
Modeling and Visualization of Uncertainty-aware Geometry
using Multi-variate Normal Distributions

Christina Gillmann*

University of Kaiserslautern
Thomas Wischgoll†
Wright State University

Bernd Hamann‡

University of California (Davis)
James Ahrens§

Los Alamos National Laboratory

Figure 1: Modeling, evaluation and visualization of uncertain geometry. a) Modeling of uncertainty through multi-variate normal
distributions. b) Uncertain geometry implied by uncertain points and lines. c) Evaluation grid with user-defined size to evaluate
uncertain geometry. d) Evaluation of uncertain geometry at each grid point. e) Visualization of uncertain geometry showing the
µ-surface and U-surfaces based on different iso-values.

ABSTRACT

Many applications are dealing with geometric data that are affected
by uncertainty. This uncertainty is important to analyze, visualize,
and understand. We present a methodology to model uncertain
geometry based on multi-variate normal distributions. In addition,
we propose a visualization technique to represent a hull for uncertain
geometry capturing a user-defined percentage of the underlying
uncertain geometry. To show the effectiveness of our approach,
we have modeled and visualized uncertain datasets from different
applications.
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1 INTRODUCTION

Classical geometry is concerned with objects such as points, lines
and surfaces and their properties with respect to space [11]. The
underlying points of a geometry are considered as an absolute
groundtruth for determining the size and shape of an object. Contrary
to this concept, a variety of real-world problems face the challenge
that geometric descriptions cannot be evaluated exactly hence re-
quiring us to characterize uncertainty. Examples are work pieces in
mechanical engineering that contain tolerances or geometric descrip-
tions of a patient’s organs and pathologies that cannot be determined
exactly as they originate from a reconstructed image [3].

The visualization of such uncertain geometry is highly desired to
provide domain scientists with a better understanding of the possi-
ble shapes of a geometry resulting from the underlying uncertainty.
Contrary to classic geometry, uncertain geometry cannot be visu-
alized directly, see Section 2. The communication of the inherent
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uncertainty is an important step in allowing users to understand
the uncertainty-affected geometry and perform decision-making
based on this type of data [7]. To achieve this, a proper description
of uncertainty-aware geometry is desired which can be visualized
quickly and simply. Furthermore, the visualization should be con-
sistent, which means that it should be free from geometric and
topological errors. At last, the model and the resulting visualization
should be general to allow for a large degree of freedom, for users
to model and explore uncertainty-aware geometry.

We present a methodology to model uncertain geometry using
multi-variate normal distributions instead of fixed-point descriptions.
Points are expected to be located at a specific spatial position but
can alter their position depending on the underlying parameters of
the normal distribution. We extend the concept of uncertainty-ware
points to line segments and triangles, defining an uncertain geometry.
The uncertainty-aware description of a geometry can be evaluated
by a grid used to visualize the uncertainty-aware geometry. We
present a technique based on the isosurface concept that shows the
expected geometry (µ-surface) and a covering hull, the U-surface
containing all geometry fulfilling a user-defined minimal probability,
see Section 3.

Therefore, this paper contributes:

• We introduce an uncertainty-aware description of geometric
objects based on multi-variate normal distributions.

• We present an intuitive visualization for uncertainty-aware
geometry based on extracted isosurfaces of an evaluation grid.

To show the usability of the present approach, we have applied
it to datasets from fluid dynamics and medical applications, see
Section 4. At last, this work is summarized and future directions are
given in Section 5.

2 RELATED WORK

This Section summarizes the state of the start in modeling and
visualizing uncertain geometry. A general summary of uncertainty
visualization techniques is provided in [3].



During the last decades, several methods targeted to model
uncertainty in geometry using implicit functions [15], offset sur-
faces [12, 13] or fuzzy sets [4]. Although these methods are able
to represent a variety of geometric descriptions, the methods can
lead to incorrect visualizations of geometry and/or topology. For
example, they can contain self-intersections, or cannot be utilized
in 3D space as they depend on concepts that cannot be generalized
easily. In contrast to these methods, we present a model of uncertain
geometry based on multi-variate normal distributions that can be
evaluated and visualized with consistent geometry and topology.

