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Abstract

We present a new approach to isosurface visualization
that we call “iso-splatting.” We use point primitives for rep-
resenting and rendering isosurfaces. The method consists
of two steps. In the first step, point samples are generated
throughout the volumetric domain of a scalar function. In
the second step, these points are projected onto the isosur-
face of interest. We render the resulting point set using a
surface splatting algorithm. The method can be extended
to out-of-core or parallel environments. Our results show
that this method can offer much greater time and space effi-
ciency when compared with standard triangle-based meth-
ods, thereby supporting higher levels of interactivity. Parts
of the algorithm can be accelerated using graphics hard-
ware. One key advantage of this approach is that, since ex-
traction computations are divided into two smaller phases,
work can be distributed to exploit all available resources.

1 Introduction

Isosurface visualization is an extremely valuable method
for the exploration of scalar fields. A large number of pub-
lications propose various methods for optimizing the ex-
traction and rendering phases of isosurface visualization.
Isosurfaces are typically stored and rendered as polygonal
meshes, usually triangle meshes. Recent developments in
the rendering of densely sampled models using point-based
primitives have made point-based rendering of surfaces a
viable and popular alternative [24, 25, 27, 1, 10, 22]. We
propose an approach for more efficient isosurface visual-
ization based on recent advances in point-based rendering.

A large fraction of isosurface visualization research has
followed one model: a user specifies an isovalue of inter-
est, portions of the domain intersected by the isosurface are
determined, and geometric primitives are computed. These

Figure 1. Iso-splatting applied to a fuel in-
jection simulation data set. Top-left: point
samples generated near the isosurface; top-
right: points projected onto the isosurface;
bottom: resulting point set rendered using
surface splatting.

geometric primitives are then rendered. The process is per-
formed for each new isovalue specified by the user. For
each isovalue, previous isosurface geometry is typically dis-
carded, and a completely different set of geometry is com-
puted.

This basic methodology is quite straightforward, but it
is also wasteful. A relatively large amount of computation
must be performed to produce geometry specific to each
isovalue. One set of geometric primitives created by this
method can only be used to represent one specific isosur-
face. The situation is made worse when considering the
cost involved in storing polygonal meshes.

Iso-splatting provides an alternative to this paradigm by
splitting the work of extraction into two independent steps.
In the first step, discussed in Section 4, point samples are
generated. In the second step, these point samples are pro-
jected onto the isosurface of interest, which we discuss in
Section 3. The resulting point set is rendered using a surface



splatting technique. Figure 1 illustrates the iso-splatting
technique applied to a fuel injection data set. The crucial
difference between our approach and “standard” polygon-
based methods is that the point geometry can be used to
represent a range of isosurfaces. Geometry must be adjusted
only to a relatively small degree to represent a slightly dif-
ferent isosurface. By virtue of this fact, we greatly decrease
computation time. The use of points, in many cases, can
also decrease storage requirements. Furthermore, this new
isosurface visualization paradigm can be tailored to meet
application-specific needs, which we discuss in Section 5.

2 Related Work

Isosurfacing algorithms can be classified as either view-
dependent or view-independent. View-dependent ap-
proaches focus on the resulting image and therefore attempt
to perform computation mainly in regions that contribute
substantially to the final image. At approximately the same
time when Lorenson and Cline published their well-known
Marching Cubes (MC) paper [15], they developed a lesser
known method called Dividing Cubes (DC) [5]. Based on
viewing parameters, the DC algorithm renders grid cells as
points after iteratively or recursively subdividing cells to a
pixel or subpixel level in screen space. Later, ray tracing
was employed to render isosurfaces of large data sets in-
teractively [17]. This method is attractive since it is rel-
atively insensitive to input data size and thus scales well.
View-dependent approaches are attractive in general as no
intermediate form of the isosurface needs to be stored ex-
plicitly, which greatly decreases storage requirements. One
drawback of view-dependent approaches is that each time
a new view is specified the isosurface extraction process
must be repeated. For interactive applications, where view-
ing parameters are being changed frequently, such methods
perform a relatively large number of computations. View-
dependent approaches often offer excellent image quality,
but frequently no geometric representation of the isosurface
is generated, making them undesirable for use in geometric
modeling applications, for example.

