
Image-space Tensor Field Visualization Using a

LIC-like Method

Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamann, and Gerik

Scheuermann

Abstract Tensors are of great interest to many applications in engineering and

in medical imaging, but a proper analysis and visualization remains challenging.

Physics-based visualization of tensor fields has proven to show the main features

of symmetric second-order tensor fields, while still displaying the most important

information of the data, namely the main directions in medical diffusion tensor data

using texture and additional attributes using color-coding, in a continuous represen-

tation. Nevertheless, its application and usability remains limited due to its compu-

tational expensive and sensitive nature.

We introduce a novel approach to compute a fabric-like texture pattern from ten-

sor fields motivated by image-space line integral convolution (LIC). Although, our

approach can be applied to arbitrary, non-selfintersecting surfaces, we are focusing

on special surfaces following neural fibers in the brain. We employ a multi-pass ren-

dering approachwhosemain focus lies on regaining three-dimensionality of the data

under user interaction as well as being able to have a seamless transition between

local and global structures including a proper visualization of degenerated points.

1 Motivation and Related Work

Since the introduction of tensor lines and hyperstreamlines [5], there have been

many research efforts directed at the continuous representation of tensor fields, in-

cluding research on tensor field topology [11, 24, 23]. Zheng and Pang introduced

HyperLIC [31], which makes it possible to display a single eigendirection of a tensor
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field in a continuousmanner by smoothing a noise texture along integral lines, while

neglecting secondary directions. Recent approaches to visualize Lagrangian struc-

tures on tensor fields [12] provide information on one chosen tensor direction and

are especially useful for diffusion tensor data, where the main tensor direction can

be correlated to neural fibers or muscular structures, whereas the secondary direc-

tion only plays a minor role. More recently, Dick et al. [6] published an interactive

approach to visualize volumetric tensor field for implant planning.

While glyph-based visualization techniques reveal a huge amount of the local

information, even with advanced glyph placement techniques [16], an integration

of this information into global structures and an interpolation of information in-

between glyphs remains the responsibility of the user. On the other side, approaches

focusing on global structures, like [17], which is used to calculate a skeleton of

white matter tracts, are not able to provide local information or at least a smooth

transition to local structures.

Hotz et al. [13] introduced Physically Based Methods (PBM) for tensor field

visualization in 2004 as a means to visualize stress and strain tensors arising in ge-

omechanics. A positive-definite metric that has the same topological structure as

the tensor field is defined and visualized using a texture-based approach resembling

LIC [3]. Besides other information, eigenvalues of the metric can be encoded by free

parameters of the texture definition, such as the remaining color space. Whereas the

method’s implementation for parameterizable surfaces topologically equivalent to

discs or spheres is straightforward, implementations for arbitrary surfaces remains

computationally challenging. In 2009, Hotz et al. [14] enhanced their approach to

isosurfaces in three-dimensional tensor fields. A three-dimensional noise texture is

computed in the data set and a convolution is performed along integral lines tangen-

tial to the eigenvector field. LIC has been used in vector field visualization meth-

ods to imitate Schlieren patterns on surfaces experiments where a thin film of oil

is applied to surfaces, which show patterns caused by the air flow. In vector field

visualization, image-space LIC is a method to compute Schlieren-like textures in

image space [28, 29, 19, 20, 9], intended for large and non-parameterized geome-

tries. As these methods are based on vector fields, their application to a symmetric

tensor field’s major eigenvector is possible, with the limitation that the eigenvec-

tor field does not provide an orientation. For asymmetric tensor-fields, other ap-

proaches exist [30]. Besides the non-trivial application of image-space LIC to ten-

sor data, image-space LIC has certain other drawbacks. Mainly because the noise

pattern is defined in image space, it does not follow the movement of the surface

and, therefore, during user interaction, the consistent surface impression is lost. A

simple method proposed to circumvent this problem is animating the texture pattern

by applying randomized trigonometric functions to the input noise. Weiskopf and

Ertl [27] solved this problem for vector field visualization by generating a three-

dimensional texture that is scaled appropriately in physical space.

