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A B S T R A C T

Surface extraction is an important step in the image processing pipeline to estimate the size and shape of an
object. Unfortunately, state of the art surface extraction algorithms form a straight forward extraction based on a
pre-defined value that can lead to surfaces, that are not accurate. Furthermore, most isosurface extraction al-
gorithms lack the ability to communicate uncertainty originating from the image data. This can lead to a re-
jection of such algorithms in many applications. To solve this problem, we propose a methodology to extract and
optimize surfaces from image data based on a defined uncertainty model. To identify optimal parameters, the
presented method defines a parameter space that is evaluated and rates each extraction run based on the re-
maining surface uncertainty. The resulting surfaces can be explored intuitively in an interactive framework. We
applied our methodology to a variety of datasets to demonstrate the quality of the resulting surfaces.

1. Introduction

Surface extraction is an important task in the image processing pi-
peline. The goal is to transform selected pixels of the input image into a
surface, representing the boundary of the object visible in the image
[1]. These surfaces are used in different applications, for example to
analyze the size, position and shape of tumors in the human body [2].

The extraction of surfaces was subject of many prominent algo-
rithms during the last decades (see Section 2). Unfortunately, surface
extraction methods are not widely spread in many applications. A major
problem with these algorithms is the lack of uncertainty quantification
and communication [3]. Real world datasets can be highly affected by
uncertainty, meaning that domain scientists cannot determine the ob-
jects captured in the image data with absolute certainty. When exposing
these experts with a surface extraction, they tend to reject them as they
cannot rate the reliability and accuracy of the extraction algorithm’s
output. In addition to that, surface extraction algorithms work on a
globally selected isovalue, determining the resulting surface. This as-
sumption is wrong in many cases as the actual surface can alter slightly
around the predefined isovalue [4].

In order to solve the mentioned problems, the goal is to design a
surface extraction algorithm, that outputs a reliable and accurate sur-
face. Therefore, this paper presents a novel surface extraction

methodology, that is able to quantify the uncertainty of each image
pixel as a multi-dimensional vector. This uncertainty space is utilized to
optimize an initially extracted surfaces such that the remaining surface
uncertainty becomes minimal. Therefore, the presented method eval-
uates a high-dimensional parameter space, performs multiple surfaces
optimizations and rates the resulting surfaces to present the best results
and its corresponding parameters to the user. Finally, the user can in-
spect the best results in an interactive system through comparing dif-
ferent surfaces with each other as well as identifying uncertain areas in
selected surfaces (see Section 4).

Therefore, this paper contributes:

• An optimization approach for surfaces based on an high-dimen-
sional uncertainty model

• A quantification of surface uncertainty (global and local)

• An intuitive visualization to explore and compare surfaces

To show the effectiveness of our approach, we tested our metho-
dology by reconstructing surfaces from predefined objects and com-
pared our results to a state of the art marching cubes algorithm outputs.
In addition to that, the algorithm was applied to a variety of real world
datasets and it can be shown, that the overall error can be minimized
(see Section 5). At last, the paper will be concluded and future
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directions are given in Section 7.

2. Related work

Surface extractions have been object of research since decades. A
proper summary can be found in [5]. This Section will summarize re-
lated work in the area of surface optimization and uncertainty visua-
lization for surfaces.

2.1. Optimization of surface extraction

The original surface extraction algorithm, know as marching cube
[6] is a well known state of the art algorithm. It is based on a selected
isovalue that determines the resulting surface elements. Although, this
algorithm has been successfully applied to many problems, the algo-
rithm is not able to adapt its isovalue throughout the image to match
the desired surface. Glaznig et al. [7] presented a marching cubes
method, that is able to automatically adapt its isovalue throughout the
extraction process. Although this improves the quality of the resulting
isosurface, it holds higher potential for topological errors, than the
classical marching cubes approach. Therefore, the presented metho-
dology starts with a classic surface extraction algorithm and improves
the resulting geometry through an uncertainty model.

In general, the marching cubes algorithm can lead to degenerated
meshes. Approaches, that try to preserve the topology of thin structures
[8], eliminate degenerated triangles [9] or insert additional points to
preserve topological features [10] are available. These methods are
proper improvements for the classic marching cubes approach and the
presented methodology is able to include them in a straight forward
manner. Instead of starting with a marching cubes approach it is pos-
sible to start from any surface and apply the optimization procedure
presented in this manuscript.

Lopes et al. [11] presented an extension of the marching cubes al-
gorithm, that was designed to improve the accuracy and robustness of
the original algorithm. To achieve this, their method subdivides cells to
identify key features of the resulting surface. Although this is a suitable
approach to improve the quality of a surface extraction, the approach
does not consider the uncertainty contained in many real world data-
sets. Therefore, the presented approach in this paper uses uncertainty
measures to improve the surface generated by the marching cubes al-
gorithms.

