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Abstract— The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass
spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data.
Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass
spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elu-
sive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes,
we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful
results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that
our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass
spectrometry data at significantly increased speed and a higher degree of ease.
Index Terms—Dimension reduction, mass spectrometry data, validation and verification of matrix factorization, visual encodings of
numerical error metrics, multi-dimensional data visualization.

1 INTRODUCTION
Atmospheric particles increase morbidity and mortality in polluted
urban areas and alter the Earth’s radiative energy balance related to
climate change. Innovative instruments are now capable of chemi-
cally analyzing individual airborne particles in real time, providing
unprecedented rich data sets for air quality research. Typical instru-
ments analyze hundreds of thousands of particles over a few weeks to
year-long period, with each measurement reporting typically 250 ion
mass/charge ratios in the mass spectrum of each particle. Current anal-
ysis techniques employ clustering the spectra and averaging of similar
spectra to represent common composition. However, these clustering
algorithms have a number of shortcomings. For instance, averaging
obscures important sources or atmospheric processes that the particles
have undergone. Moreover, the distance measures used by these algo-
rithms are known to misclassify spectra due to isobaric interferences.
Isobaric interference refers to the fact that different physical sources
contribute to the same dimension in the mass spectrum, rendering its
values ambiguous as the contributing components and their magni-
tudes are unknown. However, since different compounds in the gas
and particle phase manifest themselves in multiple ways in the particle
mass spectra and in the gas phase composition, the data are often com-
posed of independent or nearly independent components that funda-
mentally characterize the particle and moreover the air parcel by their
combination. As a result, understanding these vast high-dimensional
data sets can be facilitated by interpreting the data based on their inde-
pendent compounds. Consequently, a basis transformation is needed
that resolves ambiguity by expressing the data into coefficients of its
latent physical components.
The problem presented here is known as that of blind source sepa-

ration [7]. Given data that is derived from a combination of unknown
sources in unknown occurrences, the goal is to factor out both un-
knowns given only an estimate of the number of sources and an as-
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sumption of the data model that defines how sources combine. In
particular, sources are not mutually orthogonal which leads to ambi-
guity in the data. Thereby, the sources and their occurrence represent
the actual “hidden” information that is to be factored out from the
given mixture. In the context of atmospheric processes, the unknown
sources represent the latent components that appear independently in
aerosols. These form the actual, unambiguous, and lower-dimensional
data basis. Based on the physical model of particle ionization, each
measured aerosol mass spectrum can be described by the linear com-
bination of the mass spectra of its components. As a consequence,
the latent independent variable basis of the data and the corresponding
coefficients that derive the data are, in theory, exactly the independent
physical components and their occurrences in the aerosols. However,
in practice, extracting these basis vectors and coefficients so that their
physical composition can be interpreted proves difficult. In particu-
lar, methods like independent components analysis [6] do not account
for non-negativity in the mass spectrum and physical source mixture
model. As a result, air quality researchers are ambivalent about using
dimension reduction when the resulting data basis does not show a re-
lationship to air pollutant emissions and their atmospheric processing.

The authors, from the domains of air quality research and visual-
ization, jointly studied this problem to investigate the positive influ-
ence of visualization on solving this problem. Dealing effectively with
these vast, high-dimensional data sets necessitates the practical need
for visualizing the process of dimension reduction, thereby instigat-
ing a research direction for visualization in which little prior work ex-
ists. We show in this paper that visualization is essential in providing
air quality researchers with the means of finding unambiguous phys-
ically correct lower-dimensional basis transformations of their data.
Our method involves the visualization of non-convex, multi-criteria,
and non-negative matrix factorization. Further, our method entails a
visual interface to this optimization process that (i) allows the atmo-
spheric scientist to be “in the loop” of the computation, (ii) provides
direct visual feedback of the optimization process, and (iii) enables
controlled refinement of its solution. We introduce domain-specific
visual encodings and interactive mechanisms of matrix factorization
that provide the means to incorporate expert knowledge into numer-
ical optimization and to steer this process toward physical meaning
while maintaining mathematical rigor. Thereby, we contribute both to
the field of air quality research by providing novel means for the re-
search of aerosol source contributions, as well as to the visualization
community by laying the groundwork for further research toward en-
abling physically meaningful and interpretable dimension reduction.



The remainder of the paper is structured as follows. Section 2
discusses related work in dimension reduction, visualization, and air
quality research, while Section 3 provides the necessary application
background, task description, and requirements for our effort. Our
framework, consisting of data factorization, domain-specific visual en-
codings and interaction mechanisms, is described in Section 4. In
Section 5, this framework is applied to the factorization of biomass
combustion particle spectra and evaluated with respect to its ability to
produce new insights to the application of air quality research. Finally,
concluding remarks are given in Section 6.

2 RELATED WORK

Work related to the scope of this paper can be found in the fields
of dimension reduction, visualization, and air quality research; we
provide a brief overview in the following.

Dimension reduction
Methods for dimension reduction compute a mapping from high-
to low-dimensional space. Thereby, data is decomposed into a set
of new coordinates, acting as coefficients to a different basis that
is more suitable with respect to data properties. In visualization,
dimension reduction is commonly applied as a means of finding
a lower-dimensional data embedding that best reflects distance
relationships between high-dimensional points. Here, the focus lies
not on the properties of the basis but on their coefficients that act
as an abstraction to the high-dimensional data. In contrast, we are
concerned with the basis of this mapping, as its interpretation is
essential in air quality research.
Methods like multi-dimensional scaling [36] or manifold learn-

ing [35, 32] define data bases in inner product space. These bases
prove hard to interpret as their dimensionality equals the number of
data points. While principal components analysis [29] finds bases
in data space, it is restricted to orthogonal basis vectors. Overcom-
ing this restriction, independent components analysis [6, 14] finds
non-orthogonal independent data bases. However, methods based on
higher-order statistics are generally unsuited for our problem domain,
as single particle mass spectrometry (SPMS) data is non-negative by
nature. The methods mentioned above make use of spectral decompo-
sitions and are thereby incapable of factorizing non-negative data into
a non-negative basis and non-negative coefficients [5].
In comparison to classical statistical approaches, matrix factoriza-