We implemented an algorithm similar to the original PBM but for arbitrary non-

intersecting surfaces in image space. Our algorithm can perform at interactive frame

rates for large data sets on current desktop PCs. We overcome the drawbacks present

in image-space LIC implementations by defining a fixed parameterization on the
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Fig. 1 Flowchart indicating the four major steps of the algorithm: projection, which transforms the

data set in an image-space representation and produce the initial noise texture βx,y on the geometry;

silhouette detection, required for the advection step and the final rendering; advection, which

produces the two eigenvector textures; and the final compositing, which combines intermediate

textures to the final visualization. Between consecutive steps, the data is transferred using textures.

surface. Thus, we do not require a three-dimensional noise texture representation

defined at sub-voxel resolution on the data set. Our approach is capable of maintain-

ing local coherence of the texture pattern between frames when (1) transforming,

rotating, or scaling the visualization, and (2) changing the surface by, e.g., changing

isovalues or sweeping the surface through space. In addition, we implement special

application-dependent modes to ensure our method integrates well with existing

techniques.

2 Method

We employ a multi-pass rendering technique that consists of four major rendering

passes as outlined in Figure 1. After generating the basic input textures once, the

first pass projects all required data into image space. Pass two performs a silhou-

ette detection that is used to guarantee integrity of the advection step computed by

multiple iterations of pass three. Eventually, pass four composes the intermediate

textures in a final rendering.

2.1 Projection into Image Space

First, we project the data into image space by rendering the surface using the default

OpenGL rendering pipeline. Notably, the surface does not need to be represented by

a surface mesh. Any other representation that provides proper depth and surface nor-

mal information works just as well (e.g., ray-casting methods for implicit surfaces,

cf. Knoll et al. [18]). In the same rendering step, the tensor field is transformed from

world space to object space, i.e., each tensor T , which is interpolated at the point on
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the surface from the surrounding two- or three-dimensional tensor field is projected

onto the surface by

T ′ = P ·T ·PT
, (1)

with a matrix P defined using the surface normal n as

P=





1− n2x −nynx −nznx
−nxny 1− n2y −nzny
−nxnz −nynz 1− n2z



 . (2)

The camera viewing system configuration and the available screen resolution im-

ply a super- or sub-sampling of the data. We obtain an interpolated surface tensor

in every pixel which is decomposed into the eigenvector/eigenvalue representation

using a method derived from the one presented by Hasan et al. [10]. These eigen-

vectors, which are still defined in object space, are projected into image space using

the same projection matricesMM andMP used for projecting the geometry to image

space, usually the standard modelview and projection matrices OpenGL offers:

v′λi =MP×MM× vλi , with (i ∈ 1,2). (3)

Even in the special case of symmetric second-order tensors in R3, which have

three real-valued eigenvalues and three orthogonal eigenvectors in the non-degenerate

case, in general, the projected eigenvectors are not orthogonal in two-dimensional

space. To simplify further data handling, we scale the eigenvectors as follows:

‖v‖∞ = max{|vx|, |vy|} (4)

v′′λi =
v′λi

‖v′
λi
‖∞

with i ∈ {1,2}, and ‖v′λi‖∞ 6= 0 (5)

The special case ‖v′λi‖∞ = 0 only appears when the surface normal is perpendic-

ular to the view direction and, therefore, can be ignored. The maximum norm in

Equation 4 ensures that one component is 1 or −1 and, therefore, one avoids nu-

merical instabilities arising when limited storage precision is available, and can use

memory-efficient eight-bit textures.

2.2 Initial Noise Texture Generation

In contrast to standard LIC approaches, to achieve a proper visual representation of

the data, high-frequency noise textures, such as white noise, are not suitable for the

compositing of multiple textures. Therefore, we compute the initial noise texture

using the reaction diffusion scheme first introduced by Turing [25] to simulate the

mixture of two reacting chemicals, which leads to larger but smooth “spots” that are

randomly and almost uniquely distributed (cf. Figure 2, right). For the discrete case,
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the governing equations are:

∆ai, j = F(i, j)+Da · (ai+1, j+ ai−1, j+ ai, j+1+ ai, j−1− 4 ·ai, j),

∆bi, j = G(i, j)+Db · (bi+1, j+ bi−1, j+ bi, j+1+ bi, j−1− 4 ·bi, j),where

F(i, j) = s(16− ai, j ·bi, j) and G(i, j) = s(ai, j ·bi, j− bi, j−βi, j).