Athawale and Entezari [12] developed a method that is able to
detect and quantify the effect of uncertainty throughout the computa-
tion of the marching cubes algorithm. They were able to propagate
uncertainty measures described in the original image data in the in-
terpolation during the surface extraction. Although this is a good
starting point to estimate how uncertain input data affect the marching
cubes algorithm, the authors did not propose a method to handle this
information. Therefore, the presented approach that uses uncertainty
measures in the original image to improve surfaces and make them
more accurate and trustworthy.

2.2. Uncertainty visualization of surfaces

The communication of uncertainty is an important topic in many
applications such as medical visualization and visualization is a key tool
to achieve this goal. An overview of uncertainty visualization techni-
ques can be found in [13]. Although there exists a large variety of vi-
sualization techniques for data affected by uncertainty, the visualiza-
tion of uncertainty of surfaces is subject of just a few works. The most
important are discussed below.

Pöthkow and Hege presented a method [14], where isosurfaces are
surrounded by heatmaps that indicate the probability of a surface to
alter its position in space. Although this visualization can provide a
good overview over the possible locations of surfaces, it can result in
visual clutter. Therefore, the presented method uses a colorcoding of

the isosurface to indicate the remaining uncertainty after the optimi-
zation process without introducing further visual objects.

Drapikowski [15] described a model for isosurface uncertainty in
medical applications based on geometric features such as smoothness
and curvature. These features were mixed with knowledge about the
underlying image structure and the human anatomy to determine the
quality of the isosurface. Although this method outputs promising re-
sults for medical datasets it is dependent on suitable knowledge from
the underlying object. In contrast to this, the presented method is able
to quantify and visualize uncertainty independent from the underlying
object and use this knowledge to optimize arbitrary geometries.

Rhodes et al. [16] evaluated different techniques to visually encode
uncertainty on isosurfaces. They tested different modes as color-coding,
textures and combination of these techniques for multi-modal visuali-
zation. They found that colorcoding is a suitable method to visualize
uncertainty on a surface. Unfortunately, their work does not provide a
model to describe the uncertainty of a surface resulting from image
data. In the presented method, we use colorcoding to communicate the
uncertainty that can be defined by using our model.

He et al. [17] presented an extension of the marching cubes algo-
rithm, that utilizes an uncertainty model to quantify uncertainty in
image data and transformed this information throughout the marching
cubes algorithm. This leads to an uncertainty visualization on top of the
extracted isosurface. Although this is a good starting point to introduce
uncertainty information into the isosurface representation, the algo-
rithm is not able to optimize the marching cubes extraction based on
the given uncertainty model. Therefore, the presented approach utilizes
an uncertainty model to optimize marching cubes results and visualize
the remaining uncertainty.

The examination of the state of the art methods showed, that there
is a need to develop a surface extraction algorithm that outputs accu-
rate and trustworthy results while considering a proper uncertainty
model.

3. Requirements for surface extraction

In order to develop a geometry extraction technique, that can be
used in the decision making process of various applications, the fol-
lowing Section describes the requirements that need ti be fulfilled to
obtain such surfaces.

R1: Accuracy [18]. In order to achieve a high user acceptance in
real world applications, the extracted Surface needs to be as accurate as
possible. In many cases, users are interested in exact sizes, shapes and
positions of the extracted surfaces and therefore require accurate ex-
traction methodologies.

R2: Reliability [19]. Users from real world applications usually have
no background knowledge of the underlying mathematical principle of
the surface extraction algorithm. Instead, these algorithm are a black
box for those users. Therefore, users from different domains need be be
sure, that they can rely on the extracted surface during their daily tasks.

R3: Fast to compute [20]. In real world applications, decisions often
need to be made fast. Therefore, the computation of an isosurface is not
allowed to take too long.

R4: Comparative [21]. Often, different options need to be discussed
during the decision making process. Therefore, isosurface options
should be represented in an interactive system.

R5: Uncertainty-awareness [22]. As the underlying image data of an
isosurface extraction process is highly affected by uncertainty, a com-
munication of this uncertainty throughout the isosurface extraction
process is required. In addition, the final isosurface should include
uncertainty information as well to allow users a better understanding of
the trusthworthyness of a considered isosurface.

4. Methods

In this manuscript we present a novel methodology to find a proper
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geometric description for a depicted structure in an image. The goal is
to obtain a geometry, that as accurate and reliable as possible. To
achieve this, the presented method evaluates the input parameter space
by extracting various geometries based on different isovalues and op-
timize them with differently weighted uncertainty measures. The pre-
sented algorithm presents statistical information of all extracted geo-
metries and allows the user to browse them in order to find his
preferred result. An overview of the presented methodology can be
found in Fig. 1.

