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SUMMARY

To fully understand animal transcription networks, it
is essential to accurately measure the spatial and
temporal expression patterns of transcription factors
and their targets. We describe a registration tech-
nique that takes image-based data from hundreds
of Drosophila blastoderm embryos, each costained
for a reference gene and one of a set of genes of in-
terest, and builds a model VirtualEmbryo. This model
captures in a common framework the average ex-
pression patterns for many genes in spite of signif-
icant variation in morphology and expression be-
tween individual embryos. We establish the method’s
accuracy by showing that relationships between
a pair of genes’ expression inferred from the model
are nearly identical to those measured in embryos
costained for the pair. We present a VirtualEmbryo
containing data for 95 genes at six time cohorts. We
show that known gene-regulatory interactions can
be automatically recovered from this data set and
predict hundreds of new interactions.

INTRODUCTION

The output of animal transcription networks are dynamic, three-

dimensional patterns of gene expression. It is a major challenge

to decipher the transcriptional information encoded in animal

genomes to the point where we can model and predict such pat-

terns. Developing techniques that accurately characterize and

analyze gene-expression patterns in the context of changing

morphology is a critical step toward this goal.

Spatial patterns of protein and mRNA expression are being

systematically recorded by various approaches over a range of
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spatial and temporal resolutions in several animal systems

(e.g., Myasnikova et al., 2001; Tomancak et al., 2007; Kudoh

et al., 2001; Tassy et al., 2006; Visel et al., 2004; Lein et al.,

2007). These data sets, however, do not provide a comprehen-

sive quantitative description of gene expression in a whole de-

veloping embryo at the spatiotemporal resolution needed for

detailed computational modeling of animal-transcription net-

works in three dimensions. Perhaps the most comprehensive,

automated expression atlas construction effort to date is of

mouse brain imaged via serial sectioning and registered using

anatomical features (Lein et al., 2007). This approach, however,

currently yields relatively low temporal and spatial resolution

(along the sectioning axis) and limited quantitation of gene

expression.

To address the need for sufficiently high-resolution quantita-

tive spatial expression data, we have previously developed

methods, based on fluorescence microscopy, that measure rel-

ative concentrations of gene products in three dimensions over

an entire Drosophila blastoderm embryo at the resolution of indi-

vidual cells (Luengo Hendriks et al., 2006; Keränen et al., 2006)

along with tools for interactively visualizing such data (Rübel

et al., 2006; Weber et al., 2008).

A serious difficulty encountered in all current strategies for

quantitating spatially resolved gene expression, including our

own, is that it is not possible to label the expression of more

than a few gene products in a given animal or tissue (e.g., Kos-

man et al., 2004). Yet, even simple portions of animal-transcrip-

tion networks can comprise tens of regulators and hundreds of

target genes (e.g., Oliveri and Davidson, 2004). A single cis-

regulatory module (CRM) may often be bound by five, ten or

even more colocalized regulators (e.g., Yuh et al., 2001). There-

fore, to analyze how spatial and temporal changes in transcrip-

tion factors correlate with changes in expression of their targets,

it will be necessary to simultaneously compare the expression

levels of many more gene products than is possible with conven-

tional microscopy.
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Figure 1. Data from Hundreds of Individually Imaged Embryos Is Averaged into a Composite VirtualEmbryo

On the top panel, each individual embryo is stained for nuclei, a common marker gene (red) and a gene of interest (second color). In the center panel, within each

temporal cohort, the marker gene is used to guide spatial registration on to a morphological template; temporal correspondences between cohorts are provided

by a model of typical nuclear movements. On the bottom panel, once correspondences across embryos have been established, expression measurements are

averaged and composited to create a model VirtualEmbryo in which the expression of many genes can be analyzed.
In this paper, we present a computational technique that over-

comes this limitation by compositing independent expression

measurements made from images of hundreds of different em-

bryos into a common spatiotemporal atlas in which the average

expression patterns of many gene products can be studied si-

multaneously. Our technique involves two key components, out-

lined in Figure 1.The first is a spatial registration algorithm that

uses a reference gene-expression pattern common to all labeled

embryos to help identify equivalent corresponding cells or nuclei

across images of multiple embryos at the same stage of devel-

opment. The resulting correspondences are used to map

expression measurements for other genes, whose expression

was labeled in only a subset of embryos, onto a common model.

The second component is a temporal registration method that

uses a dynamical morphological template specifying the aver-

age positions and movements of cells or nuclei to provide corre-

spondences between nuclei in embryos imaged at different de-

velopmental time points (Figure 1). Once correspondences have

been established among embryos within and between cohorts,

expression measurements are combined into a single composite

model, termed a VirtualEmbryo, which describes the average

patterns of expression for many genes at multiple time points

(Figure 1).

In developing our method, we measured significant geometric

variability between individual embryos at the same developmen-

tal stage both in their size, shape, number, and positions of nu-

clei and in the locations of gene-expression patterns. We show

that our registration methods correctly take this geometric

variation into account by demonstrating that the VirtualEmbryo

accurately describes average patterns of gene expression pre-

sent in individual embryos. Finally, to establish the utility of this

comprehensive, quantitative, spatial expression data, we carry

out a statistical analysis for a set of 17 regulatory factors and
95 target genes that recovers many known regulatory interac-

tions from the literature and predicts many new ones.