(6)

Here, we assume continuous boundary conditions to obtain a seamless texture in

both directions. The scalar s allows one to control the size of the spots where a

smaller value of s leads to larger spots. The constants Da and Db are the diffusion

constants of each chemical. We use Da = 0.125 and Db = 0.031 to create the input

textures.

2.3 Noise Texture Transformation

Mapping the initial texture to the geometry is a difficult and application-dependent

task. Even though there exist methods to parameterize a surface, they employ restric-

tions to the surface (such as being isomorphic to discs or spheres), require additional

storage for texture atlases (cf. [21, 15]) and, in general, require additional and often

time-consuming pre-processing.

Another solution, proposed by Turk et al. [26], calculates the reaction diffusion

texture directly on the surface. A major disadvantage of this method is the compu-

tational complexity. Even though these approaches provide almost distortion-free

texture representations, isosurfaces, for example, may consist of a large amount of

unstructured primitives, which increases the pre-processing time tremendously.

Whereas previous approaches for image space LIC either use parameterized sur-

faces to apply the initial noise pattern to the surface or use locally or globally de-

fined three-dimensional textures [27], we define an implicit parameterization of the

surface that provides an appropriate mapping of the noise texture to the surface.

Fig. 2 Illustration of the reaction diffusion texture used (left) and the noise texture mapped to

geometry βx,y (right).
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Fig. 3 Comparison of two different values of l to demonstrate the possibility for dynamic refine-

ment of the input noise to achieve different levels of detail.

We start by implicitly splitting world space in voxels of equal size, filling the

geometry’s bounding box, i.e., we define a regular grid. Each voxel i is described by

its base coordinate bi and a constant edge length l. The seamless reaction diffusion

texture is mapped to the surface of each of these voxels. To assign a texture coor-

dinate to each vertex, the object space coordinate is transformed to the voxel space

that is described by a minimum and maximum coordinate whose connecting line

is the bounding box’ diagonal. Points vg on the geometry are transformed to vvoxel
using

vvoxel = vg ·









l 0 0 −bminx
0 l 0 −bminy
0 0 l −bminz
0 0 0 1









(7)

and transformed into the local coordinate system by

vhit = vvoxel −⌊vvoxel⌋. (8)

The two texture coordinates are chosen to be those two components of vhit that form

the plane that is closest to the tangential plane of the surface in this point.

t = (vhiti ,vhit j ), with i 6= j 6= k∧ (nk = max{ni,n j,nk}). (9)

In other words, this method transforms the world coordinate system to a system

defined by one voxel, assuring that every component of every point vhit is in [0,1].
The texture coordinate is determined by the surface’s normal and, in particular, by

the voxel side-plane whose normal is most similar to the surface’s one (in terms of

angle between them). The use of the term “voxel” is for illustration purpose only;

those voxels are never created explicitly. As a result, the texture β contains the

image space mapped input noise texture as shown in Figure 2. This texture is used

as the initial pattern that is advected in the advection step.

Regardless of its simplicity, this method allows a continuous parameterization of

the surface space that only introduces irrelevant distortions for mapping the noise
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texture (cf. Figure 2). The mapping is continuous but not C1-continuous, which is

not required for mapping the noise texture as discontinuities in the first derivatives

automatically vanish in the advection step.

Another positive aspect of this mapping is the possibility of a change of scale

that is not available in the approaches of, e.g., Turk et al. [26]. By changing the

size of voxels during the calculation, different frequencies of patterns can easily be

produced and projected to the geometry. This capability allows one to change the

resolution of the texture as required for automatic texture refinement when zooming.

A comparison of two different levels of detail is shown in Figure 3.

2.4 Silhouette Detection

To avoid advection over geometric boundaries, a silhouette of the object is required

to stop advection in these areas [19]. Otherwise, tensor advection would lead to a

constant flow of “particles” across surface boundaries which makes the surface’s

geometry and topology unrecognizable.