The input of the presented methodology is a three-dimensional
image, that can be defined as � � �= ×: ( ) ,z where
� �= … × … × … ∈ >t t t t: {1, , } {1, , } {1, , } where k1 2 3 0 and � = …: {1, , 256}.
In other words, an input image a three-dimensional image where each
dimension has a maximum number of pixel and each pixel holds a value
between 0 and 256. In the following manuscript � v( ) refers to a value of
a specific pixel.

The following sections will describe each step of the computational
pipeline in detail starting from the input Image � v( ).

4.1. Initial isosurface extraction

As shown in Section 2 isosurface extraction has been a subject of
research since decades. The goal is to define a surface, that represents
all values in an image containing a pre-defined isovalue k. In the pre-
sented method, we utilize an extracted surface provided by an arbitrary
extraction algorithm such as marching cubes [23]. The choice of ex-
traction algorithm can be based on the application and has no restric-
tions, besides that the algorithm needs to output a geometry containing
points and triangles.

This extracted geometry � can be defined as � � �=: ( , ), where
� 	 	 	= × ×: is the point space and � = … × … × …N N N: {1 , } {1 , } {1 , } is
the triangle space, where triangles are constructed through three points.

Although a surface extraction outputs a first guess about the surface
of an object, these class of algorithms are not considering the un-
certainty of the underlying image data into account. One problem of
these algorithms is based on the chosen isovalue required for surface
extraction. In many cases, it becomes not directly clear which exact
isovalue is a proper choice. This often results in a rerun of the algo-
rithm, where users need to visually inspect their result to obtain a
proper isovalue. In addition to that, isosurface extraction algorithms
neglect the uncertainty of the underlying image data in two different
manners. First, this information is not taken into account during the
extraction process and second it is not assumed for representing the
quality of the extracted surface.

Therefore, the presented methodology utilized uncertainty mea-
sures for image data and utilizes them to optimize the initial extraction
of a geometry and visually encode the quality of the resulting geometry.

4.2. Uncertainty model

In order to obtain trustworthy and accurate geometry extraction the
goal is to minimize the surface’s uncertainty. This uncertainty origins
from the input image data. Real world datasets are affected by

uncertainty that is introduced through the image reconstruction pro-
cess. When applying a surface extraction algorithm to such data, the
resulting surface is also affected by uncertainty. Usually, this un-
certainty is not communicated, which can lead to a rejection of surface
representations in applications.

Therefore, the goal is to quantify, minimize and communicate the
uncertainty of an extracted surface. To achieve this, it is required to
know the uncertainty of the underlying image data. In order to do so,
the goal is to determine the uncertainty of each pixel contained in the
original image. Contrary to the term error, uncertainty has not a clear
definition. This is based on the fact, that the uncertainty of an image
and its pixels cannot be determined based on a groundtruth as in the
case of image errors. Instead, the uncertainty of an image pixel is an
estimation based on a model.

The utilized model considered a pixel and its surrounding. Still, this
does not result in a unique description as there exist a variety of model
that estimate the uncertainty of a pixel. These model are build on dif-
ferent assumptions what pixel settings lead to a high amount of un-
certainty. Therefore, an holistic view of uncertainty cannot be accom-
plished while using a single uncertainty measure. Instead, the model
utilized in this paper is based on a collection of uncertainty measures
that are selected to cover the important image quality aspects such as
contrast, blur, noise, artifacts, and distortion [24].

A single uncertainty measure u is a function defined as:

� →u v( , ) [0, 1] (1)

In other words an uncertainty measure function is defined for a
pixel of an image outputting a value between 0 and 1. If the uncertainty
measure outputs 0, the input pixel is not affected by uncertainty ac-
cording to the underlying uncertainty measure. In contrast to that, if the
pixel is absolutely not trustworthy according to the used uncertainty
measure, the output will be 1.

Throughout this paper the total number of utilized uncertainty
measures is n whereas ei is an uncertainty measure with ∈ …i n{1 }.

In particular, the utilized uncertainty measures in the presented
model are:

• Acutance: This measure assumes the image pixel to have a large
gradient to be trustworthy [25].

• Distance to original value: The uncertainty outputted by this
measure increases if the voxel value is altering from the chosen
isovalue.

• Gaussian error: Estimates the gaussian noise assigned to an image
pixel [26].

• Local contrast: Computes how homogeneous the surrounding of a
pixel is [27].

• Salt and pepper noise: Estimates the salt and pepper noise assigned
to an image pixel [28].

• Brightness: The brighter a pixel is, the lower the response of this
uncertainty measure is [29].