View-independent approaches in general generate geom-
etry near the isosurface. Most methods are based on the
MC method and use triangles to approximate an isosurface
[8, 14, 4, 2, 3, 11, 9]. The use ofinterval trees[4] and
thespan space[14] domain decomposition can greatly de-
crease the amount of work necessary to identify cells inter-
sected by an isosurface (also calledactive-cells), a major
bottleneck in the extraction process. One advantage of gen-
erating geometry is that extraction need not be performed
for each view. However, storing geometry becomes a bur-
den as data resolution increases.Dual contouringmethods
were introduced to preserve sharp features and to allevi-
ate storage requirements by reducing triangle count [11, 9].

Such methods produce high-quality polygonal models, but
are not ideal for interactive visualization of large data due
to the added computation and intermediate data storage re-
quirements.

Researchers have investigated the use of point primitives
as a rendering and representation alternative, and this topic
has received much attention in recent years. The use of
points as a rendering primitive dates back to at least 1985,
when Levoy and Whitted [12] described its advantages and
limitations. Grossman and Dally [7] revisited the notion of
using points more than ten years later. The use of points to
represent a surface was also promoted by Rusinkiewicz and
Levoy [24, 25], who proposed a hierarchical surface splat-
ting technique for rendering surfaces of great complexity.
Pfister et al. [19] proposed the use ofsurfelsfor the repre-
sentation and rendering of surfaces. The surface splatting
algorithm was later formalized and improved usingellip-
tical weighted averaging(EWA) to support texturing, hid-
den surface removal, edge anti-aliasing, and transparency
[27]. Ren et al. [22] developed a hardware-accelerated ap-
proach based on an object space formulation of the EWA
surface splatting algorithm. (We refer the reader to [21]
for an overview of splatting theory and implementation is-
sues.) Besides surface splatting, many other techniques
were developed using points to render surfaces. Kalaiah
and Varshney [10] developed an approach to rendering a
surface through the use ofdifferential points. Alexa et al.
[1] used a point set andmoving least-squarestechniques to
define a surface that can be down-sampled and up-sampled
as needed to meet rendering and modeling requirements.
Fleishman et al. [6] extended this point-set-surface ap-
proach using multiresolution methods.

These point-based rendering techniques deal primarily
with static surface models. Isosurfaces can exhibit vast geo-
metric and topological changes when changing the isovalue
of interest. Due to this “dynamic” nature, the idea of using
points to represent isosurfaces seems daunting. However,
points provide a large degree of flexibility and therefore are
often more suitable than triangles when dealing with such
changing surfaces.

The method we present focuses on improving interactiv-
ity through storage and computational efficiency via the use
of point samples. Iso-splatting is a view-independent ap-
proach, as it generates the isosurface geometry once per iso-
value and does not require repeated extraction when view-
ing parameters change. We show how large storage and
computational savings can be achieved through the use of
points as a basis for surface representation and rendering.
We employ surface splatting techniques, although other
point-based rendering techniques can be used without al-
tering core aspects of our algorithm.
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Figure 2. Projection of sample point pλ onto
isosurface fI , producing point p′

λ using (a) ex-
act projection and (b) approximate projection.

3 Projection

Given the trilinear function

f(x, y, z) =
1∑

i,j,k=0

ρijkxiyjzk ,

whereρijk denote the eight polynomial coefficients associ-
ated with one trilinearly interpolated cell, we are interested
in the isosurface defined by the isovalue

fI =
1∑

i,j,k=0

ρijkxiyjzk. (1)

We project a sample pointpλ, which is inside an active-cell,
to obtainp′

λ, a point on or near the isosurface.

3.1 Exact Projection

Given a ray
~r(t) = p + t~d,

wherep is a point on the ray and~d is an associated direction
vector, the exact intersection between~r and the isosurface
defined by Equation (1) can be determined by solving

fI = f(p + t~d)

=
1∑

i,j,k=0

ρijk(px + tdx)i(py + tdy)j(pz + tdz)
k(2)

for the unknown ray parametert. Oncet is known, the sam-
ple on the exact isosurface isp′

λ = p + t~d. For an arbitrary
ray direction, Equation (2) leads to a cubic equation int of
the general form

At3 + Bt2 + Ct + D = 0 . (3)

Cardan’s solution [16] can be used to determine the roots of
Equation (3). (For details on implementing ray-isosurface
intersections, we refer the reader to [17].)