A standard three-by-three Laplacian filter, defined by the convolution mask





0 1 0

1 −4 1

0 1 0



 (10)

applied to the depth values followed by thresholding has proven to be suitable for

our purposes. The silhouette image ex,y for each pixel (x,y) is then in the red color

channel of its output texture.

2.5 Advection

We have discussed how to project the geometry and the corresponding tensor field

to image space. With the prepared image space eigenvectors and the input noise tex-

ture, mapped to geometry, advection can be done. We use a simple Euler integration

applied to both vector fields. With Euler’s method some particle can be followed

along a stream. In our case, we do not calculate streamlines at each position of both

vector fields, as normally done in LIC. We directly advect the noise input texture

with the given vector fields, which has the same result as locally filtering the data

along pre-computed streamlines. This decision was based on the fact that massively

parallel architectures like modern GPUs are able to perform this task in parallel for

each pixel a hundred times per second. Formally, the advection step can be described

as follows: First, we assume an input field P to be a continuous function, defined in

a two-dimensional domain:

fP : (x,y)→ p, with x,y, p ∈ [0,1], (11)
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Fig. 4 Advection texture after ten iterations. Left: red channel containing p
λ1
9 , the advection image

of eigenvector field 1; right: green channel containing p
λ2
9 , the advection image of eigenvector field

2.

i.e., it is a function returning the input value of the field P at a given position. Conti-

nuity is ensured with interpolating values in between.With this in mind, the iterative

advection on each point (x,y) on the image plane can now be described by

∀x,y ∈ [0,1] : ∀λ ∈ {λ1,λ2} :

pλ
0 = βx,y,

pλ
i+1 = k ·βx,y+(1− k) ·

f
pλ
i
((x,y)+ v′λ )+ f

pλ
i
((x,y)− v′λ )

2
.

(12)

The iterative advection process has to be done for each eigenvector field separately

with separate input and output fields pi as can be seen in Figure 4. The value at a

given point is a mix of the input noise and the iteratively advected input noise from

the prior steps. Since the eigenvectors v′λ j
do not have an orientation, the advec-

tion has to be done in both directions. The iteration can be stopped when the value

change exceeds a threshold, i.e., if |pλ
i+1− pλ

i |< ε . We have chosen ε = 0.05, which

is very conservative but ensures a proper rendering.

2.6 Compositing

The final rendering pass composes the temporary textures for final visualization.

Whereas pixels that are not part of the original rendering of the geometry are dis-

carded using the information from the depth buffer, for all other pixels the color

values at a point (x,y) in image space after k iterations is defined by:
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Fig. 5 The final image produced by the output processing shader with lighting. Left: the whole

geometry. Right: a zoomed part of the geometry to show the fabric structure on the surface.

R=
r · f

p
λ2
k

(x,y)

8 · f 2
p

λ1
k

(x,y)
+ ex,y+ light(Lx,y),

G=
(1− r) · f

p
λ1
k

(x,y)

8 · f 2
p

λ2
k

(x,y)
+ ex,y+ light(Lx,y),

B= ex,y+ light(Lx,y),

(13)

where p
λ1
k and p

λ2
k are the fields generated from the eigenvector advection and e is

the silhouette image. The scalar factor r is used to blend between the two chosen

tensor directions. Equation 13 is a weighting function, which weights This approach

creates a mesh resembling the tensor field’s structure. To reduce the effect of light

sources on the color coding, we use a separate lighting function light that, while ma-

nipulating the intensity, does not affect the base color of the mesh structure. Even

though Blinn-Phong shading [2] has proven to provide the required depth cues, ad-

ditional emphasis of the third dimension using depth-enhancing color coding has

proven to provide a better overall understanding of the data [4]. Finally, further fil-

ters can be applied on the composed image, like contrast enhancement or sharpening

filters common to vector field LIC [27, 9]. Figure 5 shows the result of Equation 13

combined with Blinn-Phong shading and an applied sharpening filter.