RESULTS

Data-Acquisition Pipeline
Our previously established methods were used to obtain quanti-

tative measurements of gene expression in individual embryos

(Luengo Hendriks et al., 2006). Briefly, embryos were fixed and

fluorescently stained to label the mRNA expression patterns of

two genes and nuclear DNA. One of the genes labeled was either

eve or ftz, which were used as fiduciary markers for subsequent

spatial registration. Embryos were manually staged into one of

six temporal cohorts and imaged by two-photon microscopy.

Using the DNA marker, the location and extent of each blasto-

derm nucleus was automatically determined, and its 3D location

was recorded along with the average fluorescence levels of the

two genes in the nucleus and surrounding cytoplasm. The result-

ing data structure, which we call a PointCloud, was generated for

1822 embryos, including 95 genes and spanning the 50 min prior

to the onset of gastrulation.

Spatial Registration of PointClouds
Analysis of the PointCloud data suggests that even embryos at

approximately the same developmental stage vary quite signifi-

cantly in their size, shape, number, and distribution of nuclei, and

in the relative spatial locations of gene-expression patterns (e.g.,

Figure 2). This geometric variability in the data describing individ-

uals must include true biological variations among embryos

as well as measurement errors and physical deformations

introduced by our methods.

For example, the PointCloud data showed that the embryos

imaged ranged in overall egg Length from 301 mm to 502 mm
Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc. 365



Figure 2. Variations in Blastoderm Size, Number of Nuclei, and Gene-Expression Stripe Locations between Embryos

(A and B) Scatter plots in which embryo length (A) and surface area (B) are both correlated with the number of nuclei (y axis), demonstrated here with a linear fit (red

line). Because experimental errors in nuclear count should not correlate with errors in determining surface area or egg length, these correlations likely represent

true biological variability among embryos.

(C and D) The variability in the location of ftz gene expression stripe locations before (C) and after (D) embryos are scaled to the average cohort egg length just prior

to gastrulation (stage 5:75%–100% cell-membrane invagination). The plots are orthographic projections in which the anterior of the embryo is to the left, the

dorsal midline to the top, and the center of mass of the embryo is at the origin. Each line specifies the average stripe boundary location with error bars showing

one standard deviation in the A-P coordinate. Prior to scaling embryos to a common length, standard deviations for ftz stripe locations are as large as 11.1 mm, or

62% of the average ftz stripe width. After scaling by egg length the variation is reduced but is still significant (std dev up to 5.4 mm, or 30% of average stripe width).
(mean = 398 mm, standard deviation = 29.4 mm). Although some of

this size variation certainly results from the fixation, staining, and

mounting procedures the embryos were subjected to, much of it

likely represents true biological variation since egg length and

blastoderm surface area showed a marked correlation with the

total number of peripheral nuclei (r = 0.62 and r = 0.64, Figures

2A and 2B). While our counts of nuclear number (which exclude

yolk nuclei and pole cells) are also subject to some small error

on the order of a few percent (Luengo Hendriks et al., 2006), these

errors are too small to explain the measured variation and should

not correlate with egg length or surface area. Thus, significant bi-

ological variation in the shapes of individual embryos must exist

prior to any experimental manipulation. Indeed, the variation in

embryo size we measured is comparable to reports for embryos

that have not been fixed and stained (Warren, 1924; Azevedo

et al., 1996), and our automated counts of nuclei number are com-

parable to those derived from manual counting of nuclei in a few

embryos (Zalokar and Erk, 1976; Turner and Mahowald, 1976).

Such large geometric variation makes comparing gene ex-

pression among individuals nontrivial, as some technique more

sophisticated than simply overlaying embryos is required to

identify equivalent corresponding cells in different embryos. Un-

like the adult animal, the blastoderm lacks distinctive morpho-
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logical features that identify particular cells or tissues. Instead,

nuclei are primarily distinguished by the expression levels of

transcription factors and other regulators that control develop-

ment, including the genes whose expression we measured.

Therefore, our spatial registration method seeks to identify

corresponding nuclei in different embryos, which have similar

gene-expression profiles.

To perform spatial registration, we first use data from all Point-

Clouds in each temporal cohort to build a morphological tem-

plate with a fixed number of nuclei arranged to match the aver-

age measured nuclear distribution and mean embryo shape.

The template also specifies the mean locations of the ftz and

eve marker gene-expression boundaries (Figure 1). We compute

a smooth deformation of each individual PointCloud to warp

both the extracted marker gene boundaries and the overall

PointCloud shape into alignment with the template (see Figure 3).

For each nucleus, a best match in the template is identified, es-

tablishing correspondences for all cells across all embryos in the

cohort. Once detailed correspondences among embryos have

been found, estimates of the average locations of marker genes

specified in the template are refined and the spatial registration

process repeated until further iterations provide no significant

changes in the correspondence.



An initial estimate of the deformation required to bring Point-

Clouds of a given cohort into register with the template was com-

putedby automatically identifying the anterior-posterior (A-P) axis

and scaling the PointClouds to the average egg length for that co-

hort. To establish the dorsal-ventral (D-V) orientation, the location

of the ventral midline was judged by eye using gene expression

and morphological markers. While this coarse alignment step

did bring the embryos into closer alignment, factoring out gross

variations in overall size, significant differences remained in the lo-

cations of expression patterns, as well as residual differences in

PointCloud shape and the distribution of nuclei. For example, Fig-

ures 2C and 2D shows the standard deviation in the A-P locations

of ftz expression boundaries before and after scaling embryos to

the average egg length. Measuring expression boundaries with

respect to egg length removes up to half the apparent variability

in some stripe boundary locations, but standard deviations after

scaling are still near 30% the average stripe width.