• Contrast correction: Assuming the input image can be optimized
by an contrast histogram stretch, this measure estimates the im-
provement for the performed stretch [30].

The output of the utilized measures is shown in Fig. 2. Pixels with a
high uncertainty measure are indicated through white color whereas
pixels with a low color are indicted through black color. It can be ob-
served, that this measures can output very opposite results depending
on the underlying assumption of uncertainty.

As the goal is to obtain an overall impression of the uncertainty
contained in an image pixel, the mentioned uncertainty measures need
to be combined. Therefore, the uncertainty of an image pixel is not a
single scalar in our model. Instead, the uncertainty of a pixel can be
defined as an vector containing all mentioned uncertainty measures as
single components. This vector can be defined as = …u I v u u( ( )) ( , ., )n

T
1 .

In the following, this vector is utilized to optimize extracted

Fig. 1. Workflow of the presented methodology, consisting of the computation
of the uncertainty model (1), initial geometry extraction (2), geometry opti-
mization (3) and intuitive representation of optimization results (4).
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geometries thus they result in certain geometries.

4.3. Geometry optimization

In order to find a surface extraction that represents the selected
structure of the image as good as possible while holding a low un-
certainty, the presented methodology computes a large variety of sur-
faces and optimizes them according to different parameter settings. The
resulting surfaces are rated based on the remaining uncertainty of the
surface and stored by this ranking. Pseudocode 1 shows the steps of the
presented method.

The procedure can mainly be divided into three stages: First
Parameter Space Scanning, where the high dimensional space is eval-
uated randomly, second Optimization of Surfaces where a surface will be
optimized with each selected parameter third and Evaluation of Surfaces
where each optimized surface will be evaluated based on the remaining
surface error. The technical details will be described below.

4.3.1. Scan parameter space
In order to extract a surface that represents the object of interest

properly as well as being maximal trustworthy, the presented algorithm
computes several surfaces starting with different isovalues and opti-
mizes them based on the presented uncertainty measures. This is im-
portant as the choice of the isovalue is usually done manually by
looking into the image and guessing a proper value. Although this guess
is not completely wrong, there is no certainty, that the chosen value is
the best choice. Therefore, the presented methodology utilizes the
chosen isovalue and performs multiple surface extractions based on
isovalues, that slightly alter from the chosen isovalue.

For each of those isovalues the goal is to optimize the resulting

surface thus the remaining surface is as trustworthy as possible. Instead
of solely optimizing the surfaces thus the result minimizes the re-
maining uncertainty of the surface, the algorithm optimizes the surfaces
based on differently strong weighted uncertainty measures. This is re-
quired, as different uncertainty measures make different assumptions
how to quantify uncertainty. Depending on the input image these as-
sumptions can be correct, incorrect or something in between.

To solve this problem, each uncertainty measure uiobtains a weight
ωi, where ωi∈ [0, 1]. The function of this weight is to control the im-
portance of the according error measure during the optimization pro-
cedure. If =ω 0,i then the respective error measure is not considered for
optimization. Instead, if =ω 1,i the respective error measure is strongly
optimized.

All possible values of ωi form a high-dimensional weight space. In
this space, not all points have to be considered. In fact, only points, that
are located on the hyper unit ball should be considered for optimiza-
tion. This is caused to the fact, that all other value can be scaled to the
surface of the hyperplane. In the optimization procedure scaling is an
invariant and therefore, only the points on the hyper sphere are con-
sidered.

Obviously, the hyper sphere cannot be evaluated completely, as this
would result in an infinite number of optimization runs. Instead, the
user selects a number of optimization run m where for each run the
weights are randomly generated between 0 and 1 and finally the entire
vector of weights is normalized. Based on each of this normalized set of
weights, the optimization procedure can be started.

4.3.2. Optimization of a surface
For each combination of an initial geometry extraction and random

weight assignment, we present a method to optimize the initial guess of
the surface, thus it becomes accurate and trustworthy. Therefore, the
underlying uncertainty measures are considered.

As the initial geometry is based on the underlying input image, the
geometry is located in the bounds of the volume. Therefore, it is pos-
sible to evaluate an uncertainty vector for each point in the initial
geometry, referred to as u(G(p)). The resulting uncertainty vector is a
tri-linear interpolated value based on the position of the point in the
underlying image.

For the vector u(G(p)), its length |u(G(p))| and its gradient ∇|u
(G(p))| can be computed straightforward by considering the underlying
uncertainty image and utilizing a tri-linear interpolation as well. This
gradient is utilized to shift the points of the geometry into a direction
thus the resulting length of the uncertainty vector becomes minimal.