Different methods utilize isosurfaces [2, 16, 18] that are sur-
rounded by heatmaps indicating the probability of a surface to alter
its position in space. Although this visualization can provide a good
overview over the potential locations of surfaces, it can result in
visual clutter. The presented method uses surrounding surfaces to
indicate a hull where each possible geometry is located in.

Drapikowski [5] described a model for isosurface uncertainty
chracterization in medical applications based on geometric features
such as smoothness and curvature. These features where combined
with knowledge of the underlying image structure and the human
anatomy to determine the quality of an isosurface. Although this
method produces promising results for medical datasets, it is depen-
dent on knowledge of the underlying object. In contrast to this, our
method can quantify and visualize uncertainty independently from
the underlying object and use this knowledge to optimize arbitrary
geometry.

He et al. [8] presented an extension of the marching cubes algo-
rithm, utilizing an uncertainty model to quantify uncertainty in image
data. They transformed this information throughout the marching
cubes algorithm. This approach leads to an uncertainty visualiza-
tion complementing the extracted isosurface. Although this is a
good starting point to introduce uncertainty information into an
uncertainty-aware isosurface representation, the algorithm cannot
indicate how the underlying uncertainty information affects the re-
sulting position of geometric objects.

3 METHODS

We present a methodology to model and visualize uncertain geome-
try using multi-variate normal distributions. The general workflow
is shown in Figure 1. Points, lines (line segments) and triangles
can be modeled through 3D normal distributions (a) A user-defined
grid is utilized to evaluate the uncertain geometry (b-d) Based on
the evaluation grid, the geometry can be visualized (e) choosing
different isovalues determining the minimally desired probability
of a geometry. These steps are described in detail in the following
section.

3.1 Modeling of Uncertain Geometry
Contrary to classical geometry, various applications deal with geom-
etry that cannot be determined exactly. Therefore, an uncertainty-
aware description of geometric objects is highly desirable. In the
following, uncertainty-ware points are defined and their generaliza-
tion to lines and triangles is explained.

Probabilistic Points Instead of defining fixed points or, higher-
dimensional geometric objects, an uncertainty-aware description
requires a function that is defined over the entire space N(R3)→ R.
This function can be evaluated at each point in space defining the
probability density of an uncertainty-aware point to be located at a
specific evaluated location. The function N satisfies all requirements
of a probability density function. The most important is that

∫
(N) =

1. If N is a function returning 1, for a specific position in space, it
describes the case of classic geometry.

We utilize a specific function type that fulfills this requirement: a
multi-variate normal distribution [17]. This function type is a gen-
eralization of the Gaussian normal distribution to an n-dimensional
setting. We limit the dimension to three as we tackle Euclidean

geometry in this work. In general, the following description of an
uncertainty-aware point can be extended to an arbitrary dimension
without introducing further computational effort.

A three-dimensional uncertainty-ware point is defined as:

Nµ,Σ(p) =
1√

(2π)3det(Σ)
e−

1
2 (p−µ)T Σ−1(p−µ), (1)

where µ is the position of the normal distribution and Σ is the
co-variance matrix. The input of the function is a point p. An
example of a multi-variate normal distribution function and its input
parameters is provided in Figure 1 a). The function returns the
probability density for the uncertainty-ware point to be located at the
specific location p. For each point in an uncertainty-aware geometry,
the function Nµ,Σ(p) needs to be defined. The values of µ and σ are
in general not equal for all points of an uncertain geometry. Based on
this uncertain description of points, it is possible to define uncertain
lines and triangles.

Probabilistic Geometry. Starting from uncertain points, mod-
eled by multi-variate normal distributions, higher-dimensional sim-
plices such as lines and triangles can be modeled. In classical
geometry, lines, triangles and other simplices are based on points
that can be connected. For the example of a line, this means that
there are infinately many points directly connecting the end points
of a line (line segment).

