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Abstract. Topology-based methods have been successfully used for the
analysis and visualization of piecewise-linear functions defined on triangle
meshes. This paper describes a mechanism for extending these methods
to piecewise-quadratic functions defined on triangulations of surfaces.
Each triangular patch is tessellated into monotone regions, so that ex-
isting algorithms for computing topological representations of piecewise-
linear functions may be applied directly to piecewise-quadratic functions.
In particular, the tessellation is used for computing the Reeb graph,
which provides a succinct representation of level sets of the function.

1 Introduction

Scalar functions often represent physical quantities like temperature, pressure,
etc. Scientists interested in understanding the local and global behavior of these
functions study their level sets. A level set of a function f consists of all points
f−1(c) where the function value is equal to a constant c. Various methods have
been developed for the purpose of analyzing the topology of level sets of a scalar
function. These methods primarily apply to piecewise linear functions. We dis-
cuss an extension of these methods to bivariate piecewise quadratic functions
defined over a triangulated surface.

A contour is a single connected component of a level set. Level sets of a
smooth bivariate function are simple curves. The Reeb graph of f is obtained by
contracting each contour to a single point [1], see Fig. 1. The connectivity of level
sets changes at critical points of a function. For smooth functions, the critical
points occur where the gradient becomes zero. Critical points of f are the nodes
of the Reeb graph, connected by arcs that represent a family of topologically
equivalent contours.

1.1 Related Work

Methods to extract contours from bivariate quadratic functions have been ex-
plored in the context of geometric modeling applications [2]. A priori deter-
mination of the topology of contours has been studied also in the computer
graphics and visualization [3,4]. Much research has focused on functions defined
by bilinear and trilinear interpolation of discrete data given on a rectilinear
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Fig. 1. Reeb graph of a height function defined over a double torus. Critical points of
the surface become nodes of the Reeb graph.

grid. Work in this area has led to efficient algorithms for computing the contour
tree, a special Reeb graph that has no cycles [5,6]. More general algorithms have
been developed for computing Reeb graphs and contour trees for piecewise-linear
functions [7,8,9].

Topological methods were first used in computer graphics and scientific visu-
alization as a user interface element, to describe high-level topological properties
of a dataset [10]. They are also used to selectively explore large scientific datasets
by identifying important function values related to topological changes in a func-
tion [11,12], and for selective visualization [13]. Reeb graphs have also been used
as the basis for searching large databases of shapes [14], and for computing
surface parametrizations of three-dimensional models [15].

1.2 Results

Given a triangulated surface and a piecewise-quadratic function defined on it, we
tessellate the surface into monotone regions. A graph representing these mono-
tone regions is a valid input for existing algorithms that compute Reeb graphs
and contour trees for piecewise-linear functions. The essential property we cap-
ture in this tessellation is that the Reeb graph of the function restricted to a
single tile of the tessellation is a straight line. In other words, every contour
contained in that tile intersects the triangle boundary at least once and at most
twice. We tessellate each triangular patch by identifying critical points of the
function within the triangle and connecting them by arcs to guarantee the re-
quired property.

2 Background

We consider bivariate, piecewise-quadratic functions defined over triangular
meshes. Bivariate quadratics are functions f : R

2 → R of the form

f(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F.

A critical point of f is a point x where ∇f(x) = 0. The partial derivatives are
given by the following linear expressions

∂f

∂x
= 2Ax + By + D and

∂f

∂y
= 2Cy + Bx + E.
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The location of a critical point (x̂, ŷ) is given by

x̂ =
−2CD + BE

4AC − B2 and ŷ =
−2AE + BD

4AC − B2 .

Bivariate quadratics and their critical points can be classified based on their
contours. The contours are conic sections. Let H = 4AC−B2 be the determinant
of the Hessian matrix of f . We partition the set of bivariate quadratic functions
into three classes:

1. H > 0: Contours are ellipses; The critical point is maximum or minimum.
2. H < 0: Contours are hyperbolas; The critical point is a saddle.
3. H = 0: Contours are parabolas, pairs of parallel lines, or single lines; No

critical point exists.

