh and a measured part geometry as
nput and computes a morphed simulation model. Our method
nly needs access to node positions of the FE model and nodal
imulation results. It can be implemented straightforwardly with
ommercial software tools. We have implemented a prototype
n python, using ABAQUS from Dassault Systèmes as FE solver.
15
Our prototype can be used to validate our method for industrial
applications with simulated and experimental data, and we have
summarized and discussed our results. The results of the sim-
ulated experiments meet the pre-defined quality goal of error
values below ±0.05 mm for ideal conditions. Morphing results
f the experimental data show only slightly higher RMS error
alues, which can be explained by measurement noise, espe-
ially towards the perimeters of the mesh. We have presented
un times and have described the convergence behavior of our
mplementation.

Concerning potential future research, it would be worthwhile
xploring reasons for the high preparation times required by the
E solver and considering taking advantage of different material
odels for the FE model. Theoretically, an extension to volumet-

ic FE models is possible. Further, a local re-meshing approach
ould be integrated into the implementation to improve mesh
uality in areas where elements are distorted significantly by the
orphing process.
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eb version of this article.)
ppendix. Additional test cases

See Figs. A.18–A.20.
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