
Dissecting On-Node Memory Access Performance:
A Semantic Approach

Alfredo Giménez∗, Todd Gamblin†, Barry Rountree†, Abhinav Bhatele†, Ilir Jusufi∗,
Peer-Timo Bremer† and Bernd Hamann∗

∗Department of Computer Science, University of California, Davis, California 95616 USA
†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA

E-mail: ∗{aagimenez, jusufi, bhamann}@ucdavis.edu, †{tgamblin, rountree, bhatele, ptbremer}@llnl.gov

Abstract—Optimizing memory access is critical for perfor-
mance and power efficiency. CPU manufacturers have developed
sampling-based performance measurement units (PMUs) that
report precise costs of memory accesses at specific addresses.
However, this data is too low-level to be meaningfully interpreted
and contains an excessive amount of irrelevant or uninteresting
information.

We have developed a method to gather fine-grained memory
access performance data for specific data objects and regions
of code with low overhead and attribute semantic information
to the sampled memory accesses. This information provides the
context necessary to more effectively interpret the data. We have
developed a tool that performs this sampling and attribution and
used the tool to discover and diagnose performance problems
in real-world applications. Our techniques provide useful insight
into the memory behavior of applications and allow programmers
to understand the performance ramifications of key design deci-
sions: domain decomposition, multi-threading, and data motion
within distributed memory systems.

I. INTRODUCTION

Modern microprocessors have reached limits in instruction-
level parallelism and on-chip power capacity. On-node concur-
rency levels have also increased dramatically. Moore’s law is
still alive and well [1] but the increasing transistor count is
now used to build additional processing units instead of faster
single-threaded cores. To support on-node parallelism, the
memory architecture has also become more complex. This has
severely complicated the task of extracting peak performance
from modern chips.

For years, computational power of processors has out-
paced available memory bandwidth, and this phenomenon
was traditionally called the “memory wall” [2]. Indeed, on-
chip data motion within the cache hierarchy has long been
the largest performance bottleneck and consumer of power.
Keeping processors fed with work has traditionally been a
matter of carefully managing a single cache hierarchy. To-
day, nodes with multiple levels of potentially shared caches,
non-uniform memory access (NUMA) domains, and multiple
sockets are ubiquitous. Optimizing data motion within this
type of topology is a much more difficult problem requiring
programmers to lay out application data with extreme care.

Recent generations of Intel and AMD processors have
included fine-grained measurement capabilities that allow tools
to sample system-wide memory instructions and record per-
formance data and metadata associated with them. These

performance monitoring units (PMUs) can associate a memory
operation with a particular CPU, socket, cache resource, or
NUMA domain. In addition, they can report the achieved
latency of specific memory acccess operations. Such robust
PMUs offer new potential for performance monitoring, but
their produced results can be exceedingly large and difficult
to interpret.

Understanding the memory behavior of a parallel program
requires the software developer to understand the relationships
of each memory instruction with the source code, the data
structure the instruction operated on, and the processor topol-
ogy. For example, in a hydrodynamics simulation, a memory
address may refer to a particular volume within a large mesh,
or a particular physics property of the associated material.
Likewise, a particular thread executing on one socket may
access that address, but memory attached to another socket
may service the request. To understand the performance of a
large processor topology, we may need to associate a particular
memory instruction with potentially many other data points.

To expose these relationships to application developers and
to enable more intuitive optimization of application perfor-
mance, we have developed several novel measurement and
analysis techniques that allow us to associate memory behavior
with code, data structures, and node topology. Our contribu-
tions are:

1) A sampling technique that uses hardware PMUs and
accurately filters incoming data in kernel space to
provide memory access performance data at a fine
granularity and with low overhead.

2) An efficient method to attribute memory access sam-
ples with high-level information regarding the asso-
ciated node hardware topology, program state and
data structures, and code. This provides meaningful
context for low-level data.

3) A tool, MemAxes, that implements our methods
consisting of a kernel driver module for capturing
memory performance data, a source instrumentation
library for attributing high-level information to mem-
ory accesses, and a program to visually analyze the
acquired data interactively.

The contributions of the visualization methods developed
in MemAxes are outside the scope of this paper, but we explain
the relevant portions to this work in Section VI.

We used our method to diagnose the performance of and

SC14, November 16-21, 2014, New Orleans, Louisiana, USA
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

optimize benchmark applications, and we describe the results
in a series of case studies. We show that our method intuitively
highlights key on-node performance characteristics in HPC
applications that were otherwise unobservable or difficult to
understand.