We refer to members of these classes as elliptic, hyperbolic, and parabolic, re-
spectively. We further classify the critical points of elliptic functions using the
second-derivative test. The critical point is a minimum when A > 0, and a max-
imum when A < 0. When A = 0, the sign of C discriminates between maxima
and minima.

2.1 Line Restrictions

Let �(t) =
(

x0 + txd

y0 + tyd

)
be a parametrically defined line passing through (x0, y0)T

in direction (xd, yd)T . Now restrict the domain of the bivariate quadratic f(x, y)
to only those points on �(t). We then have a univariate quadratic r(t) = αt2 +
βt + γ, where

α = Ax2
d + Bxdyd + Cy2

d,

β = 2Ax0xd + B(y0xd + x0yd) + 2Cy0yd + Dxd + Eyd, and

γ = Ax2
0 + Bx0y0 + Cy2

0 + Dx0 + Ey0 + F.

We call r(t) a line restriction of f . If α �= 0, r is a parabola with one critical
point at t̂ = −β/2α; if α = 0, r is linear. We refer to a critical point of this
univariate quadratic function as a line-critical point, while we refer to critical
points of the bivariate function as face-critical points. The line restrictions have
several useful properties:

1. There is at most one line-critical point on a line restriction, since the function
along the line is either quadratic or linear.

2. If a line intersects any contour twice, it must contain a line-critical point
between these intersections: Assume that the function value on the contour is
zero. The sign of the line-restriction changes each time it crosses the contour.
Applying the mean value theorem to the derivative of the line-restriction,
there must be a critical point between two zero crossings.

3. A line-critical point is located at the point where the line is tangent to a
contour, following from the previous property.
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4. Any line restriction passing through a face-critical point has a line-critical
point which is coincident with the face-critical point: The gradient at the
face critical point is zero. Thus, all directional derivatives are zero, and, in
particular, the derivative of the line restriction is zero.

2.2 Contours and Critical Points

A critical point is a point where the number of contours or the connectivity
of existing contours changes. When the gradient is not defined, we may classify
critical points based on the behavior of the function in a local neighborhood [16].
Figure 2 shows this classification. Consider a plane of constant height passing
through the graph surface (x, y, f(x, y)) of f . The intersection of the surface and
the plane is a set of contours, each homeomorphic to either a closed loop or
a line segment. When this plane passes a minimum, a new contour is created.
When the surface passes a maximum, an existing contour is destroyed. When
the surface passes a saddle, two types of events occur: (a) Two segments may
merge into a new segment or a segment may split into two. (b) The endpoints of
a segment may connect with each other to form a loop or a loop may split into
a segment.

Fig. 2. Interior minimum, maximum, saddle and regular point, and boundary min-
imum, maximum, saddle and regular point. Shaded areas are regions with function
value less than the indicated point.

We consider critical points of a function restricted to a triangular patch. A face
criticality of an elliptic function creates or destroys a loop when the sweep plane
passes it. A face criticality of a hyperbolic function interchanges the connectivity
of two segments. A line criticality can create or destroy a segment, merge two
segments into a new segment or split a segment in two, transform a segment
into a loop or a loop into a segment. However, a line-critical point cannot create
or destroy loops. We determine whether a line criticality is an extremum or a
saddle by examining the directional derivative perpendicular to the edge, at the
critical point. Vertices, when not located exactly at a hyperbolic saddle point,
can only create or destroy segments within a triangular patch. (See Sect. 4 for a
proof.)

3 Tessellation

We are given a scalar-valued bivariate function defined by quadratic triangular
patches. We aim to tessellate the patches into monotone regions, for the pur-
pose of analyzing the topology of level sets of one patch, and, by extension, of a
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piecewise-defined function composed of many patches. The tessellation will de-
compose each triangular patch into subpatches, so that each subpatch has a Reeb
graph which is a straight line. More specifically, every level set within each sub-
patch is a single connected component and is homeomorphic to a line segment.
We achieve this by ensuring that each subpatch contains exactly one maximum
and one minimum, and no saddles. Since we are interested in the topology of
the subpatches but not their geometry, we only compute a combinatorial graph
structure which captures the connectivity of contours. Some of the arcs of this
graph originate from the patch, such as boundary edges, and thus their geometry
can be inferred. The embeddings of remaining arcs are not computed since they
are not required to construct the Reeb graph.