tion (MF) methods offer more degrees of freedom for defining opti-
mization goals. In particular, non-negative matrix factorization (NMF)
has recently received great attention because it is capable of comput-
ing non-negative basis transformations. Non-negativity is an integral
property for application areas that investigate physical phenomena de-
scribed by non-negative measurements or mixtures, as it is the case for
the type of air quality data we are concerned with. In this paper, we
make use of the works of [20] and [39]. The former provides a frame-
work for alternating non-negative least squares, while the latter shows
how the use of a decorrelation regularization term derives independent
components in non-negative data. In contrast to previous work, no
matrix inversion is necessary for this computation. Other work offers
a convex model to NMF but is constraint in expressing its basis as a
convex combination of data points [9].
As MF methods are based on numerical optimization, their draw-

backs lie with computation and convergence speed, as well as their
proneness to “get stuck” in local minima in the case of non-convex
optimization problems. Finally, all dimension reduction methods
share the common problem of finding a basis transformation that
is not only numerically correct but also physically interpretable by
the domain expert. With complex physical restrictions that are not
(yet) well-defined, it is impossible to extract a physically correct data
basis through numerical optimization alone. After all, in air quality
research, as well as in most scientific applications, the motivation
for exploratory data analysis is that data properties are part of open
research questions. Consequently, the scientist has to be involved in
interacting with computations; this insight motivates the present work.

Visualization
While visual steering of exploration [34] and simulations [21, 22, 38]
have become a well-established research areas in the field of visu-
alization, the visual steering of practical engineering optimization
has not been the focus of previous studies. However, this need is
clearly documented [25] and recent advances from the engineering
community give empirical evidence to the benefits of interac-
tive visualization-based strategies to support engineering design
optimization and decision-making [4].
Recently, novel techniques have been introduced to the visualiza-

tion community that enable user interaction in dimension reduction
and have demonstrated great success in application areas. For exam-
ple, piecewise Laplacian-based projection (PLP) [28] allows the user
to interact directly with the mapping process by providing means to
adjust neighborhood and distance approximations. Thus, the user can
implicitly redefine the basis for dimension reduction. However, the ap-
plication of PLP does not involve analysis of this basis or the mapping
error. Previous methods have used dimension reduction as a means
to visualize data. In contrast, our application requires visualization as
a means to steer dimension reduction toward physical correctness. In
this regard, air quality research may prove to trigger a new research
domain for visualization.
Techniques to visualize matrix factorization can, in part, be

based upon existing research in multi-dimensional data visualization
[37, 11]. Driven by applications, research focuses on better repre-
sentation of specific data properties (e.g., scientific point cloud data
[27]), better incorporation of domain-appropriate analysis techniques
(like brushing and filtering [17]), or computational speed gains [15].
Opposed to visualizing data relationships by dimension reduction,
value visualizations like heat maps, glyphs, scatter plot matrices, and
parallel coordinates, are regarded as the dominant approach to multi-
dimensional data visualization. Research in this area has focused on
enhanced cluster visualization [18, 44, 1], brushing techniques [8, 13],
and abstraction [24]. Clutter reduction through dimension ordering
[30, 40, 10] is one of the most promising approaches to enable data
comprehension.

Visualization in air quality research
The air quality research community has recognized the need for
tools to assist the interpretation of data from single particle mass
spectrometers that generate many spectra of high dimensionality.
Published under the synonym positive matrix factorization, NMF has
been used for classification of airborne particle types [19]. However,
the focus has not been on deriving an independent basis or visualizing
the result. As of now, the dominant approach to mass spectrometry
data analysis is to apply clustering methods. These methods are
commonly based on hierarchical [26], neural network [33], or density
[43] schemes that utilize geometric distance measures. Available
software packages for mass spectrometry data ([12], [41]) include
a variety of data mining methods that focus on clustering and the
visual analysis thereof. Recently, a system allowing visual analysis
and steering of data clustering has been introduced [42]. Here, better
clustering results have been obtained through the incorporation of
expert knowledge into data clustering and means for refinement of
prior solutions.

3 REQUIREMENT ANALYSIS
3.1 Application background
Single particle mass spectrometry (SPMS) is used in air quality re-
search to categorize, collect, and analyze aerosols at sampling sites.
The research objective is to qualitatively assess air pollution by link-
ing sources to their emitted aerosols, as well as to quantify their toxic-
ity. This allows scientists to assess reliably the degree of pollution that
has been emitted by identified entities (such as cars, factories, etc.), as
well as their abundance in the atmosphere at specific time and loca-
tion. One arising scientific problem is that collected samples need to
be categorized by emission source (particle type) in order to be accu-
mulated for toxicity analysis. Analyzing the particle’s composition is
therefore an essential step in this research.



SPMS instruments collect, filter, and characterize aerosols based
on their mass spectrum. This spectrum is measured by the instrument
based on particle ionization. Aerosols are accelerated through a drift
tube and hit by a plasma beam. This causes the particle to ionize and
break up into fragments of different compositional levels. The masses
of particle fragments are then computed by a time-of-flight analyzer
that determines the abundance and mass of each fragment ion. Indi-
vidual measurements are combined to a mass spectrum for the particle.
The mass spectrum represents a function mapping mass over elemen-
tal charge (m/z) of fragment ions to their abundance in the particle.
Discretized in bins of 1 m/z step size, the analyzer captures the first
256 m/z ratios for each aerosol. The resulting histogram data is stored
as a 256-dimensional vector, where each coordinate corresponds to the
abundance of fragments within the aerosol having an m/z ratio within
the dimension’s section of the discretized spectrum.
As mass is ambiguous, several fragment ions map to the same

m/z dimensions and contribute to each coordinate. This phenomenon
is known as isobaric interference. Data transformations based on
geometric distance metrics are unable to resolve this ambiguity, as
they rely on the comparison of coordinates which, in SPMS data, can
stem from different physical sources. Consequently, data clustering
results are less reliable and the state-of-the-art approach involves
verifying each individual (mean) representative spectrum by the
scientist. Figure 1 gives an example for this analysis. In the figure,
individual peaks are labeled by their source contribution. Ambiguity
is resolved by manual analysis and experience.