To model uncertain simplices this concept can be utilized as
well. Therefore, uncertain simplices are formed by uncertain points
that can be connected. For a line, this means that two uncertain
points AµA,ΣA(p) and BµB,ΣB(p), and there are infinitely many points
connecting A and B, which themselves are uncertain points. This
set of points can be defined via linear interpolation of the points A
and B, while interpolating the parameters µ and Σ of A and B.

The concept of linear interpolation can be extended to an arbitrary
n-simplex [9]. Therefore, the presented concept can be utilized
to model arbitrary uncertain n-simplex data without any further
computational effort. Still, this paper focuses on the modeling of
simplices up to dimension two (point, line segment, triangle) and
their visualization.

The entirety of all uncertain points (NNµ1 ,Σ1
(p)), lines (NN1,N2(p))

and triangles (NN1,N2,N3(p)) is referenced to as an uncertain geometry
GU (p) in this manuscript.

3.2 Evaluation of Uncertain Geometries
In order to inspect and understand uncertain geometry, we present
a methodology to evaluate uncertainty-aware geometry as well as
a visualization for it. Contrary to classical geometry, this cannot
be done in a straight-forward manner. The question is how to visu-
alize the infinitely many multi-variate normal distributions defined
through an uncertainty-aware geometry.

Our aim is to evaluate an uncertain geometry at regular points in
space to identify the probability for each evaluation point; thus, our
goal is to define whether the geometry of a point is actually located
at a grid point. The size and position of this grid can be defined by
the user.

A 2D example is shown in Figure 1 b). For each of the grid
points, the uncertain geometry needs to be evaluated to identify the
probability that the geometry is located at this grid point, i.e., that the
geometry is present at the requested point. To achieve this, we need
to evaluate the probability density of all points, lines and triangles
to be present at the requested point and use the absolute maximum
of all evaluated objects, see Figure 1 c) and d). The result of this
computation is a regular grid storing the probability density for the
evaluated geometry to be located at each grid point.

The evaluation of uncertainty-aware points was discussed in Sec-
tion 3.1. In the case of a line (triangle), we are able to evaluate points
and their probabilities as long as they are located on the line (in the



triangle) itself. For points not located on the geometric object itself,
we need to identify a point on the line (in the triangle) that can be
evaluated vicariously for the entire geometric object. We use the
perpendicular point of each line (triangle) to identify the point of the
object with the highest influence on the evaluation point.

Overall, the probability of an uncertain geometry GU is the high-
est evaluation response of all geometric objects contained in the
geometry. Therefore, to calculate the influence of the entire geome-
try GU for an evaluation point of the grid (p), we compute the value
of the function G(p), i.e.,

GU (p) = max(

Points︷ ︸︸ ︷
NNµ1 ,Σ1 (p)∪

Lines︷ ︸︸ ︷
(NN1,N2(p))∪

Triangles
︷ ︸︸ ︷
(NN1,N2,N3(p))), (2)

where

• NNµ1 ,Σ1
(p) are the evaluation functions of all points in the given

uncertain geometry GU ;

• NN1,N2(p) are the evaluation functions of all lines in the given
uncertain geometry GU , and the function computes the perpen-
dicular point of the evaluation point to the line and evaluates
this point; and

• NN1,N2,N3(p) are the evaluation functions of all points in the
given geometry GU , where the function computes the perpen-
dicular point of the evaluation point to the triangle and uses
this point for evaluation.

Although this computation is an exact evaluation of uncertain
geometry, an evaluation of all geometric objects in an geometry for
each of the evaluation points would be computationally expensive.
Therefore, the computation of GU (p) needs to be approximated
to achieve a lower computational complexity for the evaluation of
uncertain geometry.