To factor out this remaining nonrigid geometric variation, we

next carried out a fine registration step in which the embryos in

each temporal cohort were warped onto the morphological tem-

plate using automatically detected boundaries of either ftz or eve

expression domains as markers (Figure 3; see Experimental Pro-

cedures). Once all PointClouds had been warped into alignment,

each nucleus in the morphological template was matched to the

nearest PointCloud nucleus. This many-to-one matching, which

allowed multiple nuclei in the template to correspond to the same

detected nucleus, is appropriate since the total number of nuclei

varies across embryos.

The warping of individual PointClouds during fine registration

not only establishes more accurate correspondences between

cells, but also provides an estimate of the geometric variation

among PointClouds, excluding that component due to isotropic

Figure 3. Fine Registration and Compositing Expression Values

A marker gene-expression pattern (red) is used to identify corresponding nu-

clei in different embryos and perform fine spatial registration. Each individual

PointCloud is warped to bring extracted marker gene boundaries (red lines)

into alignment with a standard morphological template (black lines). Individual

per-nucleus measurements (here both red and green) are then composited

onto the template to produce an estimate of average expression.
variation in size which was removed by coarse alignment (see

Figures S1 and S2).

Registration between Temporal Cohorts
To track the temporal dynamics of gene expression, it is neces-

sary to estimate correspondences between the nuclei in succes-

sive temporal cohorts. While there are no nuclear divisions

during the 50 min period spanned by our cohorts, expression

patterns of eve, ftz, and many other genes move relative to the

lattice of nuclei, and thus marker gene boundaries cannot be

used to identify corresponding nuclei over time (Keränen et al.,

2006). Furthermore, based on nuclear tracking in live imaging

and nuclear density measurements from fixed material, we found

that nuclei flow from the anterior and posterior poles toward the

dorsal surface while elongating basally (Keränen et al., 2006).

Previous models of the Drosophila blastoderm have tacitly as-

sumed that a unique spatial coordinate identifies the same cellu-

lar/nuclear location at different times (e.g., Jaeger et al., 2004).

Our results clearly indicated this assumption is not valid as local-

ized contractions or expansions of the blastoderm surface mean

some nuclei consistently travel as far as three cell diameters

during stage 5 (Keränen et al., 2006).

To take these nuclear movements into account in establishing

correspondences across cohort templates, we developed

a method to infer nuclear movements from fixed material

(Fowlkes and Malik, 2006). The average embryo shape and nu-

clear density pattern from each cohort was used to constrain

a numerical model that predicted the direction and distance

each nucleus needed to move through space to account for the

measured changes in density and shape between cohorts. The

resulting morphological template time series, which specified

the locations of 6078 nuclei for each of the six temporal cohorts,

was used for spatially registering and compositing expression

data as described above. This provided the needed correspon-

dences between nuclei at different time points.

Compositing Expression Levels onto the VirtualEmbryo
Before averaging expression levels for each gene onto the mor-

phological template, it was necessary to put fluorescence mea-

surements from different embryos onto a common scale. While

our data provide an accurate measure of relative mRNA expres-

sion levels of a gene within an individual embryo (Luengo Hen-

driks et al., 2006), our methods result in variation in the absolute

fluorescence between different embryos. In particular, the abso-

lute degree of fluorescence varied significantly across embryos

stained in different batches, presumably due to variable reaction

time, efficiency, and other experimental artifacts.

To mitigate this error, we normalized mRNA expression levels

for each gene across multiple batches and then averaged peak

expression levels for each gene across all embryos within each

temporal cohort to estimate the degree of total up- or downregu-

lation between cohorts (see Experimental Procedures). As Fig-

ure S3 shows, the relative temporal changes in averaged fluores-

cence levels measured for each gene were reasonably consistent

across staining batches. These expression time courses

matched general expectations based on other data, suggesting

that absolute differences in fluorescence provide a useful esti-

mate of relative changes in expression levels between cohorts.
Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc. 367



To remove any remaining differences in the quantitation of

each gene between embryos within a cohort, we chose a scale

and offset for each embryo that minimized the average standard

deviation in expression between embryos, subject to the con-

straint that the maximum average expression level matched

the estimated time course. The scaled expression data for

each gene from each PointCloud was then transferred to the

corresponding nuclei in the appropriate cohort template and

averaged together.

A Spatiotemporal Atlas of Gene Expression
The result of registration and compositing is a VirtualEmbryo that

describes the average dynamics of gene expression and mor-

phology in the blastoderm. Figure 4 shows example lateral views

of the final average expression patterns recorded in the Virtua-

lEmbryo for several genes displayed in cylindrical projection.

Figure S4 shows the complete set of mRNA patterns for 95 dif-

ferent genes estimated from 1822 embryos and over 11 million

cells. The genes analyzed include many known early acting tran-

scription factors that specify patterning prior to gastrulation in

Drosophila. For 23 of these factors, we have combined mRNA

data from 25 or more embryos spanning the entire 50 min leading

up to gastrulation. For the remaining 72 genes, which are known

or putative targets of these early transcription factors, we have

collected mRNA data from a smaller number of embryos, primar-

ily in the three temporal cohorts just prior to gastrulation.