Ambiguity has created several problems for the application and has
in turn triggered basic research problems for visualization. In air qual-
ity research, the task does not match the available data. SPMS data is
high-dimensional, noisy and ambiguous. The application’s goal is cat-
egorizing particles by their composition, however, their composition
is not reflected by the mass spectrum because of its ambiguity. Conse-
quently, a basis transformation is needed that resolves this ambiguity.
According to the underlying physics, it is assumed that each par-

ticle can be described by the linear combination of its fragment ions.
Consequently, SPMS data X ∈!(n×m), holding n particle spectra dis-
cretized in m dimensions, can be described by the discretized mass
spectra of their fragment ions as a basis B to X , such that

X = CB +N and (1)
Xi,• = ∑

1≤ j≤|B|
Ci, jB j,• +Ni,• .

Here, B is the matrix storing (row-wise) basis vectors, Bj,• ∈ Rm,
1≤ j≤ |B|, such that X is derived with the coefficient matrixC and the
noise N induced by the instrument. Note that Xi,• and Ni,•, 1≤ i≤ n,
refer to the rows of the matrices X and N. Further, all coordinates
are positive. The problem is ill-posed and there is no unique solution
because (i) C, B, and N are unknown and (ii) any change in B can
be undone by changing C accordingly. In particular, adding arbitrary
basis vectors to an ideal set B∗ with appropriate coefficients (adding
up to zero) does not change the solution. From the standpoint of nu-
merical optimization, infinitely many bases exist with which the data
can be described. Due to the complexity of the problem, the level of
uncertainty involved in data collection, partially unknown machine-
dependent physical models of particle fragmentation and noise in-
duced by the instrument, previous methods have failed to deliver phys-
ically correct independent data bases.

3.2 Requirements and tasks
Based on the discussions with our co-authors and domain experts, we
have identified key requirements for implementing a basis transforma-
tion of SPMS data as described in the previous section, as well as the
tasks that define the usage of such a system.
Many optimization methods are static in nature and often output

their result in combination with a single error measure. For air quality
research, however, this is not sufficient. An overall mapping error of
“2.05”, for example, provides close to no insight for analysts. Atmo-
spheric scientists have extensive experience in interpreting SPMS data,

Fig. 1. As of now, atmospheric scientists estimate aerosol composi-
tion and the sources that contribute to each m/z dimension based on
their experience in investigating mass spectra. Analyzing and classify-
ing thousands of particle spectra can take months even with the help of
data clustering.

identifying different sources, common features, and noise. Under the
mathematically ill-posed problem of finding physically correct bases
for the un-mixing of SPMS sources, analytical frameworks are well-
advised to draw upon the scientists’ knowledge in order to generate
more reliable results.
As numerical error measures hardly facilitate understanding of data

features or the physical correctness of the factorization basis, visual-
ization of the basis transformation is inevitable when the scientist is
to asses its correctness. This visualization should permit a detailed
understanding of

• the exact mapping error induced by the basis transformation with
respect to the data and

• the basis vectors used in the transformation with respect to the
data features.

Further, the scientist requires an interface to perform the following
tasks.

• Analyze basis:
In a correct factorization, each basis vector equals the mass spec-
trum of a stereotypical particle fragment ion that is part of the
measured aerosols. The basis should therefore be depicted in a
way that makes possible easy comparison between different basis
vectors and how they relate to the underlying data features, i.e.,
the different sources in the data set. In this comparison, analysts
should be able to identify the relative peak heights and sparsity
of the different basis vectors and verify that the basis describes
physically meaningful parts of aerosols.

• Analyze mapping errors:
To verify the correctness of the basis transformation, the scien-
tists needs to analyze how well each part of the data is captured
by the factorization. In part, this error may stem from noise or
outlier measurements. Both overview and detail is required such
that the overall fit, as well as the specific error with respect to
certain dimensions or data points, can be assessed.

• Adjust basis:
If the basis is found to be physically incorrect, intuitive means
for interaction are required to adjust the basis accordingly. Also,
means to account for the level of uncertainty in the basis configu-
ration are desirable, since exact peak ratios may vary depending
on measurement parameters but certain conditions of the basis
configuration are known and can be specified.



The exact coefficients of the basis are not of immediate interest for ver-
ifying the factorization but for successive analysis steps. Instead, the
focus lies on the error that is induced by the basis transformation, as
well as on the physical correctness of the basis. Computations should
be based on the physical data model, mathematically well-founded,
and convey physically interpretable results. For visual user feedback,
visualization is essential in conveying an understanding of the factor-
ization’s intermediate results, as well as to offer an effective interface
to verify and control computations with all involved parameters.

4 METHOD
The goal of the method presented in this section is to provide at-
mospheric scientists with the means of finding unambiguous physi-
cally correct lower-dimensional basis transformations of single parti-
cle mass spectrometry (SPMS) data. Our method involves the use of
non-negative matrix factorization (NMF) in combination with specific
regularization terms to find a basis transformation of SPMS data that
minimizes ambiguity. Further, our method entails a visual interface to
this optimization process that allows the analyst to be “in the loop” of
the computation, provides direct visual feedback of the optimization
process, and allows controlled refinement of its solution. By introduc-
ing domain-specific visual encodings and interaction mechanisms of
SPMS factorization, we provide means to incorporate expert knowl-
edge into the numerical optimization in order to steer this process and
to verify the physical correctness of the basis transformation.

4.1 Non-negative matrix factorization
Given n data points of dimension m with non-negative coordinates,
X ∈ !

(n×m)
+ and a positive integer k ∈",k > 0, methods that perform

non-negative matrix factorization (NMF) find a factorization of X into
a basis B ∈!

(k×m)
+ and coefficients C ∈!