Let n be the number of of points, l be the number of lines and t be
the number of triangles in an uncertain geometry. Furthermore, let m
be the number of grid points that need to be evaluated. The resulting
complexity for the evaluation of all geometric objects in each grid
point would be O(n∗ l ∗ t ∗m), when considering the evaluation of
each geometric object as a constant operation. For large grids and
complex geometries, this complexity is too high.

To solve this problem, our method does not evaluate the entire
geometry for each grid point. Instead, users can define a search
radius that determines the geometric objects that are evaluated for
the respective evaluation grid point. To achieve this, the algorithm
requires two data structures. First, an octree is required, that is pos-
sible to search points that are located closely to the grid point and
therefore minimize the number of objects that need to be evaluated.
A search in the octree can be accomplished in O(log(n))-time. Sec-
ond, for each uncertainty-aware point, the presented algorithm stores
all lines and triangles the current point is part of. This approach
supports fast access to lines and triangles located in the search radius
of a grid point (O(1)). Using these two improvements, the algorithm
is able to evaluate an uncertainty-aware geometry on a grid with m
points in a complexity of O(log(n)∗m)-time which is a significant
improvement in complexity.

The result is an evaluation grid that holds the probability for the
underlying uncertain geometry to be located at specific grid points.
Based on this evaluation grid, uncertain geometry can be visualized
in an intuitive manner.

3.3 Visualization of Uncertain Geometry
Based on the evaluation grid, uncertain geometry can be visualized
to allow domain scientists to understand their data and the asso-
ciated uncertainty. Therefore, mainly two concepts can be used

Figure 2: One dimensional example of two uncertainty-aware points.
The probability density of each points outputs different results for the
U-surface according to the selected treshold.

to visualize the evaluated grid: volume rendering or isosurface ex-
traction. Isosurfaces are able to visualize clear borders, which are
helpful in indicating areas where a geometry can be located. In
addition, isosurfaces have a lower amount of visual clutter, as they
are not visualizing the entire space but only boundaries of regions.
Furthermore, thin structures are hard to visualize through volume
rendering, but they can clearly be indicated through isosurfaces. At
last, isosurfaces are an intuitive choice for geometric objects.

The presented visualization consists of two isosurfaces: the µ-
surface (gray) and the U-surface (blue), shown in Figure 3.

The µ-surface is a surface representation of the underlying geom-
etry considering all µ values of the multi-variate normal distributions
and their connections to lines and triangles. Solely considering this
surface would result in a standard visualization of a classical surface.

In addition to the µ-surface, the uncertainty information of the
underlying geometry can be visualized by an additional surface,
called U-surface. This surface is generated through an isosurface
extraction based on the evaluation grid. The user can determine
an arbitrary isovalue u ∈ max(GU ). Based on this value, the U-
surface can be generated, as shown in the one-dimensional example
of Figure 2. The value indicates the minimal probability that is
required for uncertain geometry to be present at an arbitrary point of
the evaluation grid. This surface indicates the positional uncertainty
of the underlying geometry. It is a surrounding hull of the µ-surface.
The closer this surface is located to the µ-surface, the lower the
positional uncertainty. When the surface is further away from the
µ-surface, a higher degree positional uncertainty of geometry is
implied. If no U − sur f ace is visible, this means, that there is not
positional uncertainty when considering the user-defined threshold.

Figure 2 shows how the selection of the parameter u changes the
resulting U-surface output. It ranges from no response (u3) over non
continuous response (u2) to a continuous response (u1).

In summary, we have presented a methodology that can model
uncertain geometry by using multi-variate normal distributions to
indicate locational uncertainty of the geometry.

4 RESULTS AND DISCUSSION

The following Section will present visualizations origin from our
methodology and discusses these results.

4.1 Results
Based on the presented methodology we have visualized two geo-
metrical objects. The datasets originate from 3D image data, where
interesting structures where extracted by a marching cubes algo-
rithm [1].