In addition to the average description present in the Virtual-

Embryo, we also provide the individual raw PointClouds, files

recording the nuclear correspondences identified between each

individual PointCloud and the VirtualEmbryo, and associated

metadata. We refer to this comprehensive data set as a ‘‘gene-

expression atlas.’’ Our VirtualEmbryo and the initial atlas release

are publicly available through a web-based interface hosted at

http://bdtnp.lbl.gov. We also provide a comprehensive visualiza-

tion tool for examining relationships between different gene-

Figure 4. Examples of Average Temporal

Patterns of mRNA Expression Recorded in

the VirtualEmbryo for Several Gap (kni,gt,hb)

and Pair-Rule (eve,ftz,slp1) Genes

Temporal cohorts, staged by percent membrane

invagination, are arranged from left to right with

each row corresponding to a different gene. Each

rectangle shows a lateral view of the blastoderm in

a half-cylindrical projection with the dorsal midline

at top, the ventral midline at the bottom, and ante-

rior to the left (see also Figures S4, S5, and S6).

expression patterns (Figures S6 and S7)

(Rübel et al., 2006; Weber et al., 2008).

Evaluating Registration Accuracy
It is nearly impossible to judge by eye if

the correspondence we have determined

between nuclei in two different embryos

is ‘‘correct,’’ as most blastoderm nuclei

lack any identifying morphological fea-

tures. Since our method for determining

correspondences is based on finding equivalent nuclei using

gene-expression data, one objective criterion we have used to

evaluate registration accuracy is to measure the extent to which

nuclei from different individuals identified as corresponding have

similar expression profiles. A second evaluation criterion we

have used is to measure how accurately the mean expression

data in the VirtualEmbryo captures the relationships between

transcriptional regulator and target gene-expression patterns,

as compared to individual embryos directly costained for the

target and the regulator. We describe both approaches below.

Registration Decreases the Apparent Variation
in Expression between PointClouds
First, we examined the effect of registration on the apparent var-

iation in expression levels for reference and nonreference genes.

Figures 5A and 5B shows the mean and standard deviation in ex-

pression levels at a given time point (stage 5: 50%–75%) for three

different genes along a lateral A-P strip (n = 100, 25, and 8 em-

bryos for ftz, slp1, and gt, respectively). For comparison, the var-

iation in expression is plotted when nuclear correspondences

have been determined by coarse alignment alone, i.e., assuming

nuclei at the same relative spatial location along the A-P axis

correspond (Figure 5A). We quantified the apparent interembryo

variation in expression for each gene in a cohort by averaging

the standard deviation across all corresponding nuclei in each

PointCloud containing data for the gene (Figures 5A and 5B, top

right of each panel; Table S1). The apparent interembryo variation

is lower when correspondences are derived from fine registra-

tion rather than coarse alignment alone. Furthermore, after fine

registration, our estimates of the average patterns become less

‘‘blurry’’ and more like those observed in individual embryos, par-

ticularly for highly modulated pair-rule patterns (e.g., ftz and slp1).

The decrease in apparent variability of our registration marker

(here, ftz) suggests that our fine registration accurately identified

corresponding ftz boundaries and warped them into alignment.
368 Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc.
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Figure 5. Fine Registration Removes Measured Interembryo Geometric Variability and Produces Average Regulatory Relationships

Comparable to Those Measured in Individual Costained Embryos

(A and B) The mean and standard deviations for anterior-posterior expression profiles taken from a lateral strip before (A) and after (B) fine registration for three

genes: ftz (n = 100), slp1 (n = 25) and gt (n = 8). The interembryo variability decreases significantly with fine registration, both for the marker gene (ftz) but also for

‘‘held out’’ expression patterns (slp, gt). Inset numbers for each gene give the standard deviation averaged over the entire embryo.

(C) The coexpression of gt and eve near the dorsal surface along the anterior edge of eve stripe 2 in embryos costained for eve and gt (n = 47).

(D) The regulatory effect of gt on eve (2) inferred from costained (blue curve) embryos by binning nuclei based on the expression level of gt and computing the

mean and standard deviation of eve expression for each bin. The red and green curves show the regulatory relation estimated by sampling pairs of nuclei in similar

spatial locations after coarse alignment (red) and fine registration based on eve (green).

(E) The regulatory effect inferred from nuclei in different batches of embryos stained for either eve (n = 35) or gt (n = 28), which were identified as corresponding

based on coarse alignment (red) or fine registration (green) using ftz. The costain estimate (blue curve) is repeated for comparison. The inferred relation based on

registered embryos is quite close to the true coexpression measured in costained embryos. The variation in the regulatory relation across embryos in the virtual

coexpression estimate is significantly smaller than the coarse registration and is nearly as small as the lower bound set by the level of variability quantified in

individuals.
More importantly, the apparent interembryo variation also de-

creased for ‘‘held out’’ expression patterns (e.g., slp1 and gt),

which were not used during the fine registration process, indicat-

ing that registration makes good predictions about how all nuclei

should be shifted based only on how the nuclei near ftz or eve

boundaries are shifted. Table S1 shows the change in apparent

variability between coarse alignment and fine registration for 23

early factors. The decrease in variation holds true for most of

these genes and time points. One general exception is D-V

patterning genes, suggesting that the precise locations of D-V

expression boundaries are fairly uncorrelated with our A-P

registration markers.