The key to computing this intersection is defining the ray
~r. From the sample pointpλ, rays can be shot to a subset
of the eight corners of the cell, using the MC case table to
determine which corners should be considered. One can
also use the gradient of the scalar function computed atpλ

as a direction vector for~r. However, a ray defined in such a
way may not intersect the isosurface inside the cell. Figure
2 (a) illustrates exact projection.

This approach produces points that lie on the isosurface
but at a high computational cost. Roots of a cubic polyno-
mial must be determined in order to obtain ray intersections,
thereby slowing down the projection phase of this method.
An approximation can be performed to alleviate this com-
putational burden.

3.2 Approximate Projection

We use one iteration of the Newton-Raphson [20] root-
finding method to compute an approximation ofp′

λ. First,
we describe how this formula is used to find an approximate
isopoint of a univariate scalar function and then describe an
extension to find a point approximately near the isosurface
of a trivariate scalar function.

The Newton-Raphson method essentially uses the first
two terms of the Taylor series expansion of a functionh(x)
near a root. Given a univariate functionf(x) and an iso-
valuefI , we seek the roots of

h(x) = f(x)− fI .

The Taylor series ofh(x) at a pointx0 + ε is defined as

h(x0 + ε) = h(x0) + h′(x0)ε +
h′′(x0)

2
ε2 + . . . .

The first iteration of the Newton-Raphson method considers
only the first-order terms and solves

h(x0 + ε) = h(x0) + h′(x0)ε = 0 . (4)

If we considerx0 + ε to be a line parameterized byt, where
ε = h′(x0)t, we obtain

h
(
x0 + h′(x0)t

)
= h(x0) + h′(x0)h′(x0)t = 0 ,

which, when we solve fort, results in

t =
−h(x0)

h′(x0)h′(x0)
.

Sinceh(x0) = f(x0)− fI andh′(x) = f ′(x) we obtain

t =
fI − f(x0)

f ′(x0)f ′(x0)
.



Figure 3. Displacement criterion. The square
symbolizes the cell, the black dot the sample
location pλ. The sample point pλ may be pro-
jected onto an arbitrary isosurface that inter-
sects the cell as long as the projection does
not exceed the displacement boundary, de-
fined by the sphere of radius ∆d, which is
determined by cell dimensions sx and sy.

We now consider Equation (4) for a trivariate function
h(x) at a pointx0 + ~ε, i.e.,

h(x0 + ~ε) = h(x0) +∇h(x0) · ~ε = 0 .

If we considerx0 +~ε to be a line parameterized byt, where
~ε = ∇h(x0)t, we obtain

h
(
x0 +∇h(x0)t

)
= h(x0) +∇h(x0) · ∇h(x0)t = 0 ,

which leads to

t =
−h(x0)

∇h(x0) · ∇h(x0)
.

By substitutingh(x0) = f(x0) − fI and ∇h(x0) =
∇f(x0), one obtains

t =
fI − f(x0)

∇f(x0) · ∇f(x0)
. (5)

By settingx0 = pλ, we can evaluatef(pλ) and∇f(pλ)
efficiently at the same time using trilinear interpolation. By
computingt according to Equation (5), the approximation
of p′

λ is given as

p′
λ = pλ +∇f(pλ)t . (6)

Figure 2 (b) illustrates this approximate projection.
The developers ofKizamu[18] used a similar approach

to project arbitrary point samples onto the zero-set of an
adaptive distance field. Their technique was meant as a
method to preview a surface defined by a volumetric dis-
tance field, while iso-splatting is a method designed to vi-
sualize isosurfaces of arbitrary scalar field data.

(a) (b)

Figure 4. Impact of point sample projection.
Shown is an isosurface of a skull rendered
with quadrilateral surface splats. (a) Samples
are grid-aligned when unprojected. (b) Same
iso-splatted surface using projection.

The Newton-Raphson method converges quadratically,
provided that the initial guessx0 is sufficiently close to a
root. This method may result in roots far away from the
“desired” root whenx0 is near a local maximum or min-
imum. For this reason, we discard “far-away” solutions
when encountered using a displacement criterion. After a
single iteration of the Newton-Raphson procedure, if the
point is “too far” from the initial guess, we do not consider
the point. A displacement threshold∆d is computed based
on the dimensions of the cell. Given cell dimensionssx, sy,
andsz, we define the maximum displacement threshold as
∆d = 1

2

√
sx

2 + sy
2 + sz

2. Geometrically speaking, when
the sample pointpλ is the center of the cell, this displace-
ment criterion is the same as restricting the location ofp′

λ

to reside inside the sphere of radius∆d with centerpλ, see
Figure 3. Figure 4 illustrates the difference between unpro-
jected and projected point samples.