The construction of the tessellation proceeds by using a case analysis. For
each patch, we count the number of line-critical points (L = 0, 1, 2, 3) and face-
critical points (F = 0, 1). Each pair 〈F, L〉 is handled as an individual case to
determine the appropriate tessellation. We first describe the composition of the
tessellation. The nodes of a tessellation graph include: (1) all three vertices of the
triangle, (2) all line-critical points that exist on the triangle boundary and are
not coincident with a triangle vertex, and (3) the face-critical point, assuming
that it lies within the triangle and is not coincident with the boundary. We are
given (1) as input, but (2) and (3) must be computed in a pre-processing step.
Numerical problems can arise. No root finding is needed to compute (2) and
(3), so exact arithmetic may be used. However, if speed and consistency are
to be favored over accuracy then we only need to ensure that the tessellation
graphs of every patch agree on their boundary edges. The existence and location
of (3) does not effect the tessellation boundary, so no consistency checks are
needed for computing these points. The computation of (2) must agree between
two triangles sharing an edge. To ensure this, we do not treat edges as line
restrictions of bivariate quadratics, but rather as univariate quadratics defined
by data prescribed for the edge. The arcs are included into the tessellation based
on the following rules:

– If a line-critical point exists on an edge, we connect that node to both triangle
vertices on that edge. Otherwise, if an edge has no line-critical point, then
we connect its vertices by an arc.

– If a face criticality does not exist then
• If there is only one line criticality, we connect it to the opposite vertex,

as in Fig. 3 〈0, 1〉.
• If there are two line-critical points, we connect each one to the other.

The tessellation is not yet a triangulation. There are two possible arcs
that can be added to triangulate the quadrilateral shown in Fig. 3 〈0, 2〉.
One, but not both, may be incident on a boundary saddle. We include
this arc into the tessellation.

• If there are three line criticalities, we connect each one to the other two,
as shown in Fig. 3 〈0, 3〉.

– Otherwise, if a face-critical point exists in the triangle, connect it by an arc
to every other node, as shown in Fig. 3 〈1, 1〉, 〈1, 2〉 and 〈1, 3〉.
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〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈1, 1〉 〈1, 2〉 〈1, 3〉

Fig. 3. Tessellation cases 〈F, L〉, where F is the number of face-critical points and L
is the number of line-critical points

4 Case Analysis

The tessellation constructed using these rules satisfies the monotonicity property.
We first state and prove some useful results about configurations of triangle
vertices, line-critical points and face-critical points. We assume that all triangles
in the triangulation are non-degenerate, i.e., every angle is between 0 and π and
every triangle has non-zero, finite area. In the proofs below, we make significant
use of two properties of the Reeb graph of the function defined over a triangular
patch. The first property is that the Reeb graph does not contain any cycles
because the domain is a topological disk [8]. The second property is that the
number of extrema in the graph is twice the number of saddles.

Lemma 1. If a triangle vertex is a boundary saddle of the function restricted
to the triangle, then it lies at the intersection of the two hyperbolic asymptotes.

Proof. We prove this by contradiction. Assume that there exists a vertex v that
is a boundary saddle, but not the hyperbolic saddle point. As we sweep the level
sets “downward in function value” and pass v, two contours merge or a single
contour splits into two. Assume, without loss of generality, that a contour splits
into two, as shown in Fig. 4. Above the value of v, the contour is contained
entirely in the triangle. Below the value of v, the contour passes outside the
triangle and then back in; the triangle cuts the contour into two segments. (These
segments may be joined elsewhere, but locally they are distinct.) Consider the
segment of the contour approaching v from the right. If this segment is to remain
strictly inside the triangle until the sweep arrives at v, its tangent direction is
constrained by the triangle edge to the right of v. Similarly, the tangent direction
of the contour segment approaching from the left is constrained by the triangle
edge to the left of v. All contours except for hyperbolic asymptotes are smooth,
and so the tangent on the right of v must agree with the tangent on the left.
The edges must be parallel, and therefore the triangle must be degenerate, which
violates our assumption.