(n×k)
+ , such that

||X−CB||→ min, (2)

where all values inC and B are non-negative.
From the class of existing methods for NMF, we use a combination

of [39] and [20], together with two regularization terms of indepen-
dence and diversity that serve the objective of finding an unambiguous
basis and reliable solution, respectively.
The objective of independence is understood by taking into account

the physical process of particle ionization induced by the SPMS in-
strument. The contribution of fragment ions to the particle’s mass
spectrum can be modeled in a hierarchical manner, as larger frag-
ments ionize into smaller fragments. Thereby, the molecular compo-
sitional parts of the particle contribute to the particle’s mass spectrum
not only by their own m/z ratio but also by those of their successive
sub-fragmentions. For statistical considerations, these fragmentation
patterns are constant. Consequently, SPMS data can be described by a
latent variable model of independent components that represent frag-
mentation patterns. It has been shown that, in order to derive the in-
dependent components from a non-negative matrix, it is sufficient to

Fig. 2. With regularization, NMF finds a non-negative factorization in co-
efficients of independent basis vectors (particle components). Thereby,
the correctness of the mapping (errors are illustrated in gray) is balanced
against the independence and diversity of the basis.

find a factorization into a non-negative basis and coefficients for which
the coefficients of the basis vectors are uncorrelated [39]. Defining the
optimization goal of independence between the basis vector’s coeffi-
cients, therefore, serves not only the purpose of dimension reduction
(basis transformation into independent latent variables) but also leads
to basis vectors of distinct molecular composition. Thus, the regular-
ization of independence aims toward an unambiguous and physically
interpretable basis.
Non-convex optimizations are prone to lead to only locally optimal

results. Our experiments of factorizing SPMS data have shown that the
objective of independence leads to the fact that outliers are not mapped
well with this criterion alone and the optimization of the basis may
become “entrapped” by the local solution for independence. Although
we present no empirical evidence for this fact, the intuition behind
these dilemmas is clear. From an optimization perspective, the gain in
correctness by changing the basis toward faces of the bounding box of
the data does not outweigh the penalty of correlation induced by this
change. Consequently, the optimization terminates in a local optimum.
Although independent components of SPMS data have to be diverse,
early implementations using only the regularization of independence
have not produced this result but have ended abruptly in unreliable
solutions. However, steering the search for an independent basis by
including a slightly weighted regularization of diversity has produced
far more reliable results.
To summarize these considerations, the non-negative matrix factor-

ization of SPMS data has the following objectives.
• NMF: C and B define a factorization of X for which ||X −CB||
is minimized→ numerically correct

• Regularization w.r.t. independence: basis coefficients C are
decorrelated→ unambiguous basis

• Regularization w.r.t. diversity: basis vectors B are mutually dif-
ferent→ reliable solution

We use a combination of [39] and [20] that involves a gradient-based
two-block optimization scheme with multiplicative update rules ac-
cording to [23]. The computations can be summarized as follows,
where ||.||2F denotes the squared Frobenius norm.
1. Numerical correctness is enforced by multiplicative update
rules in two successive blocks:

minC≥0 ||X−CB||2F , by (3)

Ca,b ← Ca,b

(

[XBT −αCRC]≥ε
)

a,b
(CBBT )a,b+ ε

,

where B is fixed and

minB≥0 ||X−CB||2F , by (4)

Ba,b ← Ba,b

(

[CTX −αBRB]≥ε
)

a,b
(CTCB)a,b+ ε

,

where C is fixed. Here, [.]≥ε denotes that values are truncated
to be greater or equal to a small positive real value. The update
rules employed here are inherently “normal” additive gradient
updates with a relative step size. However, this multiplicative
formulation yields faster computations and is currently the dom-
inant approach to NMF [23]. The regularization terms RC and
RB are weighted by αC and αB, respectively, producing an inde-
pendent and diverse basis.1 RC and RB are the partial derivatives
of the cost functions JC(C) and JB(B), i.e.,

RC =
∂JC(C)
∂C

and (5)

RB =
∂JB(B)
∂B

. (6)

1Note that αB should be distinctly lower weighted than αC .



Detailed notations of RC can be found, for example, in [39].

2. Independence is enforced by updatingC using the partial deriva-
tive of the cost function JC(C) that defines the discrepancy be-
tween the uncentered correlation (normed uncentered covari-
ance) matrix ofC, nCorr(C), to the k× k identity matrix, Ik.

JC(C) = || nCorr(C) − Ik||2F , with (7)
nCorr(C) = NCCTCNC ,

NC = diag(1/||C•,1||F , ...,1/||C•,k||F ) , and

||C•,i||F =
√

∑
1≤l≤n

C2l,i .

3. Diversity is enforced by updating B using the partial derivative
of the cost function JB(B) that defines the discrepancy between
cos(B), the k× k matrix of the cosines of the angles between all
basis vectors in B, cos(B), to the k× k identity matrix, Ik.

JB(B) = || cos(B) − Ik||2F , with (8)
cos(B) = NBBBTNB ,

NB = diag(1/||B1,•||F , ...,1/||Bk,•||F ) , and

||Bi,•||F =
√

∑
1≤l≤m

B2i,l .

Note that computation of the partial derivative of JB is algorithmically
equivalent to that of JC. Instead of minimizing correlation between
columns in C (C•,i), RB maximizes the cosine of the angle between
rows (basis vectors) of B (Bi,•). Figure 3 provides an example of how
this NMF implementation behaves in two dimensions.

4.2 Visual encodings
Although the numerical optimization, as presented in the previous sec-
tion, has desirable mathematical qualities with respect to factorizing
mass spectra, results are not guarantied to be physically meaningful
to domain experts. Due to noise, outliers, or local optimality, the ver-
ification of the solution is required by scientists. In contrast to pre-
vious approaches using numerical error metrics, we provide domain
and problem-specific visual representations of the matrix factorization
process. This enables scientists to analyze the optimization result in
full detail, as well as to assess its quality on an abstract level. In the
following, we give a detailed account of these visual encodings and
discuss their suitability for air quality research.
The factorization of a data set X ∈ R(n×m) introduces additional

entities that require visual representation to make the user aware of
their properties:

• the basis B ∈ R(k×m),

• the coefficients C ∈ R(n×k),

• the mapping error X−CB, as well as its metric sum ||X−CB||2F ,

• the correlation of the basis vectors’ coefficients nCorr(C), and

• the cosine of the angle between basis vectors cos(B).