While this analysis shows that fine registration yields better

correspondences than coarse alignment alone, it does not

address what fraction of the remaining variation in expression
between individuals after fine registration is due to remaining

geometric variability and what fraction is attributable to nongeo-

metric causes. Even a perfect registration algorithm would nec-

essarily leave behind some variability due to measurement error

in expression levels or genuine variability in the response of tar-

gets to their regulators (Gregor et al., 2007). If we could deter-

mine the amount of such nongeometric variability, this would

provide a bound on how much, if at all, our registration algorithm

could be further improved.

To experimentally establish a baseline on the nongeometric

variability measured among embryos, we directly estimated

the relation in expression levels between pairs of genes in indi-

vidual embryos costained for both genes. This measurement is

invariant to spatial deformations of the individual embryos, so

any variability measured in the coexpression across costained
Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc. 369



embryos must arise from nongeometric sources. We can directly

compare the variability in this relation to that inferred by register-

ing data from pairs of embryos in order to judge how much geo-

metric variability remains after registration.

Figure 5C shows the relation in expression levels of eve and gt

within a three-cell-wide lateral strip at the anterior boundary of

eve stripe 2 in embryos costained for both eve and gt. Each point

in the plot gives the joint expression level measured in a single

nucleus from 1 of 44 embryos at stage 5:9%–75%. It is known

that gt plays a key role in determining the anterior boundary of

eve stripe 2. This regulatory relationship is revealed in the tight

anticorrelation between the two genes’ expression in this part

of the embryo (Figure 5C). The blue curve in Figure 5D shows

the average relation between the two factors estimated by bin-

ning nuclei based on the level of gt expression and then comput-

ing the average level of eve for each bin. The variability in the re-

lation between the two genes was quantified by computing the

standard deviation for eve expression in each bin. We measured

a maximum standard deviation of 0.21 (relative to a maximal eve

expression of 1). This measure of local variability is comparable

in magnitude to similar measurements made on the relation of

bcd and hb (Gregor et al., 2007). Because this variation is mea-

sured within individual embryos, it cannot be due to geometric

variation and thus is not removable by our registration method.

Instead, this variation is likely due to some combination of vari-

ability in the regulation of eve by gt, spatial variations in other un-

measured regulatory factors that also influence eve expression,

and error in our measurements of mRNA concentrations.

Having set an upper bound for nongeometric variation, we

then used the costained embryo data to quantify the effect of

geometric variation between embryos on the apparent relation-

ships between regulator and target expression in coarsely regis-

tered embryos. Pairs of costained embryos were selected at

random, and the level of eve in one nucleus was compared to

the level of gt in a nucleus at a corresponding spatial location

in the other embryo. The red curve in Figure 5D shows that the

resulting estimate of coexpression in coarsely aligned embryos

is significantly different from that derived from individual

costained nuclei with much greater apparent variability. In contrast,

for pairs of nuclei from different embryos identified as corre-

sponding by the fine registration process (using eve as the refer-

ence), the resulting curve (green in Figure 5D) is very similar to the

direct costain curve and has small apparent variability. This

implies that while the exact location of eve stripe two varies sig-

nificantly from one embryo to the next (similar to ftz in Figure 2),

the pattern of gt is shifted in a correlated manner. Table S1,

which specifies the change in the apparent variability of individ-

ual genes before and after fine registration thus characterizes

the extent to which expression patterns of individual genes are

correlated with those of our registration markers.

Expression Relationships Are Similar in Costained
Embryos and Registered PointClouds
Since most genes are spatially correlated with our registration

marker in individuals, this suggests that the composite Virtua-

lEmbryo data should accurately capture average regulatory rela-

tionships between individual genes. We verified this experimen-

tally as displayed in Figure 5E, which shows the coexpression
370 Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc.
levels for eve and gt estimated from a VirtualEmbryo constructed

using embryos stained for either eve and ftz or gt and ftz and reg-

istered on ftz. As the green curve in Figure 5E shows, even

though gt and eve are never observed in the same embryo, the

mean functional relationship inferred from the virtual coexpres-

sion measurements is quite close to that inferred from costained

embryos. The resulting average estimate deviates from the cos-

tain estimate by less than 7% of the maximum expression level

and has a maximum standard deviation of 0.30. In contrast,

coarse alignment alone yields an average relation with a different

shape (red curve, Figure 5D) and larger variability (max standard

deviation = 0.36). Further analysis suggests our estimates of the

variability remaining after registration may be quite conservative

(see Supplemental Data).

In summary, the results of testing our two evaluation criteria

suggest that the registration process successfully factors out

a large fraction of the geometric sources of variability, leaving

an average estimate of expression which is quite close to that

measured in individual embryos.

Inferring Regulatory Interactions from Spatiotemporal
Expression Data
One of our chief motivations for developing the blastoderm ex-

pression atlas is to help determine which transcription factors

regulate which target genes. Expression patterns of regulators

frequently correlate, at least in some portion of an animal, with

those of their target genes. For example, the anticorrelation of

gt expression with the anterior border of eve stripe 2 described

previously (Figure 5). In principle, it ought to be possible to infer

regulatory relationships by searching for such correlations. While

such inferences cannot be taken on their own to indicate that

a transcription factor directly binds and regulates a target

gene, when combined with other classes of data such as ge-

nome-wide in vivo binding data and in vitro DNA specificity

data, they should provide a significant constraint on possible

models for the regulatory network.