Therefore, the points are shifted along the gradient until the shift of
the point becomes smaller, then a user selected threshold. The algo-
rithm iterates over all points contained in the geometry until each point
cannot be shifted more then the set threshold. While doing this, the
points of the geometry change their position in space such that the
resulting geometry is located at points in space, that have a low

Fig. 2. Image errors output, based on the slice of a computed tomography scan showing two phases of a fluid a). The resulting error measures are b) Acutance, c)
Distance to original Value, d) Gaussian Error, e) Local Contrast, f) Salt and Pepper Noise, g) Brightness and h) Contrast Correction.

1: function OPTIMZEDSURFACELIST(I, K[], m, E, ε)
2: Initialize Results
3: for k ∈ K do
4: G = EXTRACT(I, k)
5: Initialize Results[]
6: for 1, . . .,m do
7: Initialize ω[]
8: for e ∈ E do
9: ADD(ω, RANDOM(0,1))

10: NORMALIZE(ω)
11: G∗ = OPTIMIZE(E, G, ω, ε)
12: Initialize f = EVALUATE(G∗)
13: ADD(Results, (G∗, k, ω, f )

14: return Results

Algorithm 1. Generation of surface optimizations with different parameters.
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uncertainty. Therefore, the resulting surface optimizes the surface un-
certainty based on the underlying uncertainty model.

Fig. 3 shows the geometry optimization in detail. All points of the
original geometry (red) are shifted along the uncertainty gradient. In
the given example, this shift is performed twice. In the third iteration,
solely 3 points are shifted, as their uncertainty gradient is still bigger,
then the user-defined threshold. After the algorithm is performed, the
points of the geometry are located at a point in space, where the un-
certainty becomes a local minimum.

The benefit of this approach is that there is no need to insert new
points. This allows an improvement of the surface generated from an
image in low computational effort and without changing the topology
of the underlying geometry.

4.3.3. Evaluation of surface
Depending on the selected parameter space, the presented algorithm

outputs an optimized geometry where each geometric point is shifted
thus it remains in a local minimum of surface uncertainty close to the
starting point. As the presented algorithm outputs a set of optimized
geometries based on the pre-defined parameter space, we require a
mechanism that rates the quality of the optimized surfaces. Therefore,
we utilize the remaining surface uncertainty to determine the quality of
the resulting geometry. The uncertainty of a geometric surface �U ( )
can be computed by:

�
� �

�

�

�

=
∑

∑
∈

∈

U
S T U T

U T
( )

( ( ))* ( ( ))
( ( ))

T

T (2)

whereas, S(G(T)) is the surface area of a triangle and U(G(T)) is the

average length of the three uncertainty vectors assigned to the triangle
points. The surface evaluation function takes the size of the surface into
account. This ensurers, that the remaining surface uncertainty is nor-
malized based on the size of the considered geometry. Without doing
this, it would be possible that small surfaces are rated better although
they have a higher average uncertainty than a larger surface.

The proposed evaluation measure can be utilized to sort all opti-
mized geometries. The result is a list of geometries sorted by their re-
maining surface uncertainty �U ( ). Each element of this list contains the
following items:

• G( ), the resulting geometry after the optimization process

• k, the utilized isovalue (further parameters, when using another
surface extraction algorithm

• ωi, the weights for each uncertainty measure utilized for the opti-
mization process

• ϵ, the stop criteria

The average time to compute such a list is highly depending on the
runtime of the underlying surface extraction algorithm (which is
usually depending on the number of pixels z, the number of tested
isovalues k, the number of different weight assignments m and the re-
quired iterations to optimize a geometry i. This results in a runtime of O
(zkmi).

This list is utilized to show the user trustworthy geometries and
allow him to explore the parameter space as well as the optimized
geometries.

4.4. Visualization of optimization results

The output list of the geometry optimizations covers a large number
of optimized geometries and their resulting surface uncertainty.
Although, the geometry with the smallest surface error is the most in-
teresting geometry, the remaining list can give important insight to the
parameter space and its properties. In addition to that, the average
surface uncertainty gives an overall impression for the quality of a
surfaces. Often users are interested in specific parts of a surface and
their uncertainty values. Therefore, the list of optimized geometry is
embedded into an intuitive visual system, that allows the user to ex-
plore the list of optimized surfaces and inspect selected surfaces in
detail.

Therefore, the visual system contains two linked views: a parallel
coordinate view, showing for each isovalue a parallel coordinate plot
containing the chosen random weights and the resulting surface un-
certainty and a 3D plot of the user selected surfaces. The views and an
example result can be reviewed in Fig. 4.

Fig. 3. Scheme of geometry optimization based on the underlying uncertainty
measures. The points of the geometry are shifted along the uncertainty gradient
until the position change does not exceed a user defined threshold.