However, not all entities are of equal interest (or importance) in the
validation of SPMS matrix factorization. Most importantly, B must be
visualized, as the physical correctness of the basis defines the value of
the factorization. If the basis vectors cannot be interpreted as a mean-
ingful physical entity in the application, the factorization will hold no
physical meaning to scientists. Enabling the analysis and validation of
B is therefore a key requirement to be met by the visualization. Con-
sequently, the visualization of B must show each basis vector in full
detail.
As the basis is to be evaluated in relation to the data, the visualiza-

tion must also involve the depiction of X in equal detail. This leads

(a) (b) (c)

Fig. 3. An example of our NMF implementation. (a) shows a 2D point
arrangement that reflects the geometric properties of the SPMS data
model as described in Section 3.1, has two fairly independent sources,
and noise added to it. Basis vectors and coefficients are computed by
steepest descent (b), after which the unknown non-negative mixture of
the two contributing sources is found almost exactly (c).

to the conclusion that X and B have to be depicted in the same visual
space and form, such that the user can visually reference both entities
in relation to each other more easily. Both B and X are histogram data
for which several alternative visual representations exist. However,
mass spectrometry data has already an established visual representa-
tion in the engineering community which novel visualizations have to
conform to. As Figure 1 shows, mass spectrograms are visually rep-
resented as piecewise linear functions over mass. The effectiveness
of our method depends on the scientist’s ability to investigate patterns
in these spectra, as well as on the experience in identifying diverse
sources contributing to SPMS data. Therefore, for the histogram data
visualization of X and B, the basic geometric form must relate to the
existing representation. If X and B are seen as multi-dimensional, then
piecewise linear functions equal the representation by parallel coordi-
nates [16] with the following exceptions:

• No vertical lines are drawn for the dimensions.

• Every dimension has equal scale.

• The order of dimensions is not arbitrary but given by mass ratios.

These exceptions render the application of state-of-the-art visualiza-
tion techniques for parallel coordinates (see Section 2) very limited.
For visualizing SPMS data, dimension reordering, edge bundling, or
other forms of abstraction are generally less accepted by air quality
researchers. However, transfer functions, alpha blending, as well as
coloring schemes, that slightly affect the visual appearance but not the
spatial presence of data features, are accepted degrees of freedom for
the visual representation.
Next to the basis, the mapping error X −CB is of equal importance

in the verification of SPMS factorization. Even if the basis is veri-
fied to be physically correct, if the factorization does not hold for the
data, it will be of little worth to successive analysis. While the overall
quality of the factorization can be assessed by the norm ||X −CB||2F ,
a detailed visualization of X −CB gives clues as to how the basis can
possibly be adjusted to achieve a better factorization result. NMF op-
timization is prone to local minima and the computed basis is most
likely not optimal. However, adjustment of B with respect to the map-
ping error can improve results and lead to finding a global optimum.
Consequently, a detailed visualization of the mapping error is equally
crucial to the effectiveness of our method.
There are two possibilities for defining the mapping error: absolute

(X −CB) and relative (CB/X), both are interesting for atmospheric
scientists; even small measurements in specific m/z dimensions can be
important. As numerical optimization based on least sum of squares
tends to neglect small values, the visualization of the relative error,
showing the factorized data in relation to the original data, is required
for verification. On the other hand, the absolute error is of equal im-
portance as it allows for the assessment of information loss and shows
the patterns of features that are not captured in the factorization. Con-
sequently, our visualization has to be able to depict both absolute and



relative factorization error in detail, while the absolute error should be
displayed in relation to the basis in order to give insights to its adjust-
ment. Therefore, we depict X −CB as separate polylines in the same
axis as X and B. To reduce confusion between these three visual en-
tities, we use distinct colors for each of them. We also allow for the
option to hide the absolute error in case it should clutter the view.
The relative error should be visually distinguishable from the abso-

lute error and, therefore, have a distinct representation. In our context,
it shows the user how the factorization fits to each coordinate of the
data, i.e., whether the mapping accounts for higher or lower values
with respect to each value in X . To avoid further cluttering the visual-
ization, we exploit the yet unused degree of freedom of color coding
X by this error measure. Although this is intuitive to analysts, the
drawback is that color may not be used for other visualization goals,
for example, to depict different clusters. Here, we use alpha blend-
ing to bring out some of the data’s structure. To easily distinguish
under- and over-representation, and since relative errors CB/X gener-
ally show different distributions in these ranges ([0,1] and [1,2]), two
distinct colors are required for the definition of the color map. For
CB/X = 1, the user’s attention is not needed as no error is present.
To this point, we have established the necessity of a single high-

detail visualization showing B relative to X (colored by theCB/X) and
X−CB. However, for analysis and verification of the factorization, the
user also needs to quickly gain an overview of the general mapping
quality. This overview should facilitate an abstract comprehension of
the overall fit of the factorization and serve as a platform for interaction
and navigation. We provide this overview by a linear projection of X ,
CB, and B, defined by the two principal components of the covariance
matrix of X , as they are the orthogonal axes of maximal variance in X .
Further, we connect each point in X with its corresponding mapping
inCB. In this projection, the user can quickly identify outliers that are
not mapped well by the factorization, as well as its general quality.
A third plot accounts for the visual representation of nCorr(C) and

cos(B), as independence and diversity are important aspects of the op-
timization. However, their depiction is not as essential to data analysis
as the projection or graph view. As heat map representations of cor-
relation matrices are well-established in the engineering community
and are also space efficient, we join both symmetric matrices by their
upper and lower triangular half, respectively, and display their values
by color coding in gray scale. Note that the basis has no inherent or-
der and reordering of this matrix is semantically possible, however, we
find no need to do so as our NMF implementation generally performs

Fig. 4. Overview of particle spectra in 256 dimensions showing absolute
(magenta) and relative error (orange-blue) of the computed factorization
by two independent basis vectors (dark gray). Spectra are represented
as piece-wise linear functions over m/z and exhibit the same patterns
as established representations.

well with respect to independence of the basis.

4.3 Interaction
Effective visual analysis and manipulation of matrix factorization re-
quires interaction. In this section, we introduce the means for interac-
tion provided by our visual interface and comment on their eligibility
for interactive visual verification of SPMS factorization. Figure 5 il-
lustrates these techniques.
As established in previous sections, numerical error measures do

not facilitate understanding of complex data features. The visual eval-
uation of the factorization is a necessary step in air quality research.
Thereby, effective interaction techniques are required for atmospheric
scientists to analyze the mapping error in each dimension with respect
to outliers, noise, and data features. We distinguish between two in-
teraction classes: analysis and manipulation. For the analysis part, we
apply interaction techniques from visual analytics to our visualization
of matrix factorization. However, few techniques are available that
focus on interfacing dimension reduction methods. Here, we intro-
duce novel and intuitive interaction mechanisms that interface matrix
factorization.
The first step in assessing the quality of a factorization result is

its visual analysis. Given the level of restrictions for visual encod-
ings, parallel coordinates are inevitably prone to visual clutter with
increasing number of data points and dimensions. Therefore, inter-
action is usually required for effective visual analysis. Zooming and
panning allows for detailed analysis of specific parts of the factor-
ization. In order to analyze a group of data points or basis vectors,
we allow for problem-specific, semantic selection and filtering mech-
anisms. Thereby, the projection plot acts as the selection interface that
induces filtering operation in the graph plot. Upon selection, the alpha
values of all polylines are adjusted according to their analytic connec-
tion to the selection. The selection of points