2.7 Implementation

Our implementation is not limited to a special kind of geometry. It is able to handle

almost every tensor field defined on a surface. It is, for example, possible to calculate

an isosurface on a derived scalar metric, like fractional anisotropy or on a second

data set to generate a surface in a three-dimensional data domain. Other methods
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include hyper-stream surfaces [5], wrapped streamlines [8], or domain-dependent

methods like dissection-like surfaces presented in [1]. The only requirement for the

surface is that it is non-selfintersecting and smooth normals are provided as they are

required for the projection step and for proper lighting. The noise texture can be

pre-calculated in a pre-processing step or stored in a file as it is independent of the

data.

Our implementation is basing on an multipath rendering approach, where each

of the four processing steps in Figure 1 is implemented as shader program and ren-

dered one after the other utilizing frame-buffer-objects (FBO) and textures for data

transfer.

The first step projects the geometry into image space, simply by rendering the ge-

ometry and pre-calculating the Phong light intensity Lx,y ∈ [0,1] at every rendered
fragment with the coordinates x and y. In the same step, the tensors are projected as

well using the Equations 1 to 5. Tensor projection is done fragment-wise as interpo-

lation of vertex-wise calculated and projected eigensystems causes problems. Please

note, that the texture with the projected eigenvectors needs to be initialized in black,

as the RGBA-quadruple (0,0,0,0) denotes both eigenvectors to be of length 0 and

can be used as abort criterion during advection. The precalculated two-dimensional

noise texture (c.f. Section 2.2) is also mapped to each fragment during fragment

processing using the Equations 7 to 9. As the projection step is done using an FBO,

the resulting values can be written to multiple textures, which then can be used as

input textures for the consecutive steps.

Followed by the iterative advection of the mapped noise in image-space, the sil-

houette detection step applies a Laplacian convolution kernel fragment-wise to the

depth buffer to provide the needed border information to the advection step (c.f.

Section 2.4). The input of the advection step is the noise, mapped on the geometry.

Figure 2, right shows this. As Equation 12 shows, the advection uses the previously

advected texture which, in the first iteration, is the geometry-mapped noise and ad-

vects it in direction of the eigenvector field. The resulting texture is then combined

with the original geometry-mapped noise. During each render loop of the complete

scene, we apply advection three times. The resulting texture is then used as input

for the advection step during the next render pass. Figure 4 shows these advected

images, separate for each of the eigenvector fields.

The advected images are finally composed to the final image shown on the screen,

showing the fabric-like structure in combinationwith color-mapping.Our composit-

ing is mainly the combination of both advected noise textures according to Equa-

tion 13.

3 Results

We have introduced a method to create a fabric-like surface tensor LIC in image

space, similar to the one introduced in [13]. We used ideas from [19] to transform

the algorithm into image space. Our implementation, using this method, is able to
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reach frame rates high enough for real-time user interaction. The only bottleneck

is the hardware’s ability in rendering large and triangle-rich geometry. All further

steps can be done in constant time, see Table 1.

3.1 Artificial Test Data Sets

Fig. 6 Analytic test data sets. We applied our method to isosurfaces and the scalar field’s Hessian

matrix, showing the curvature on the surface, to demonstrate the suitability for topologically more

complex surfaces. Shown here are the final images using our method for a sphere and Bretzel5

data set (Equation 14). The image from the sphere data set has been improved by applying a

further bump-mapping filter as introduced in [7]. The eigenvalues and eigenvectors of the Hessian

matrix denote the change of the normal on the surface, which corresponds to the gradient in the

scalar field.

We first applied out method to artificial test data sets with different complex

topologies. The Bretzel5 data set shown here is defined implicitly:

((x2+ .25 ∗ y2− 1)∗ (.25 ∗ x2+ y2− 1))2+ z2− 0.1= 0. (14)

We used the Hessian matrix of the corresponding scalar fields on the surfaces as

tensor fields which, in fact, describe the curvature. The results displayed in Figure 6

show that neither the topology nor our artificial parameterization of the input noise

texture influences the quality of the final rendering. In the center of the sphere in

Figure 6, a degenerate point can be seen. On this point, the first and second eigen-

value are both zero. Our method can handle these points properly.
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3.2 Modification for Medical Data Processing