4 Sampling

Often, the contribution to the isosurface of a given cell
can be approximated cheaply without sacrificing overall
rendering quality. In a standard triangle-based isosurfac-
ing method, grid cells that are intersected by an isosurface
are determined. For these cells, edge intersection points are
computed, triangulated and added to a polygonal model. In
iso-splatting, instead of generating a set of triangles inside
a cell, we generate a point sample. Although a given cell
may contain several disjoint components of the same iso-
surface, we have found that many high-resolution data sets
only rarely exhibit this phenomenon. In fact, restricting the
amount of geometry to one point per cell is a common tech-
nique used in large model simplification [23, 13].

A surface rendering algorithm requires certain informa-
tion necessary to synthesize an image. For surface splatting,



a fairly regular sampling of the surface is required in order
to produce a proper rendering. Each sample should be char-
acterized by location, normal, and a local variance matrix,
which indicates roughly the average distance to neighboring
samples. Uniform rectilinear volume data implicitly pro-
vides locations of volume samples. For this type of data,
gradients are often used for computing local illumination
properties. The variance matrix can be derived by knowing
the grid spacing. We can therefore derive all the elements
required to define a surface splatting primitive.

Point samples may not lie on the desired isosurface and
must be projected onto that surface. If an exact projection
(as discussed in Section 3.1) is used, the cell corner values
are necessary to compute the projection of this sample point
onto the isosurface. If our approximation (as discussed in
Section 3.2) is used, a function value and gradient must be
computed for this sample point. The gradient can be reused
for shading purposes in the rendering phase.

The original data may be sampled more sparsely in one
dimension than in the other dimensions. In this case, it may
be beneficial to generate more samples in the sparse dimen-
sion via cell subdivision, similar to the approach chosen in
DC [5]. One possible criterion for cell subdivision is func-
tion value interval width. Cells that span a large range of
values can be subdivided until the interval width of child
cells are below a threshold. Another solution is to alter the
variance matrix such that the rendering algorithm produces
splats with an appropriate shape and size to compensate for
uneven sample spacing.

In general, iso-splatting requires that each point sample
consist of sample location, function value, gradient, and a
local variance matrix. For gridded data sets, several meth-
ods exist to obtain location, function value, and gradient.
The local variance matrix can be derived by analyzing the
spatial distribution of the volume samples or from the size
and shape of grid cells. Thus, iso-splatting is applicable, in
principle, to any type of grid.

5 Implementation Issues

The use of the point as a representation and render-
ing primitive for isosurfaces results in many desirable fea-
tures. One primary advantage is its flexibility at the applica-
tion level. Computations necessary for iso-splatting can be
performed in different stages of the visualization pipeline,
providing more flexibility than many triangle-based ap-
proaches.

There are three stages of any geometry-based isosurfac-
ing pipeline:

1. Preprocessing
Data reorganization or data structure initialization is
performed to improve the extraction and/or rendering
stages.

Stage (A) (B) (C) (D)
Preprocessing G G

Extraction P G,P G
Rendering P P

G = point generation P = point projection

Table 1. Iso-splatting paradigms.

2. Extraction
Geometry approximating an isosurface is computed.

3. Rendering
The isosurface geometry is rendered.

Two phases characterize the iso-splatting algorithm:

1. Point generation
Sample points are selected, and key information for the
projection and rendering phases are computed.

2. Point projection
Sample points are projected onto the isosurface.

In iso-splatting, point sample generation and projection can
be performed in different stages of the isosurface visual-
ization pipeline to satisfy application-specific needs. We
recognize four basic application paradigms, shown in the
columns of Table 1.

Paradigms (A) and (B) are useful when a high level of in-
teractivity is desired and storage is not a major issue. These
two paradigms can be storage-intensive, since point sam-
ples are pre-generated and must be stored for later use. Us-
ing the approximate projection scheme, location, function
value, and gradient must be stored for each point sample. In
addition, in order to perform extraction, the function value
interval of the cell in which a point sample resides must
be known. Under such conditions, out-of-core techniques
should be more readily considered. When the input data
size is already too large to fit in-core, this approach may not
be a problem. Under paradigms (A) and (B), extraction con-
sists primarily of collecting point samples in active-cells.
Several isosurface extraction techniques exist to perform
active-cell lookups efficiently out-of-core [8, 2, 3]. Further-
more, since point samples are not highly coupled (i.e., point
samples do not require information about other point sam-
ples), parallel extraction of the point samples from disk is
possible. Performing point sample generation in the prepro-
cessing stage can be thought of as a “partial evaluation” of
the isosurface.