Example 1: Aneurysm Usually, in clinical daily routine, CT
scans are reviewed by using a slice-by-slice rendering technique. Un-
fortunately, with this technique it can be hard to follow the very thin
vessels of an aneurysm. Due to this problem, a geometric description
of the aneurysm is desired. As image data is affected by reconstruc-
tion errors introducing uncertainty, a direct isosurface extraction



Figure 3: Resulting visualizations based on the presented methodology. a)-c) uncertainty-aware visualization of an aneurysm geometry. d)-e)
uncertainty-aware visualization of an fluid phase surface.

might be slightly incorrect and does not communicate uncertainty
information resulting in a potentially misleading representation. For
the original image data, a set of uncertainty measures were used.
See [6] for information regarding the uncertainty measures. These
uncertainty measures where utilized to determine the Σ values of the
multi-variate gaussian distribution.

Figure 3 shows the extracted surface from a CT scan capturing an
aneurysm visualized with the presented method. The original image
data has a size of 256x256x256 voxels, whereas the chosen evalu-
ation grid has a size of 300x300x300 voxels. The chosen isovalue
for the uncertainty surface was set to 0.001, which means that all
possible geometries are covered that have a probability density larger
than 0.1%. Figure 3 shows how the geometry can alter its position
when considering the uncertainty information. a) shows a close-up
of a large branch in the original geometry. The uncertainty surface
shows that this size can vary strongly considering the available un-
certainty information. b) shows a close-up of a big branch located
at the origin of the aneurysm. Here, the position of the aneurysm
does not change significantly and, therefore, one can be sure that the
aneurysm is almost of that shape. c) shows a close-up of a very small
side branch. The uncertainty surface changes considerably from the
original surface. In addition, the surface can also be smaller than
the visualized geometry, which can be viewed via a cutting plane.
Therefore, the uncertainty surface indicates that this specific vessel
can be very thin or relatively big, compared to other vessels in the
aneurysm.

The presented method is very promising as it could assist medical
doctors to communicate risks in surgeries and discuss different
options for treatment while considering different configurations in
the aneurysm’s geometry.

Example 2: Fluid Simulation The second example is the geom-
etry extracted from a fluid simulation data set. In the given CT scan,
two phases are visible. We generated 100 slightly varying geometries
to simulate a geometric ensemble. To generate Σ for each multi-
variate normal distribution, we utilized a fitting algorithm [10, 14].
The original image data has a resolution of 256x256x256, the uti-
lized evaluation grid has a resolution of 300x300x300.

Figure 3 d) and e) shows the resulting geometry of the fluid
interface and the uncertainty surface generated by the presented
technique. The image shows that the U-Surface and the µ-surface
show high differences, when the underlying ensemble data shows a

lot of variety.
With our visualization method, users obtain an impression of how

µ can change according the uncertainty that affects the geometric
data.

4.2 Discussion

The presented methods requires the user to define a grid, a search
radius and the parameter u. The grid should be at least as big as
the region of interest for the user. The evaluation points should be
chosen, thus to cover the double resolution of the µ−Sur f ace. For
the search radius, the ten closest points outputted meaningful results
in the presented cases. The choice of u is highly depending on the
application.

In general, using the presented type of evaluation for uncertain
geometry supports a high degree of freedom. One advantage is that
the probability functions for geometric objects can be replaced easily.
Furthermore, this method does not require a geometric construction
to obtain the U-surface, which eliminates geometric or topological
inconsistencies. The resulting visualizations are intuitive, as the
U-surface indicates the positional uncertainty of the underlying µ-
surface. Furthermore, the underlying concept of modeling uncertain
geometry can be extended to higher dimensions.

5 CONCLUSION

We have presented a novel visualization methodology to visual-
ize geometric data that contains uncertainty information by using
multi-variate normal distributions. The resulting uncertainty-aware
geometry description can be evaluated and visualized via isosur-
faces. The involved computation is fast, and we avoid the problem
of self-intersections. Our method provides an intuitive means for un-
derstanding geometry with uncertainty via a flexible and easy-to-use
visualization.

As a future goal, we plan to devise a generalization of the under-
lying geometric description for defining probabilistic functions.
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