Fig. 7 An axial slice through a human brain: Corpus callosum (CC) (red), pyramidal tract (blue),

and parts of the cinguli (green in front and behind the CC) are visible. The main direction in three-

dimensional space is indicated by the RGB color map, where red indicates the lateral (left–right),

green anterior–posterior, and blue superior–inferior direction. The left–right structure of the CC

can clearly be seen in its center, whereas color and pattern indicate uncertainty towards the outer

parts. The same is true for the cinguli’s anterior–posterior structure. As seen from the blue color, the

pyramidal tract is almost perpendicular to the chosen plane and, therefore, secondary and ternary

eigenvectors dominate the visualization. Alternatively, we could easily fade out those out-of-plane

structures in cases where they distract the user.

Even though many higher-order methods have been proposed, due to scanner,

time, and cost limitations, second-order tensor data is still dominant in clinical

application. Medical second-order diffusion tensor data sets differ from engineer-

ing data sets because they indicate one major direction whereas the secondary and

ternary directions only provide information in areas where the major direction is

not well-defined, i.e., the fractional anisotropy—a measure for the tensor shape—

is low. Almost spherical tensors, which indicate isotropic diffusion, occur in areas

where multiple fiber bundles traverse a single voxel of the measurement or when
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Fig. 8 Diffusion tensor data set of a human brain. We employed the method by Anwander et al. [1]

to extract a surface following neural fibers and applied our method with an alternative color coding

that is more suitable and can be incorporated more easily into medical visualization tools.

no directional structures are present. Therefore, we modulate the color coding us-

ing additional information: In areas where one fiber direction dominates, we only

display this major direction using the standard color coding for medical data sets,

where x, y, and z alignment are displayed in red, green, and blue, respectively. In

areas where a secondary direction in the plane exists, we display this information

as well but omit the secondary color coding and display the secondary direction

in gray-scale rendering mode and always below the primary direction (cf. Fig. 8).

We use the method of Anwander et al. [1] to extract surfaces that are, where pos-

sible, tangential to the fiber directions. Hence, we can guarantee that the projection

error introduced by using our method in the surface’s domain remains sufficiently

small, which can be seen in Figure 9. Even in areas where the fractional anisotropy

is low and the color coding does no longer provide directional information, such as

in some parts of the pyramidal tract in Fig. 8, the texture pattern still provides this

information.

The applicability of our method, especially to medical second-order tensor data,

is mainly due to its real-time ability and its ability to provide a smooth transition

between local and global structures. Neuroscientist researcher can explore tensor

data interactively, by using slices inside the volume or by calculating surfaces in

interesting regions.
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Fig. 9 For validation, we calculated the fiber-tracts near the used surface. The directions can now

be compared. It shows that the major eigenvector direction correlates with the direction of the fiber-

tracts. As the used slice is near to the pyramidal tract, there is a strong diffusion in axial direction.

But not all the shown fiber-tracts match the direction of the shown surface tensor, which is caused

by not having all fiber-tracts directly on the surface. Most of them are slightly in front of it and

therefore can have other local directions.

3.3 Performance

As indicated before, the only “bottleneck” in the visualization pipeline that is

strongly geometry-dependent is the projection step. Since the surface needs to be

rendered repeatedly in case of user interaction, the performance measures of our

method consider repeated rendering of the geometry. The frame rate with geometry

not being moved and, therefore, making the projection step and the edge detection

step unnecessary, is considerably higher. Our implementation requires only few ad-

vection iterations per frame, which ensures high frame rates and smooth interaction.

To make the frame rates comparable, in the following tables, user interaction is as-

sumed and, therefore, rendering a single frame always consists of

• one projection step, including geometry rendering;

• one edge detection pass;

• three advection iterations; and

• one output processing pass.
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As seen in the previous sections, fragments not belonging to the geometry are dis-

carded as soon as possible without using deferred shading. This also generates per-

formance gain in advection and output processing. In Table 1, a selection of data

sets with their corresponding number of triangles and tensors are listed. These mea-

surements where taken on a 1024×768 viewport with about 3
4
of the pixels covered

by the surface.