Lemma 2. If a vertex of the triangular patch is a boundary saddle, then the
triangle has zero face-critical points and one line-critical point.

Proof. Considering Lemma 1, if a vertex v is a boundary saddle then v is a face
criticality of a hyperbolic function. Therefore, the face criticality does not lie in
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c > v c = v c < v

Fig. 4. A smooth contour c cannot
both touch the triangle boundary at v
and lie completely in the interior

Above v At v Below v

Fig. 5. A triangle containing a bound-
ary saddle at a vertex v must contain a
line-critical point on the opposite edge

the interior. The edges incident on v cannot have line criticalities because v is
necessarily the line-critical point of all lines that pass through it. The edge oppo-
site v intersects the asymptotes twice and therefore must have a line criticality,
see Fig. 5.

Lemma 3. If a triangular patch contains exactly one line criticality and no
face criticality, then that line criticality is reachable by a monotone path from
any other point in the triangle.

Proof. Assume that none of the vertices is a boundary saddle. The line criticality
may be an extremum or a saddle. If it is an extremum, the triangle does not con-
tain any boundary saddle. The Reeb graph of the triangular patch is a straight
line, and every contour in the patch is homeomorphic to a line segment. We can
reach any point from the extremum by walking along contours that monotoni-
cally sweep the patch. If the line criticality is a saddle, then it is the only point at
which the connectivity of contours in the patch change, because no other saddles
exist. The Reeb graph has one internal node and three leaves. Starting from the
saddle, we can walk to any other point in the patch by choosing the appropriate
contour component to follow as it is swept away from the saddle. Assume that
one vertex is a boundary saddle, as shown in Fig. 5. If the line-critical point is
also a boundary saddle, the Reeb graph has two saddles, which implies at least
four extrema. This is impossible because there are only two vertices left. There-
fore, the line criticality must be an extremum. Assume without loss of generality
that it is a maximum. The two vertices on that edge must be minima, so the
Reeb graph has one maximum, one saddle and two minima. A monotone path
exists from the maximum to all points in the triangle.

Lemma 4. If a triangular patch contains zero face-critical points and two line-
critical points, the two line-criticalities are connected by a monotone path.

Proof. Lemma 2 implies that there are no vertex saddles. Let e0 and e1 be the
line criticalities. If both e0 and e1 are saddles, then they are connected by a
monotone path because they are the only two interior nodes in the Reeb graph
of the triangular patch. If both are extrema, then one must be a maximum and
the other a minimum and the Reeb graph is a straight line. If e0 is a boundary
saddle and e1 is an extremum, then there is a monotone path from that boundary
saddle to every point in the patch.
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We now use the above lemmas to prove that in all cases our tessellations consist
of monotone subpatches.

Case 〈0,0〉: No line-critical point exists on any edge, and no face-critical
point exists in the triangle. The function is monotone along the edges. There is
exactly one maximum and one minimum, which occur at vertices. All contours
in the triangle are homeomorphic to a line segment.

Case 〈0,1〉: One line-critical point e exists on an edge, and no face-critical
point exists in the triangle. Let v0, v1 and v2 be the triangle vertices, where v0 is
the vertex opposite e. We split the triangle in two, creating patches e, v1, v0 and
e, v2, v0, each containing zero face- and line criticalities. Considering Lemma 3,
the arc e, v0 is guaranteed to have a monotone embedding.