Paradigms (C) and (D) require more computation but
provide better storage efficiency than paradigms (A) and
(B). These two paradigms require only the original data set,
from which we can compute the information needed for pro-
jection and rendering. In many cases, iso-splatting offers



improved extraction efficiency over standard triangle-based
schemes. A standard MC implementation performs several
edge intersections and perhaps computes a gradient for each
point for smooth shading. In the method of Ju et al. [9], a
quadratic error function must be minimized in addition to
computing these edge intersections in order to place a sin-
gle point inside the cell. In iso-splatting, a single function
value and gradient computation, which can be computed si-
multaneously, is followed by one iteration of the Newton-
Raphson procedure.

Programmable hardware on modern graphics cards
makes the efficient computation of point projections fea-
sible in the rendering phase, as in paradigms (B) and (D).
The approximate projection procedure consists of a single
floating-point division and a vector dot product, both oper-
ations supported by existing graphics hardware. Point loca-
tion and gradient will already be sent down to the hardware
for rendering the surface splat. The only additional piece of
information that must be sent is the function value approxi-
mated for the point and the isovalue, which can be sent once
per frame. The displacement criterion can be implemented
with the use of texture lookups. However, the next genera-
tion of graphics processing units (GPUs) will also support
branches (i.e., conditional statements), thereby allowing a
more straightforward implementation of the displacement
criterion. Discarded points can be rendered outside of the
viewing frustum.

We believe that iso-splatting leads to computational ef-
ficiency, while using a geometric primitive that is highly
storage-efficient. Considern cells that contribute to an
isosurface. Let us assume that each vertex has an associ-
ated normal vector used for shading purposes. Suppose a
triangle-based isosurfacing algorithm generates one trian-
gle per cell, and, moreover, outputs the entire mesh as one
triangle strip, offering the most compact storage represen-
tation. Such a surface requiresn + 2 vertices of storage.
Iso-splatting generates one point per cell, producing at most
n vertices. While the benefit is small, one must consider
that many current triangle-based isosurfacing methods gen-
erate “triangle-soup” representations efficiently, which re-
quires3n vertices assuming one triangle per cell. (Standard
MC implementations generate on average more than one tri-
angle per cell.) Producing more memory-efficient triangle
representations–such as a triangle strip in the ideal case–
would most likely require more computation and thus slow
down extraction time.

6 Results

We have performed tests on a Pentium4 PC with 2 GB of
main memory and an nVidia GeForce4 Ti video card with
128 MB of memory on a motherboard supporting a4× ac-
celerated graphics port (AGP). We implemented paradigms

(A) and (C), see Table 1. QSplat-style surface splatting
[24, 25] was chosen due to its rendering efficiency. How-
ever, EWA surface splatting [27, 22] could easily be incor-
porated into the system without affecting our algorithm.

We have used quadrilateral and elliptical surface splat-
ting kernels, which offer different degrees of quality and ef-
ficiency. Bandwidth to the graphics card is currently a bot-
tleneck in geometry-intensive applications. Quadrilateral
splats can be more efficient, since they can often be imple-
mented by passing a single vertex to the graphics hardware,
which usually rasterizes this vertex as a quadrilateral. Hard-
ware extensions exist to automatically scale the size of this
rasterized quadrilateral based on viewing parameters. El-
liptical splats offer better image quality, but, since they are
often rendered using alpha-textured polygons, more geome-
try must be sent to the graphics hardware, thereby reducing
rendering efficiency. When better support for surface splat-
ting in graphics hardware exists, this need to balance the
trade-off between quality and efficiency may disappear.