To demonstrate the utility of the composite expression atlas for

inferring regulatory interactions, we performed a regression anal-

ysis to predict regulatory interactions based solely on the spatial

expression data. For each of the 95 genes contained in the atlas,

we searched for a small set of regulators that best predicted that

target gene’s spatiotemporal dynamics. Because the individual

components of blastoderm expression patterns (e.g., each

stripe) are often controlled by distinct cis-regulatory modules

(CRMs) (e.g., Clyde et al., 2003), we automatically segmented

each target output pattern into individual expression domains

and fit each such ‘‘module’’ independently, assuming that ex-

pression elsewhere was zero. This let us use a simple form for

the regulatory function (see Experimental Procedures), while still

allowing, for example, KR to repress eve stripe 5 but activate eve

stripe 3. To limit the effects of overfitting, we selected the best

6 regulators from a pool of 17 known early-acting transcription

factors by exhaustive feature selection, choosing that set of 6

regulators that best predicted the each target module pattern

(largest R2). Because protein expression patterns differ both spa-

tially and temporally from mRNA expression patterns, we either

used measured protein expression data (for BCD, HB, GT, or

KR, see Figure S5) or inferred the protein patterns from their



Figure 6. Regulatory Relationships Inferred from Composite Spatiotemporal Expression Data

(A) The coefficients for each of 17 regulators (columns) determined by fitting each target eve stripe (rows). Each row contains six nonzero entries corresponding to

the selected regulators, which best predict the spatiotemporal expression of that target. Green indicates activation, red indicates repression, black indicates no

interaction. The right-most column indicates the constant offset b. Quality of fit (R2) values are specified in brackets.

(B) The coefficients for the individual components of the gap gene gt, ordered by A-P location.

(C) The distribution of R2 fit values for all ‘‘modules’’ in the atlas (see Figure S6).
mRNA expression based on a fixed temporal delay of two cohorts

(roughly 16 min).

Figures 6A and 6B shows the regression coefficients of each of

17 regulators (columns) determined by the fitting process for

each target eve and gt stripe (rows). Green indicates predicted

activators, red indicates repressors, and black indicates unused

regulators (zero entries). Figure S8 shows similar fits for all 238

modules of the 95 genes in the atlas, and Figure 6C summarizes

the distribution of R2 values for all modules.

Broadly speaking, the R2 goodness-of-fit values demonstrate

that we can fit much of the expression data quite well with our

relatively simple linear model. Of the 238 modules, 202 (85%)

were fit with an R2 value of 0.5 or greater. This suggests that

this small set of 17 regulators contain enough spatial information

to generate the wide variety of cell-expression profiles that are

apparent by the end of stage 5.

In addition, the regression analysis contains many correct pre-

dictions. For example, the analysis correctly predicts HB as an

activator of eve stripe 2 and KR, KNI, and GT as repressors

(Small et al., 1992; Arnosti et al., 1996). Similarly, for gt stripe

5, the analysis correctly predicts repression by HB and Hucke-

bein (Eldon and Pirrotta, 1991). Interestingly, the analysis also
predicts regulation of A-P target genes by D-V regulators. For

example the gt stripes clearly have a D-V pattern, which is picked

out by the regression (regulation by SNA and BRK).

Not surprisingly, this model also has some clear failures. For

example, BCD does not appear as an activator in many cases,

including for one of its best-characterized targets, eve stripe 2.

This is not surprising, since the analysis favors regulators whose

protein expression changes sharply near boundaries of the tar-

get pattern, while BCD has a graded expression pattern. Another

limitation is that the expression modules that we automatically

identified may not correspond to the output of distinct CRMs.

For example, in eve, stripes 4 and 6 are both controlled by the

same regulators acting via a single CRM and stripes 3 and 7

both by another CRM (Clyde et al., 2003). This may in part explain

the relatively poor quality of fits in Figure 6A to these stripes.

Finally, the comparison of the regression-analysis predictions

to results in the literature underlines the well-known difficulty in

correctly divining regulatory interactions within this complex net-

work. For example, our analysis predicts SLP as a regulator of

several gt stripes, and yet in slp loss-of-function mutant em-

bryos, gt expression is not affected (Eldon and Pirrotta, 1991).

Such loss-of-function genetic experiments, however, cannot
Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc. 371



rule out the possibility of functionally redundant regulatory in-

teractions, as revealed in other cases by more detailed experi-

ments (e.g., Laney and Biggin, 1996), and thus cannot disprove

predictions of our regression analysis. This and other complex-

ities of the system suggest that picking apart network interac-

tions will ultimately require careful consideration of multiple

data sets.

DISCUSSION

Our work establishes a spatiotemporal quantitative atlas of gene

expression and morphology for a whole embryo at cellular reso-

lution. By using registration to bring quantitative gene-expres-

sion data for many genes into a common spatiotemporal frame,

our methods open the way for quantitative analyses of the large

networks of interactions between developmental regulators and

their targets.

Accuracy of Registration
In general, registration techniques are designed to establish cor-

respondences by factoring out a certain class of variations be-

tween individuals (typically geometric variation in, for instance,

size and shape) while maintaining other variations of interest.