• hides other points in X ,

• hides absolute errors in X −CB not stemming from the selected
points, and

• shows basis vectors according to their coefficients in the mapping
of the selected points, i.e.,
αb = ∑p selected Cp,b / ∑p selected ||Cp,•||1 2,

while the selection of basis vectors

• hides other basis vectors in B,

• leaves absolute errors in X −CB untouched3, and

• shows points according to their coefficients in the mapping of the
selected basis vectors, i.e., αp =Cp,b / ||Cp,•||1 4.

After thorough analysis of the factorization and its error, the atmo-
spheric researcher may refine parameters for a successive optimization
step, either from an adjusted or random starting point of parameter
space. By interacting with the factorization, the analyst can manipu-
late the basis by adjusting coordinates of basis vectors via left-mouse
dragging. As basis vectors are normalized by the optimization, the
unadjusted coordinates are updated such that the norm holds for the
adjustment. By permitting this manipulation, the user can iteratively
define new starting points for the gradient-based search of an optimal
data basis for factorization.
Non-convex gradient-based optimization can be unpredictable, es-

pecially when applied to high-dimensional data. As the definition of
2For selected points p, the opacity of each basis b is adjusted to αb, where

||Cp,•||1 refers to the sum of the p’th row of the coefficent matrix C.
3Note that the mapping errors cannot directly relate to any selection of basis

vectors. Highlighting parts of the errors might lead to the semantically incorrect
conclusion that the selected basis vectors are accountable for these errors.

4For basis vector b selected, the opacitiy of each spectrum (m-D point) p is
adjusted to αp, where ||Cp,•||1 as above.



different starting points for optimization may not necessarily imply a
different result after steepest descent, setting the starting point is not
sufficient to assure physical correctness. Additionally, the user can
set threshold values for the basis optimization. Relative from the po-
sition of each basis coordinate, positive and negative thresholds can
be set by right-mouse dragging. These thresholds act as strict bound-
ary limits for the steepest descent which are guaranteed to be met by
the optimization. Setting boundary levels for only a few coordinates
can change the entire basis in a way that the configuration is optimal
regarding to the given restrictions, while the scientist can decide the
exact degree of freedom for every part of the basis optimization.
When, after restarting the factorization with a refined basis, the re-

sult is still unsatisfactory with respect to the mapping error, the re-
searcher can investigate whether the number of basis vectors is ill-set
for the data’s factorization by adding or removing basis vectors. The
complete randomization of basis vector coefficients can also provide
the necessary means for overcoming local optima. Often, this scenario
can be observed while the online visualization is running. Therefore,
the optimization can be stopped or resumed at any time.

5 RESULTS
The authors from the domain of air quality research have applied this
method to the factorization of biomass combustion sources. Here, we
give excerpts of our preliminary study and evaluate the visualization
framework5 with respect to speed, accuracy, and ease of use. We also
give a glimpse into future research, however, these findings will be
published in a different forum. In summary of what is presented here,
we have been able to (i) reproduce established findings in mere a frac-
tion of the time than it was possible before, (ii) process and analyze
ten-times more spectra than in previous studies, and (iii) gain surpris-
ing insights enabled by the visualization.

5.1 Factorization of biomass combustion sources
Biomass combustion emits copious amounts of gases and particles into
the atmosphere and plays a key role in almost all present day envi-
ronmental concerns including the health effects of air pollution, acid
rain, visibility reduction, and stratospheric ozone depletion. Among
the largest inadequacies in quantifying emission factors of biomass
combustion is the general paucity of methods identifying and quan-
tifying particle classes in ambient measurements for a wide range of
ecosystems and combustion conditions, including anything from nat-
urally occurring, large wildfires to woodstoves and fireplaces used for
residential heating [31]. This is largely a result of the physical and
chemical complexity of particulate matter (PM). PM is the least under-
stood factor in almost all issues ranging from human health to global
climate change and provides the impetus for studying ambient parti-
cles in increasing detail to close these knowledge gaps.
In prior work, we have used high-resolution clustering algorithms

to characterize particle classes of biomass combustion emission
factors [3]. The particle class depictions in Figure 6 are the averages
of all single particle mass spectra within their class and the listed per-
centages represent the fraction of the total detected particles belonging
to that class. The relevant carbon cluster ions C+

x (typically attributed
to elemental carbon (EC)), hydrocarbon fragment ionsCxH+

y (organic
carbon (OC)) and isotopic K+ ions are labeled. However, the
apparent distinction between these particle classes, or compositional
discretization, is somewhat arbitrary and largely a result of the
parameters chosen to control the data clustering algorithm. In reality,
there is a “continuous distribution” of particle compositions ranging
from those with mass spectra dominated by K (Figure 6.a) to purely
carbonaceous aerosol with mass spectra dominated by EC and OC
ions (Figure 6.d). The fundamental issue in correctly distinguishing

5The computation speed of NMF strongly varies, depending on the number
of data points (n), dimensions (m), and basis vectors (k), as well as the desired
quality of the factorization. A factorization of average quality by a prototypi-
cal implementation, written in Python using NumPy, runs several minutes for
n=1.000, m=256, and k=3, on standard off-the-shelf hardware. For larger data
sets, with n>200.000, the NMF routine can take several hours to converge.