Fig. 4. Visualization of resulting surfaces. Top: Selection Widget containing parallel coordinates. Middle: Selected Surfaces that can be reviewed further. Down:
Closeup for comparison of algorithm outputs.
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The parallel coordinate view offers different parallel coordinate
plots, one for each isovalue in the parameter space. Each of these plots
contains all weights for the surface optimization as well as the resulting
surface uncertainty. Users can interactively select surfaces based on
their parameter settings. Based on the user defined selection, the sur-
face view shows the 3D plots of the resulting surfaces. The surfaces are
aligned under the parallel coordinate plot of the respective starting
isovalue for an intuitive analysis.

To allow users to analyze the resulting surface in detail, the re-
maining surface uncertainty per triangle is color coded on the surface.
The color ranges from blue ( =U G T( ( )) 0) over white ( =U G T( ( )) 0.5)
to red ( =U G T( ( )) 1). Whit this color coding the user is enabled to
differentiate the quality of a surface depending on the remaining sur-
face uncertainty at specific locations. As red is a signal color the user is
deirectly guided to uncertain areas on the surface.

Fig. 4 shows the user interface of the presented system. The top row
shows the parallel coordinate view with 5 different isovalues, the uti-
lized weights for optimization (30 for each isovalue) and the resulting
surface uncertainty. For each isovalue (80, 90, 100, 110 and 120) the
user selected the best optimization result from the performed optimi-
zations. They are indicated by a thicker line. In the middle view, the
selected surface visualizations can be reviewed. In this example, the
isovalues are very distinct, leading to highly different surfaces, as
shown in the lower part of Fig. 4. Overall, the surface selected in the
orange parallel coordinate view has the lowest remaining surface error.
In the closeup it can be observed, that in this optimization run, the
algorithm outputs the best surface for the concave area of the geometry.
This can be easily detected with the proposed visual system.

Based on the presented workflow, users are enabled to extract ac-
curate and trustworthy surfaces from image data and review them.

5. Results

In the following section the presented approach is used to create
extract accurate and reliable surfaces from real world datasets in the
medical and mechanical engineering area. The presented approach was
implemented using C++ with the vtk [31,32] and Qt [33] libraries.

5.1. Sphere example

Fig. 5 shows the extraction of a sphere surface for a synthetic dataset.
The dataset had a size of 70×70×70. The data was generated by set-
ting all voxels within the radius of a sphere with the grayscale of 100. On
all other locations, the grayscale value was set to 0. We ran 30 different
optimizations with 5 different isovalues. The parallel coordinate view of
all optimization runs can be found in Fig. 5. The best optimization result
has an average surface uncertainty of 0.11 with an isovalue of 52.

Fig. 5(b) shows the isosurface extraction that is outputted by the
marching cubes algorithm starting with an isovalue of 52. The closup
shows an often occurring effect when using marching cubes: the stair-
case effect. In this effect, the resulting surface builds several levels in-
stead of a smooth curved surface. In many applications, this output
needs to be post-processed to remove this effect.

Based on the marching cube output, the presented methodology is
able to adjust the surface points, thus the surface becomes more accu-
rate. Fig. 5(c) shows that the staircase effect is removed when using the
presented methodology. Overall, the optimized surface is smoother and
closer to the original sphere shape, then the result based on the
marching cubes algorithm.

This result shows, that the underlying model of uncertainty used for
the optimization process is able to optimize the geometry outputted by
surface extraction algorithms. The interface is easy to use so that the
user can identify the best optimization result very easy and explore the
resulting surfaces. The inspection of selected surfaces is intuitive, as all
zooming and panning operations are consequently propagated to all
visible geometries.

5.2. Engine example

The next example is the surface extraction of an engine from a
Computed Tomography scan. In mechanical engineering, these datasets
are generated to automatically detect defects of working pieces after
they are manufactured. Therefore, it is very important to obtain an
accurate and reliable surface of the manufactured object to estimate its
quality.

The original image data has a size of 256×256×256 and is a
freely available dataset [34]. The upper show shows the resulting sur-
face extraction from a standard marching cubes algorithm, whereas the
lower row shows the optimization results of the presented metho-
dology. We tried five different isovalues (78–82) and ran 100 optimi-
zations per isovalue. The shown result in the Fig. 6 had the lowest re-
sulting average surface error with 0.241108.

Fig. 6 compares the output of the marching cubes algorithm (top)
with the output of the presented algorithm (down) in this paper for the
dataset containing the engine. Part (a) and (b) show the closeup of a
hole in the engine’s side. It can be observed, that the output of the
original marching cubes algorithm is edged, which is an effect of the
linear interpolation occurring in the original algorithm. On the other
hand, our algorithm results in a smooth round hole shape. Part (c) and
(d) show a closeup of a round recess on top of the engine. Here, the
effect of smoothing out the results from the original marching cubes
algorithm become clearer. The entire circular shape is captured more
accurately in the results of the presented methodology.