Characterizing the performance of a particular algorithm, how-

ever, is conceptually difficult since the actual nature of the vari-

ations under study is seldom known in advance. Our analysis

suggests that the registration method presented here comes

close to separating geometric variability from the regulatory

variability with which promoters in different cells respond to sim-

ilar concentrations of transcription factors, at least to within the

accuracy afforded by our measurement techniques. Factoring

out geometric variability will be important in isolating and charac-

terizing differences in regulatory mechanisms, both within and

between closely related species.

Our results suggest that the registration procedure yields a

VirtualEmbryo containing average expression data that are

nearly as accurate as could be obtained from averaging directly

costained embryos and is thus sufficient for many types of

analyses of regulatory interactions. Such ‘‘virtual multiplexing’’

makes it practical to examine the relations in expression be-

tween any subset of genes without directly costaining embryos

for all possible pairs.

Variation between Individuals
By identifying corresponding cells, our method allows the direct

comparison of the locations and expression profiles of homolo-

gous cells in different individuals. This provides a computational

tool for understanding biological variability arising from genetic,

environmental, and stochastic sources within a population.

Indeed, as a natural outcome of the development of our registra-

tion method, we have already measured several important

aspects of variation between individual blastoderm embryos. Al-

though some of the variation measured must represent experi-

mental error, as discussed earlier, a significant percent of the

measured differences clearly reflect real biological differences

between embryos.

For example, we have estimated a quantitative upper bound

on the degree of regulatory variability in the relationship between
372 Cell 133, 364–374, April 18, 2008 ª2008 Elsevier Inc.
gt and its repression of the target CRM eve stripe 2. The values

we measure are largely consistent with the earlier work of Gregor

et al., who made a similar estimate for the variability in HB protein

concentration as a function of BCD (Gregor et al., 2007).

We have also provided analogous upper bounds on the de-

gree of geometric variability. In particular, we discovered there

is a significant correlation between the number of nuclei and

size of the embryo. Although this has not previously been

reported, it is consistent with earlier results from embryo ligation

experiments, suggesting that the number of nuclei and nuclear

divisions are determined by some mechanism that senses local

nuclear densities (Edgar et al., 1986). It is also consistent with the

result of manipulation experiments in echinoderm and vertebrate

embryos that suggest the ratio of cytoplasm to nuclear material

regulates the number of cells at the midblastula transition

(reviewed by Edgar et al., 1986). Our extensive measurements

imply that among wild-type embryos that have not been ex-

perimentally manipulated, even modest changes in egg size

likely influence the number of nuclear divisions/nuclear loss

events.

Predicting Regulatory Interactions from Comprehensive
Spatiotemporal Expression Data
The closest work to ours is that of Myasnikova et al. (2001) and

Spirov et al. (2002), who registered spatial profiles of protein con-

centrations along the A-P axis of the Drosophila blastoderm us-

ing images of the lateral surface of embryos, which had been flat-

tened before imaging. While their data only provides a 1D picture

that largely disregards the blastoderm morphology, it has been

widely adopted for use in modeling pattern formation due to its

quantitative nature (e.g., Janssens et al., 2006; Ludwig et al.,

2005). Our approach expands this quantitative picture of pattern

formation with an explicit description of changing morphology

and comprehensive coverage of many more spatially patterned

genes, in full 3D.

We have demonstrated a technique for analyzing such 3D spa-

tiotemporal expression data in order to uncover regulatory rela-

tionships between transcription factors and their targets. While

our model of regulation is intentionally quite simple, it is capable

of explaining many target patterns quite well with only a few reg-

ulators (as witnessed by high R2 values for most of the targets).

We are also able to recover many interactions proposed in the

literature. While our model does not capture many potential sub-

tleties of regulation such as cooperative or competitive interac-

tions between multiple bound factors, posttranscriptional and

translational control mechanisms, phosphorylation, etc., clearly

it could be extended and made more accurate by including these

processes (e.g., Clyde et. al., 2003; Struffi et. al., 2004).

Our long-term goal is to construct high-fidelity VirtualEmbryos

containing protein and mRNA expression data for thousands of

genes with the quantitative accuracy necessary to provide firm

grounding for a new generation of developmental models that

take into account features such as 3D diffusion and transport,

nuclear movement, and interaction between A-P and D-V pat-

terning systems. The availability of accurate 3D quantitative

data at cellular resolution should provide far more constraints

on potential models of the regulatory structures underlying

animal development.



EXPERIMENTAL PROCEDURES

Imaging Individual Embryos

Individual embryos were fixed and fluorescently stained to label the mRNA

and/or protein expression patterns of two genes and nuclear DNA, mounted

on microscope slides and imaged using protocols in Luengo Hendriks et al.

(2006). Additional antisense RNA probes were generated from PCR products

of cDNAs in Drosophila Gene Collection I and Drosophila Gold Collection (for

the list of used probes, see the online database at http://bdtnp.lbl.gov). For

protein stains, the primary rabbit antibodies against BCD, KR, and GT were

generated by BDTNP; the guinea pig antibodies against HB and KR were

gift from J. Reinitz. The primary antibodies were detected using Alexa546-,

Alexa555-, or Alexa610-conjugated secondary antibodies (Molecular Probes,

1:500).