Case 〈0,2〉: Two line-critical points exist, e0 and e1, and no face-critical point
exists. We first subdivide the triangle along the monotone arc between e0 and
e1. Considering Lemma 4, we know this arc exists. This arc splits the patch into
a triangular subpatch and a quadrilateral subpatch. The triangular subpatch
belongs to Case 〈0, 0〉. Both e0 and e1 may not be boundary saddles because
this implies the Reeb graph of the triangular patch has two saddles and two
extrema, an impossible configuration. Let e0 be a saddle and e1 an extremum.
If we triangulate the quadrilateral by adding an arc which does not terminate
at e0, then e0 will still be a saddle of its triangular subpatch, which violates
our desired monotonicity property. To prevent this, we always triangulate the
quadrilateral by adding an arc which has e0 as an endpoint. If e0 and e1 are
both extrema, the Reeb graph is a straight line because no other saddles exist.

Case 〈0,3〉: Monotone arcs exist between all three pairs of line criticalities.
Please refer to the extended version of this paper for proof [17].

Case 〈1,0〉: This case is impossible. Face-critical points occur in elliptic and
hyperbolic functions only. Consider a triangular patch containing an elliptic
minimum. Tracking the topology of level sets during a sweep in the increasing
function direction, we note that a loop, contained entirely inside the triangle,
is created at the minimum. This loop cannot be destroyed without first being
converted into a segment by a line criticality. Therefore, the triangle boundary
should contain at least one line criticality. A similar argument holds when the
triangular patch contains an elliptic maximum. Let us consider a triangular
patch containing a hyperbolic face-critical point. The level set at this critical
point consists of a pair of intersecting asymptotes. These asymptotes intersect
the triangle boundary at four unique points. Since there are only three edges,
at least one edge intersects the asymptotes twice. This triangle edge contains a
line-critical point between the two intersection points.

Cases 〈1,1〉, 〈1,2〉, 〈1,3〉: We tessellate the patch by connecting the face
criticality to all vertices and line criticalities on the boundary. These new arcs
are not only monotone, but they are straight lines as well, because any line-
restriction containing the face criticality as an end-point is necessarily monotone.
All possible critical points appear as nodes in the tessellation, all new subpatches
are triangular and contain zero face and line criticalities.
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5 Application to Reeb Graphs

We show how these tessellations may be used to compute a Reeb graph. Reeb
graph algorithms, such as the algorithm of Cole-McClaughin et al. [8], operate
by tracking contours of a level set during a plane sweep of the range of function
values. Since all arcs of our tessellation are monotone, any contour intersects an
arc at most once. Contours of function values that are not equal to any node
intersect the boundary of every triangular patch twice, or not at all. We can
follow a contour by starting at one arc that it intersects, and moving to another
arc of the same triangle that intersects the contour.

When the domain of a function is planar, such as 2D grey-valued images or
terrains/height fields, the Reeb graph contains no cycles and is called a contour
tree. Efficient contour tree algorithms proceed in two distinct steps [5,7]. First,
two separate trees, called the join tree and split tree, are constructed using a va-
riety of methods. The join tree tracks topological changes in the subdomain lying
above a level set, and the split tree tracks topological changes in the subdomain
lying below a level set. In the second step, the join and split trees are merged
to yield the contour tree. Our tessellation graph is a valid input for the join
and split tree construction algorithms. Applying any of these algorithms to the
tessellation graph of a piecewise-quadratic function yields the correct contour
tree for that function. Carr et al. [7] and Chiang et al. [9] utilize the following
properties to ensure the correctness of their algorithms [6]:

1. All critical points of the piecewise function appear as nodes in the graph.
2. For any value h, a path above (below) h exists in the graph if and only if a

path above (below) h exists in the domain.

We explicitly include every potential critical point of f in the tessellation, so
that the first property is satisfied. We assert that the monotonicity property of
our tessellation ensures that properties 2 and 3 are also satisfied.

6 Conclusions and Future Work

We have described a tessellation scheme for piecewise-quadratic functions on sur-
faces. Our tessellation allows existing Reeb graph and contour tree construction
algorithms to be applied to a new class of inputs, thereby extending the appli-
cations of these topological structures. We intend to develop a similar tessella-
tion scheme for trivariate quadratic functions defined over tetrahedral meshes.
We hope that this work will contribute to the development of robust and con-
sistent topological methods for analysis of functions specified as higher-order
interpolants or approximation functions over 2D and 3D domains.
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