  





Fig. 5. Using interaction techniques and filtering, atmospheric scientists
can analyze the factorization error in specific dimensions, investigate the
contribution of basis vectors to the mapping of the spectra. Initial results
of the factorization can be adjusted by setting new starting parameters
or thresholds for the optimization. Expert verification and steering aims
toward physically sensible factorizations and interpretable results.

these particle types is isobaric interference at m/z 39. Values in m/z
39 can represent K+ ions, C3H+

3 ions or some mixture of the two.
C3H+

3 ions are fairly ubiquitous in the mass spectra of carbonaceous
aerosol, and thus our ability to accurately separate biomass com-
bustion from other sources of EC/OC particles in ambient mixtures
resides almost exclusively in our ability to accurately determine the
relative contribution of these two ions to the signal intensity observed
at m/z 39. The progression of particle compositions shown in Figure
6 was designed in attempts to capture this issue. The presence of K
is unambiguous in Figure 6.a, and even Figure 6.b. As the ion signal
at m/z 39 decreases and becomes comparable to, and eventually less
than, the C+

3 signal (in Figures 6.c and 6.d), it is increasingly difficult
to unambiguously specify the presence of K in the particle. This is a
predominant issue as Figure 6.d is characteristic of what is generally
observed for carbonaceous particles from a variety of sources. As a
result, a significant amount of manual effort is expended making the
appropriate peak assignments necessary to distinguish between purely
EC/OC and biomass combustion particles. Unfortunately, this cannot
be done using the cluster-average mass spectra, such as those shown
in Figure 6, since the relevant clusters commonly contain a mixture
of both particle types and clustering obscures important details in
the spectra that assist the analyst when making the assignments.
Instead, the individual mass spectra comprising the clusters must be
inspected, interpreted and classified manually to obtain more accurate
source separations. This is extremely time-consuming and ultimately
based on the subjective interpretation of an expert analyst without a
fundamental mathematical underpinning.

In the following, we discuss the application of our method to (1)
the woodstove source sampling data from Pittsburgh, Pennsylvania,
discussed above and (2) ambient Rapid Single-ultrafine-particle Mass
Spectrometer (RSMS) data collected during a sampling campaign in
Fresno, California [2].
We evaluate this method based upon (i) accuracy in resolving K-
containing particles from EC/OC particles, (ii) efficiency in reducing
overall analysis time and (iii) the contribution of the visualization and
interactive elements in conducting, interpreting, and gleaning new in-
sight from the overall process. The woodstove source sampling ex-
periments offer a good basis to evaluate performance since the data
are already well-characterized while the Fresno campaign provides a
relatively unexplored and complex ambient data set to test the visual-
ization and interactive elements. The Fresno data is particularly well-
suited for this study since the two largest sources of particle pollution
in the area are vehicular emissions from local traffic and biomass com-
bustion emissions from residential heating and agricultural burning.
As a result, the composition of the air shed is a large external mixture
of internally mixed EC-, OC- and K-containing particles, as well as
components formed in the atmosphere by gas-phase photochemistry
and condensed on the particles, providing a very challenging environ-



Fig. 6. Single particle mass spectral representations of particle types
observed from biomass combustion in a wood stove during source sam-
pling experiments. Due to isobaric interference at m/z 39 (K+ / C3H3+),
a clear separation could not be achieved.

ment for resolving sources.
Results from the interactive analysis of the RSMS data collected

during the wood stove source sampling experiments are shown in Fig-
ure 7. Only those dimensions, or m/z values, relevant to resolving the
ambiguity in the presence of particulate K were included in the anal-
ysis: m/z 24 (C+

2 ), 27 (C2H
+
3 ), 36 (C

+
3 ), 39 (

39K+ / C3H+
3 ), and 41

(41K+ / C3H+
5 ). This ability to select dimensions of interest, rather

than analyzing the full m/z range of the data, is a strong feature of
the visualization interface and reduces both computational burden and
analysis time tremendously. The top panel of Figure 7 is a screen shot
of the visualization interface showing all of the data (fine lines) and
basis vectors (bold lines) identified during the factorization. It is im-
mediately clear in this figure that the algorithm does an excellent job
factoring out the K+ and C+

3 /C3H
+
3 signals and that these two basis

vectors model the data well. Also apparent is the fact that the solution
is slightly over-determined and the elements of the C+

2 basis vector
could have been incorporated into the C+

3 basis vector without any
loss of information. The major advantage of the visualization inter-
face is that this can be done interactively by removing the C+

2 basis,
adjusting the C+

3 basis vector lines to match the C+
2 and C2H+

3 sig-
nal evident in the data and then performing the optimization again.
This is a very useful and efficient way of analyzing these data. An
unexpected and highly interesting result is the apparent irrelevance of
the m/z 41 dimension. Previous efforts have been made to separate
biomass combustion and EC/OC particles based on the ratio of inte-
grated ion signal at m/z 39 to 41, and thus its inclusion in the analysis,
but with limited success. The underlying assumption is thatC+

3 /C3H
+
3

ratios are small compared to the larger values associated with the nat-
ural isotopic abundances of 39K and 41K. Further research shall be
conducted in this regard.
The bottom left panel of Figure 7 shows the projection of all data

points onto the K+ andC+
3 basis vector space. Again, the separation in

the data is strikingly clear with K dominant particles clustered in the
upper left-hand corner and EC/OC dominant particles in the bottom
right; these areas are circled in the figure. This interactive visualiza-
tion framework is very resourceful and the ability to interact with the
projection by highlighting individual data points, or clusters of points,
and inspecting the relative basis contributions to the selected points,
is invaluable to interpreting the results and understanding the structure
of the data.
To quantitatively separate K-containing particles from purely

EC/OC particles, the C+
3 basis vector was factored out of all data

points and the resulting data re-projected onto the K+ and C+
3 basis

vector space, as shown in the bottom right panel of Figure 7. The idea

Fig. 7. Top: Screen shot of the visualization interface showing re-
sults from factorization of the RSMS data collected during the PAQS
woodstove source sampling experiments. Bottom left: Projection of the
RSMS data onto the K+ and C+

3 basis space identified during factor
analysis. Bottom right: Projection of the RSMS data onto the K+ andC+

3
basis space after factoring out theC+

3 basis vector from the data; As can
be seen in the top figure, the focus for dimension reduction lies with in-
formation inC+

2 ,C
+
3 , and K+, and not inC2H+

3 orC3H+
5 . The factorization

minimizes the error in mapping K+ and C+
3 signals which corresponds

nicely to existing research stating that K+ is the major classifier in these
dimensions. Further, the spectra of K+ and C+

3 /C3H
+
3 particle classes

are separated automatically and accurate. In prior work, atmospheric
scientists have required months to obtain this result.