Part (e) and (f) show the closeup of a tube accessing the interior of
the engine. The tube is a thin structure, which is usually hard to extract
by a classic marching cubes approach. As the results show, the tube
looks edged and very thick. Contrary to this, the presented approach is
able to smooth and thin the surface representation of the tube. The
resulting tube is almost round, although no new points are introduced
into the geometry.

The results show, that round and thin structures can be reproduced
more accurately while using the presented approach of the paper in
comparison to the classical marching cubes approach. This can help
users from the mechanical engineering area to inspect work pieces and
compare them to the targeted tolerances.

5.3. Foot example

The third example is a Computed Tomography Scan of a human
foot. The original dataset has a size of 256× 256×256 pixels and is
freely available [34]. It shows an entire foot with all soft tissues and all
single bones of the foot skeleton. In medical image processing surfaces
are an important technique to estimate the size of organs or tumors or
locations and conditions of structures such as the shown bones in the
examined dataset.

We performed 5 different isovalues (88–92) and tried 50 different
weights per isovalue which is a total of 250 optimizations. Each opti-
mization procedure took about 20 s on a normal desktop computer
(Intel Core i7, 2.6 GHz). In total the program took about an hour to
compute all optimizations. This time consumption can be minimized
straightforward, as our methodology can be run in multiple threats very
easily. Each optimization is independently from each other and can
theoretically be run on its own core.

Fig. 7 shows the resulting surfaces from the marching cubes algo-
rithm (left) and the presented approach of this paper (right). Closeup
(a) and (d) show a closeup of the big toes bone. In the original surface
extraction algorithm, the geometry contained several staircases, that
are not correct. In the optimized geometry, the staircases are smoothed
out and therefore, the overall uncertainty is minimized.

Closeup (b) shows staircases as well as an feature that points out of
the bone. The goal was to minimize the staircase structure while pre-
serving the feature. Closeup (e) shows, that our algorithm was able to
smooth the overall appearance of the bone, while preserving the
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feature. This is very important especially in medical applications, as
anomalies in the human body need to be preserved so that the medical
doctor can identify and examine them.

Closeup (c) and (f) show how the original marching cubes algorithm
underestimated the size of a bone. Using the presented approach of this
paper resolves this issue and leads to an overall smoother impression of
the bone.

6. Discussion

In order to discuss the presented approach, we performed a user
study and examine if the defined requirements are fulfilled.

6.1. User evaluation

As an important goal of the presented approach is to gain a higher
user acceptance, we conducted a user evaluation of the presented re-
sults. The goal was to identify if users would preference the geometries
generated by the presented approach. Therefore, we showed geomtries
extracted from a standard marching cubes algorithm in comparison to a
geometry extracted by the presented approach. The evaluation was
blinded, so the users did not know which geometry was generated from
which approach. Two examples where shown: the sphere example,
shown in Fig. 5 and the foot example as shown in Fig. 7. We removed
the closeups that are visible in the Figures to obtain user feedback that
is not influences. For the sphere example we asked the users to select
the geometry that appears to be closer to a perfect sphere and for the
foot example we asked to identify the geometry that expresses the
geometry of bones better. The results can be found in Fig. 8. Bar chart 1
shows the number of users that voted for the geometry of the presented
approach and 2 shows the number of users that voted for the classic
isosurface extraction approach.

20 Persons participated in the study, 14 male and 6 female. Each of
the participants works in the field of computer science. Each of them
declared, that they are used to the concept of isosurfaces. The results
how, that a majority of the users find that the extracted geometry of the
presented approach better match the original object. In addition, we
presented our methodology to a domain expert and he gave us a very
positive feedback.

The most promising are:

• The method significantly enhances the exploration of a high di-
mensional uncertainty space

• The projection of errors onto geometries supports a reliable decision
making process

• I was able to enhance my geometric representation with the pre-
sented method

6.2. Discussion of defined requirements

In the following we aim to discuss how the presented methods
targets the requirements defined in Section 3.

Accuracy. As shown in the user evaluation, the majority of users think,
that our method is able to represent the geometry of objects more
accurate. This impression is enhanced by the given results.
Nevertheless, the surface extraction of the presented method strongly
depends on the starting isosurface generation. The utilized fundamental
marching cubes algorithm used in the presented scenarios can output
topological errors. The presented method is not restricted to the utilized
isosurface extraction algorithm. In fact, an arbitrary surface extraction
algorithm can be utilized. Newman and Yi presented a survey on
marching cubes algorithms [35]. Depending on the purpose, the
extracted surface needs to fulfill, improved versions of the marching
cubes algorithm can be utilized.