Spatial Registration

For each temporal cohort, we used the template consisting of eve or ftz stripe

boundary points sampled on a cylindrical grid at each of the 14 stripe bound-

aries and 40 points uniformly spread in angle around the D-V axis. We ex-

tracted edges of each reference gene pattern in cylindrical coordinates by

finding local maxima in the response of an anisotropic Gaussian derivative fil-

ter, which was elongated by a factor of three along the D-V direction. At a fixed

threshold, this filter typically detected all the stripe boundaries but also yielded

some outliers and an occasional missed detection due to variability in the

staining.

To deal robustly with these errors, we performed an optimization along each

of 40 A-P strips to match the 14 stripe boundaries in our template with the

edges in the PointCloud. This 1D alignment between the template coordinates

and the detected edges was carried out using dynamic programming on a cost

function that depended on the polarity of the edge being matched (whether it is

the anterior or posterior edge of a stripe) and the total displacement necessary

to align the model along the strip. While this enforced consistency of matches

along the A-P axis (e.g., two stripes in a template cannot be matched to the

same stripe in the embryo), neighboring A-P strips could still be inconsistent.

Before estimating a warping, we performed a postprocessing step using

a global quadratic cost to prune matches that were inconsistent with their

neighbors in either the A-P or D-V directions (see Supplemental Data).

Modeling Deformations

We modeled deformations using the regularized thin-plate spline (TPS)

(Duchon, 1977; Wahba, 1990). The TPS describes a smooth warping

u : R3/R3 that maps detected boundary points smð1Þ; smð2Þ; smð3Þ.g
�

to their

respective targets in the template t1; t2; t3.g
�

. We treat each coordinate of the

function u = ðu1; u2; u3Þ separately, and solve for the regularized multivariate

spline that minimizes the functional:

JðuiÞ=
X

j

kuiðsmðjÞÞ � tj
ik

2

+ l
X3

j; k; l = 1

Z�
v3uiðxÞ

vxjvxkvxl

�2

dx

Although ui is infinite-dimensional, the optimal solution can be specified in

closed form with coefficients given by the solution of a compact system of

linear equations (Wahba, 1990).

The regularized TPS provides a free parameter l that trades off the fidelity of

the warping u at the marker points with the smoothness of the interpolation

throughout the remainder of the embryo. We set this parameter by crossvali-

dation, choosing the value that minimized the apparent interembryo variability

on nonmarker genes. We also used this same validation technique to compare

TPS to other deformation models. For example, we found that TPS removed

10%–20% more variability than Gaussian radial basis function splines at the

optimal parameter settings.

Normalizing Expression Levels

Our analyses assumed that the total expression level of a gene was the same

between embryos in the same cohort, and that the fluorescence levels mea-

sured in different batches were related by a single multiplicative factor. We

used embryos from different developmental time points that were fixed and

hybridized in a single batch in order to estimate the temporal progression of
the 99th percentile expression level. When more than one hybridization was

available for a given gene, we estimated a scale parameter for each batch in

order to minimize the squared error relative to the mean. Since the absolute

expression level between different genes is not calibrated in a meaningful

way, we scaled expression so that the maximum average expression recorded

for each gene over the entire time interval was 1.0. These scaled measure-

ments were smoothed using Gaussian process regression (Rasmussen and

Williams, 2006) to yield the expression time courses plotted as dotted lines

in Figure S3. We used a squared exponential covariance function with charac-

teristic length scale of 3 cohorts (roughly 30 min) and independent noise model

with standard deviation of 0.3. Once the max expression level for each gene

and cohort was estimated, a gain and offset was chosen for each embryo

that minimized the variability within the cohort while matching the time course

max.

Fitting Regulatory Functions

In our regression experiments, we used a generic form for the regulatory func-

tion F consisting of a sigmoid applied to a linear combination of transcription

factor concentrations

FðP j a;bÞ= 1

1 + eaT P + b
;

where P is the vector of protein concentrations and a,b are model parameters.

The sigmoid provides a saturating, nonlinear response that constrains the tran-

scription rate to lie between 0 and a maximum (scaled to 1) and can be moti-

vated in part from thermodynamic considerations (Mjolsness, 2007; Bintu

et al., 2004). The parameter vector a determines the steepness of the response

to each factor, while b sets the offset at which transcription reaches half of the

maximum value. We also considered a similar model for F, which included

quadratic terms (products of all pairs of protein concentrations). While provid-

ing higher-quality fits (not shown), such a model results in a far greater number

of parameters that are difficult to interpret, so we preferred the more parsimo-

nious linear model used in the experiments described here.

To fit the parameters a and b to our observed data, we perform least-

squares minimization over all nuclei at all time points for which we have

data, as given by

C = min
a;b

X
x;t

kMðx; tÞ � FðPðx; tÞjða;bÞk2

;

where M(x,t) is the measured mRNA transcription of a given target gene in

blastoderm nucleus x at time t and P(x,t) is the corresponding vector of protein

concentrations. This optimization was subject to the constraint that only

six entries in a could be nonzero. We characterized the goodness of fit for

each target using R2 = 1� C
VarðMÞ, which measures the extent to which the

model explains the variance in expression across measured nuclei and time

points.

SUPPLEMENTAL DATA

Supplemental Data include eight figures, one table, and Supplemental Refer-

ences and can be found with this article online at http://www.cell.com/cgi/

content/full/133/2/364/DC1/.
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