is that those data points showing near-zero contribution from the K+

basis vector are purely EC/OC particles while the above-zero points
are K-containing particles. Clearly, there is error in the overall fit of
the basis vectors to the data, as evidenced by points with negative K+

contribution, and this must be incorporated into the analysis. Using
the average residuals between the data points and basis vectors at m/z
39 shown as bright pink lines in the top panel of Figure 7 as an error
estimate for the factorization, a window centered about zero has been
drawn in the projection designed to separate purely EC/OC particles
from K-containing particles; note that the window fully encompasses
those points with negative contributions. Summing all points within
the window yields a value of 0.29 for the fraction of the total number
of particles sampled that are purely EC/OC particles. This result is in
nearly perfect agreement with the value of 0.32 obtained during the
manual analysis of all 7000 mass spectra [3].
Figure 8 shows results from the interactive analysis of the RSMS

data collected during the field campaign in Fresno. The same five di-
mensions were used and over 70,000 single particle mass spectra were
analyzed. Quite notably, this would not have been possible by man-
ual analysis. The optimization was initiated with three basis vectors
but interactively reconfigured to only two during analysis. The pro-
jection of all data onto the K+ and C+

3 basis vector space is shown in
the lower left panel and the clustering of the data points is very dis-
tinct and clear. A majority of the data appears to fall roughly along



a positively sloping line (circled in the figure), where the upper clus-
ter represents K-dominant particles and the K+ contribution decreases
down the line toward the lower cluster. A snap shot of the visualiza-
tion interface when the lower cluster of data points is highlighted is
shown in the top panel. The apparent weak contribution of both the
K+ and C+

3 basis vectors to this cluster is actually due to the preva-
lence of NO+ ions (m/z 30) in these mass spectra. The factorization
and visualization features do an excellent job resolving this particle
class, especially since m/z 30 was not included in the analysis. Purely
EC/OC particles cluster in the lower right-hand corner of the projec-
tion but are very sparse relative to the other particle types, and even
the results of the woodstove source sampling. This is also a highly
interesting and informative result but will not be addressed any further
here. Similar to the analysis above, the C+

3 basis vector was factored
out of all data points and the resulting data re-projected onto the K+

and C+
3 basis vector space (lower right panel). Again, an error esti-

mate based on residuals was used to create a threshold range about
zero to calculate a value of 0.06 for the fraction of the total number of
particles sampled that are purely EC/OC particles. A notable strength
of this particular interactive exercise was the ability to robustly differ-
entiate the presence of K+ versus C3H+

3 even in spectra where NO+

dominates the ion signal.

5.2 Expert evaluation

When processing high-dimensional data, paying attention to all the
dimensions is challenging, so it is crucial to provide the user with a
mechanism for appropriately reducing the dimension of the problem at
a minimum loss of information, as well as showing the user both which
dimensions are important and where information is lost. In the exam-
ple here, subtle differences between mass spectra can provide crucial
guidance for assessing and quantifying the source contributions to a
given air shed. Clustering algorithms may obscure these subtleties
reducing their usefulness. At some level, the involvement of an ex-
pert analyst is unavoidable but the burden of manually inspecting the
several hundred thousand mass spectra acquired during typical field
campaigns, or even a subset thereof, is unreasonable, time-consuming,
and largely subjective. A highly visual and interactive computational
platform for analyzing, characterizing and manipulating these data is
essential to these efforts. The emerging data visualization community
requires interdisciplinary collaborations to develop effective platforms
– the impetus for the current work.
The interactive visual framework developed here provides edu-

cated, mathematically rigorous suggestions, while leaving full control
and physical verification to the analyst. In this regard, both visualiza-
tion and interaction build trust in both the factorization method and its
implementation. These computations may identify large errors, which
must be conveyed to the analyst. While information loss may be un-
avoidable at some level, it is crucial to visualize exactly where this
loss occurs. Both the color coding and the error lines are helpful in
qualitatively interpreting the basis transformations related to potential
errors. Filtering spectra and basis vectors is intuitive and by merely
performing a few interactions, the dominant clusters of spectra are eas-
ily highlighted. This astonishing level of visual interaction with mass
spectrometry data has not been possible before, thereby introducing
both new and exciting research potentials.
While previous methods did not recognize important features

in the spectra, the factorization is much more facile at identifying
important commonalities and subtleties in the spectra. We were
able to reproduce established findings from the woodstove biomass
combustion measurements in a matter of hours, where prior work
took months. Also we were able to gain new insights from data
collected in Fresno that will be the focus of future investigations.
The factorized data is lower-dimensional and resolves isobaric
interferences verifiably so gives a considerably better starting point
for subsequent data processing, analysis, and visualization.

Fig. 8. Top: Screen shot of the visualization interface showing results
from factorization of the RSMS data collected during the field campaign
in Fresno, CA. Bottom left: Projection of the RSMS data onto the K+ and
C+
3 basis space identified during factor analysis. Bottom right: Projection
of the RSMS data onto the K+ and C+

3 basis space after factoring out
the C+

3 basis vector from the data; While K+ and C+
3 are captured and

separated well in the factorization, the projection by the basis suggests a
dominant cluster in the data that is not part of these two particle classes.
Further analysis shows that this is due to the prevalence of NO+ ions
(m/z 30) in these mass spectra.

6 CONCLUSION AND FUTURE WORK

We have presented a framework for dimension reduction of single par-
ticle mass spectrometry data that entails the use of visualization and
interaction in order to steer computations. Our work contributes to
the community of air quality research by providing novel means to re-
duce data dimensionality by physically correct and unambiguous basis
transformation. Thereby, we overcome limitations of previous meth-
ods that use dimension reduction as a black-box scheme and move to-
ward more physically sensible computing. By the utilization of specif-
ically tailored regularization terms, the presented non-negative matrix
factorization is capable of resolving ambiguity of the mass spectrum,
thereby, laying the groundwork for more reliable data clustering in air
quality research. As the expert evaluation shows, analysts are able
to reproduce known research results with great ease and speed by us-
ing our method. To the visualization community, we contribute well-
justified visual encodings, as well as novel interaction techniques that
aid in the visual analysis and verification of matrix factorization. Fu-
ture work work will be directed at improving the visual representation
of SPMS data by applying clutter reduction techniques from the field
of information visualization, as well as improving the runtime of ma-
trix factorization by large-scale parallel tensor multiplication.
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