Another possible effect is, that the geometry correction leads to
points, that are shifted to the same location in space. Although in all
tested cases never occurring, there is no guarantee, that the resulting
surface after the optimization process does not contain self-intersec-
tions. Fortunately, there exist a large variety of geometry cleanup
procedures, that can be applied to the presented optimization approach,
when required [36,37].

In summary, the presented optimization methodology needs to be
combined with a suitable geometry extraction as well as geometry
cleaning approach. Depending on the purpose of the extracted surface,
Table 1 gives suggestions on the algorithms that can be utilized.

Reliability. The optimization of isosurfaces is based on uncertainty-
measures. The resulting surface is located at points in space where the
uncertainty is minimal (locally). Therefore, the presented methodology
outputs surfaces that are more reliable in comparison to the marching
cubes algorithm.

Fast to compute. As shown in Section 4, the complexity of the presented
algorithm is O(zkmi). A surface extraction including the optimization
procedure took about 20–30 on a normal Laptop (Interl(R) Core(TM)
i7-6700HQ CPU, 2.60 GHz), depending on the underlying dataset.
Considering that users aim to tests thousands of parameter
configurations, this leaves room for improvement.

Fortunately, this can be solved by using a faster implementation of
the marching cubes algorithm using octrees [35]. This would decrease
the runtime to O(log(z)kmi). In addition, the presented approach can be
parallelised in multiple ways. First, the different optimization runs can
be separated to different threads. Second, the optimization itself can be
divided into different threads as well as each geometry points is opti-
mized separately.

Comparative. The presented approach includes a visual framework that
allows to compare different optimization option in one view. As the
users stated, this helped them to understand how the underlying
uncertainty space effects the resulting geometry. In addition, the
presented rating functions helps users to identify the best options and
quantify differences between geometries.

Uncertainty-awareness. The main goal of the presented approach was to
achieve isosurface extraction that come with a high uncertainty
awareness. This is accomplished in multiple ways. First, the space
that is used for optimization is high-dimensional targeting to cover as
much aspects of uncertainty as possible. Second, the presented
approach tests a large variety of uncertainty-space weightings to see

Fig. 5. Isosurface extraction of a three dimensional image containing the ap-
proximation of a sphere. a) Weights and isosurfaces (colorcoded) for the run
experiments. b) Surface extracted by a marching cubes algorithm. The closeup
shows the staircase effect. c) Surface extracted with the presented method. The
closeup shows that the staircase effect can be minimized.
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which uncertainty metrics has the best influence on the optimization
procedure. Last, the surface representation is colorcoded to indicate
users which areas on the surface are more trustworthy then others.

In summary, the presented method forms a novel surface extraction
method that helps minimizing the surfaces uncertainty.

7. Conclusions

We presented a novel surface extraction methodology that is able to
extract accurate and reliable surfaces by using an uncertainty model of
the underlying image data. The algorithm is able to run multiple opti-
mization procedures with different input parameters and evaluates
them based on the remaining surface uncertainty. To allow a fast and
intuitive examination of the optimization results, the presented meth-
odology includes a visual system to explore and examine the resulting
extracted surfaces. We showed the effectiveness of this approach by
extracting surfaces from artificial as well as real world datasets ori-
gining from different domains.

As future work, the goal is to include the presented methodology in
real world workflows as occurring in clinical daily routine. In addition,
the goal is to provide users with a parallel computation structure to
avoid long runtimes.
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Fig. 6. Isosurface extraction of a engine from a CT scan. Upper row: results from a classic marching cubes algorithm. a, b) closeup of hole in engine border. c, d)
Closeup of round recess on top of the engine. e, f) closeup of tube. For all cases our algorithm was able to enhance the surface representation.

Fig. 7. Surface extraction of human foot with a classic marching cubes ap-
proach (left) and the presented approach in this paper (right). Closeups show
how the presented approach is able to improve the surface while preserving
important features.

Fig. 8. User evaluation results of the geometries shown in Fig. 5 (left) and Fig. 7
(right). Bar chart 1 shows the number of users that voted for the geometry of the
presented approach and 2 shows the number of users that voted for the classic
isosurface extraction approach.

Table 1
Possible problems before and after the optimization procedure and their
solutions.

Problem Possible solution

Degenerated triangles Li and Agathoklis [38]
Ambiguity in MC Gelder and Wilhelms [39]
Internal ambiguity Nilson and Hamann [40]
Isolated vertices Can be ignored
Dangling edges OFF and PLY File Format
Orientation Attene and Falcidieno [41]
Holes and gaps Barequet et al. [42]
Self-Intersections Hachenberger et al. [43]
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