To quantitatively compare a triangle-based approach
with iso-splatting, we extracted 16 isosurfaces 10 times
for four data sets, measuring average extraction time and
memory usage for a standard MC implementation and a
paradigm-(C) iso-splatting implementation. In addition,
we measured average framerate considering 36 frames for
each isosurface, each time rotating the model by 10 de-
grees about the y-axis. For both implementations, interval
trees were used to accelerate active-cell lookup. We chose
a standard MC implementation over a dual-contouring im-
plementation, as it offers the most competitive extraction
times. Figure 6 summarizes extraction time, memory us-
age, and framerate information. For our framerate calcula-
tions, we used quadrilateral kernels due to their rendering
efficiency. In the graphs, two curves of the same color rep-
resent measurements collected for the same data set. Of
these two curves, the dotted curve corresponds to measure-
ments made for the MC implementation, and the solid curve
corresponds to measurements made for the iso-splatting im-
plementation. The left-most graph in Figure 6 indicates
that iso-splatting generally performs extraction in approx-
imately half the amount of time used by a standard MC
implementation, even when both point generation and pro-
jection are performed in the extraction stage. The fact that
fewer primitives are generated and that these primitives are
more storage-efficient is shown in the middle graph. This
storage efficiency accounts for framerates that can exceed
those achieved by rendering an isosurface represented by
triangles, as seen in the right-most graph of Figure 6. This
graph indicates that iso-splatting generally provides quadru-
ple the framerates using quadrilateral splats when compared
with a standard MC implementation. Figure 5 shows im-
ages of isosurfaces for each data set used in the experiment.

Figure 7 provides side-by-side comparisons of an im-



Data set Dimensions
Fuel injection 64× 64× 64

Skull 68× 256× 256
Bucky ball 128× 128× 128
Aneurysm 256× 256× 256

Primate lung 266× 512× 512
Stanford bunny CT 361× 512× 512

Lobster 80× 324× 301
Engine 128× 256× 256

Boston teapot 178× 256× 256
Argon bubble 640× 256× 256

Table 2. Data set sizes.

plementation of MC and iso-splatting. Some detail in the
aneurysm data set is lost due to the fine structure of the ar-
teries, but the overall essence of the isosurface is not lost.
Details could be recovered by using an adaptive sampling
scheme, as described in Section 4. Figure 8 shows images
from an out-of-core implementation of iso-splatting using
paradigm (A). We used a Morton-order indexing scheme to
perform lookups efficiently on disk. The dimensions of all
data sets used in our experiments are provided in Table 2.
All data sets consist of values in the range[0, 255].

7 Conclusions

We have presented a new algorithm called iso-splatting
for isosurface visualization. Improved extraction, storage,
and rendering efficiency can be obtained through the use
of points. The point samples are, in general, more cheaply
stored than triangles, and they require little connectivity in-
formation, opening up possibilities for parallelism. Our re-
sults indicate that iso-splatting performs well in out-of-core
settings. Since computation can be divided in various ways,
implementations can be tailored relatively easily to meet re-
source limitations or to take advantage of emerging GPU
technology. These characteristics make iso-splatting suit-
able for large, high-resolution data sets, when a geometry-
based isosurface visualization algorithm is desirable. We
point out that the point set generated by our method is use-
ful not only for rendering purposes. Many techniques, such
as the point-set-surface method [1, 6], have been developed
to support geometric modeling using point sets. An addi-
tional strength of iso-splatting is its simplicity and ease of
implementation.

We believe that iso-splatting opens up several avenues
for future work. Iso-splatting can be extended to non-
rectilinear and unstructured grids. The technique would ex-
tend well to data represented in a multiresolution format,
such as adaptive mesh refinement (AMR) data [26]. Iso-
splatting may be combined with standard isosurface render-

ing techniques to produce higher-quality images. The two
methods can be combined in another way. When a user is
actively changing the isovalue, iso-splatting may be used to
provide greater detail while maintaining the same level of
interactivity that down-sampling supports. When the user
has identified an interesting isosurface, higher-quality im-
ages can be rendered using triangle-based methods in con-
junction with higher-order approximations. Adaptive sam-
pling could be performed to capture more detail in certain
regions, possibly determined by interval width or gradient
behavior.

The projection of points onto an isosurface is currently
performed using one iteration of the Newton-Raphson
method. The effectiveness of higher-order methods to per-
form this projection will be a topic for future research.
Since iso-splatting is based on point-based rendering tech-
niques, it faces many of the same problems that other point-
based rendering methods face. As further advances in point-
based rendering emerge, adjustments to the iso-splatting al-
gorithm may be made to manage these problems elegantly.
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Figure 5. Images of argon bubble (a) and (b), engine (c), lobster (d) and (e), and Boston teapot (f)
data sets. (See also Figure 6.)
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bunny (right image).
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