Figure Nb Triangles Nb Tensors fps fps (Phong only) ∅ Geometry Share

8 41472 63075 32 61 72%

5 58624 88803 30 60 69%

7 571776 861981 14 16 90%

Table 1 Frames per second (fps) for different data sets with given number of triangles and num-

bers of tensors. The frame rates are compared to simple rendering of the geometry using Phong

shading. The frame rates were obtained for an AMDAthlon(tm) 64 X2 Dual Core Processor 3800+

(512K L2 Cache) with an NVIDIA G80 GPU (GeForce 8800 GTS) and 640MB of graphics mem-

ory at a resolution of 1024× 768 pixels. The geometry share relates the time used by the GPU

to rasterize the geometry to the overall rendering time, which contains all steps of the pipeline.

The time used to render the geometry clearly dominates the rendering times and reaches up to 90

percent of the overall rendering time even for medium-sized geometries.

The assumption that geometry rendering with projection is the weakest com-

ponent in this pipeline and that edge detection, advection, and output processing

perform at a data-independent frame rate is confirmed by the frame rates shown

in Table 1. It confirms that for large geometries, rendering the geometry alone is

the dominating component. Since the vertex-wise calculations during projection

are limited to tensor projection (Equation 1) and vertex projection (Equation 7),

the most expensive calculations during projection are executed per fragment. This

means that the expensive eigenvalue decomposition and eigenvector calculations are

only required for fragments (pixels) actually visible on the screen. Independent of

the geometry’s complexity, the number of fragments that require the costly process-

ing steps reaches a saturation value and therefore does not require further processing

time even if the geometry complexity increases. Table 1 states that this saturation

point has been reached in Figure 7. The computation for per-fragment Phong light-

ing consumes much more time as it is calculated before the invisible fragments have

been discarded, which explains the nearly equal framerates. To further decouple

the calculation effort from the geometry’s size, the depth test should be performed

before performing the eigendecomposition. This goal can be achieved by first ren-

dering the projected tensors to a texture, and computing the decomposition on vis-

ible fragments only. Nevertheless, this is not necessary for our current data set and

screen sizes where the time required to render the geometry itself clearly dominates

the time required to compute the texture pattern in image space. This can be seen in

the increasing values in Table 1 with increasing size of vertices rendered.
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4 Conclusions and Possible Directions for Future Research

We have presented a novel method for rendering fabric-like structures to visualize

tensor fields on almost arbitrary surfaces without generating three-dimensional tex-

tures that span the whole data set at sub-voxel resolution. Therefore, our method

can be applied to complex data sets without introducing texture memory problems

common to methods relying on tree-dimensional noise textures. As major parts of

the calculation are performed in image space, the performance of our algorithm is

almost independent of data set size, provided that surfaces can be drawn efficiently,

e.g., by using acceleration structures to draw only those parts of the geometry that

intersect the view frustum or using ray tracing methods.

Whether the surface itself is the domain of the data, a surface defined on the

tensor information (e.g., hyper stream surfaces), or a surface defined by other unre-

lated quantities (e.g., given by material boundaries in engineering data or anatomical

structures in medical data) is independent from our approach. Nevertheless, the sur-

face has to be chosen appropriately because only in-plane information is visualized.

To circumvent this limitation, information perpendicular to the plane could be incor-

porated in the color coding, but due to a proper selection of the plane that is aligned

with our features of interest, this has not been necessary for our purposes.

Especially in medical visualization, higher-order tensor information is becom-

ing increasingly important and different methods exist to visualize these tensors,

including local color coding, glyphs, and integral lines. Nevertheless, an extension

of our approach is one of our major aims. In brain imaging, experts agree that the

maximum number of possible fiber directions is limited. Typically, a maximum of

three or four directions in a single voxel are assumed (cf., [22]). Whereas the num-

ber of output textures can easily be adapted, the major remaining problem is a lack

of suitable decomposition algorithms on the GPU. Image-space techniques, by their

very nature, resample the data and, therefore, require one to use such proper inter-

polation schemes. In addition, maintaining orientations and assigning same fibers in

higher-order data to the same texture globally is not possible today and, therefore,

is a potential topic for further investigation.
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