II. MEMORY ACCESS PERFORMANCE DATA AND
SEMANTIC ATTRIBUTES

Modern architectures have begun to include advanced
Performance Measurement Units (PMUs) with capabilities for
sampling based on events. One such PMU makes possible sam-
pling of memory access events occurring on the architectures
and collection of information corresponding to those events,
including instruction operands and performance results of their
execution.

Intel has provided the capability for accurate memory ac-
cess sampling in their Precise Event-Based Sampling (PEBS)
framework [3], and AMD has released similar capability in
their Instruction Based Sampling (IBS) framework [4]. We
used the PEBS framework for this research, but our presented
methods are equally applicable for other memory access sam-
pling frameworks.

The PEBS framework provides a programmable hardware
counter that supports sampling of memory access events at a
specified frequency. At the retirement of each sampled access,
an entry is generated containing information pertaining to that
event. Each entry contains:

1) The instruction pointer
2) The data address accessed
3) The number of core clock cycles elapsed during the

access operation
4) The memory resource in which the address was

resolved (L1,L2, etc)
5) The processor ID that issued the access1

6) The socket ID on which the processor resides1

This information provides memory access performance
data at a high level of detail. However, many of the values
are exceedingly low-level and require further processing to
become meaningful. From this data, we extract higher-level
information that provides context, which we refer to as se-
mantic attributes. These attributes must provide contexts that
are intuitive for the programmer to interpret. Furthermore,
different contexts elucidate different areas of performance,
and thus it is essential to define a set that encompasses a
representative portion of the different types of performance
behavior.

We categorize the semantic attributes in terms of the
context they provide. These contexts are: (1) the node hardware
topology, (2) the application, and (3) the source code. In some
cases, a semantic attribute provides multiple contexts, here we
organize them by the areas where they are most applicable.
We also determine the performance characteristics associated
with each context and provide examples of behavior that can
be analyzed within them.

1This information is not directly contained in a PEBS sample but can be
easily determined

A. Node Hardware Topology

In order to optimize software’s utilization of a node’s
hardware capabilities, we have to understand the relationship
between them. This includes what resources are being used
and to what extent. From this we can determine imbalances,
hardware bottlenecks, and improper resource utilization. Of-
ten, software practices that are aimed at improving resource
utilization, such as rearranging program flow to increase lo-
cality, result in different behavior than was intended due to
unexpected behavior in the hardware, compiler, or operating
system. By gaining a detailed understanding of how software
runs on the available hardware, we can begin to target areas
for performance optimization.

The node hardware topology consists of the topologies of
memory and processing resources. The memory topologies in
modern architectures are typically arranged as a multi-level
hierarchy. At the root, we have the largest resources, such
as RAM, and below them we have larger, possibly shared
caches, and finally smaller, faster caches at the leaves. This
organization is intrinsically related to the processor topology.
Physical CPUs each typically have independent access to a
set of smaller caches, such as L1 and L2, and shared access
larger caches and memory. Each physical CPU may be further
divided into multiple logical CPUs via multi-threading, in
which case they may share small caches as well. NUMA
architectures contain multiple sockets (or processor packages)
on a single motherboard, each of which contains a set of CPUs,
caches, and a larger memory resource shared between sockets
called a NUMA domain.

Of the memory access sample attributes, those that concern
the utilization of these various resources are the processor
ID, socket ID, and memory resource where the data was
resolved. If we also know the node’s hardware topology,
we can associate a memory sample with a specific portion
of it. Tools such as hwloc [5] and likwid [6] exist to
detect the available hardware topology on a system. We use a
modification of likwid suited to integrate with our existing
codebase.

We annotate the performance data onto the acquired node
hardware topology. This allows us to determine the precise
loads on the different available resources. With this informa-
tion we can also estimate the effects of data migration between
resources. Under the assumption that the data is copied to all
lower cache levels between the CPU that was issued the request
and the memory resource where the data was resolved, we
record the resources that an accessed data element must have
been copied to.

B. Application

The term application here refers to the problem being
solved by a code or the dataset it is solving a problem
for. Complex simulation codes often encounter performance
characteristics caused by application-specific behavior such
as boundary conditions, non-deterministic execution, or un-
predictable changes to the program state for given types
of data. Application-specific behavior also includes elements
of the abstract representation of the problem, such as the
data structures and algorithms used. Several solutions exist
to mitigate this issue, such as load-balancing techniques and

branch prediction. Some of these treat application-specific
performance as a black box problem, modifying inputs to
determine a combination for which performance is improved.
Others are predictive and attempt to determine the causes
for performance degradation and resolve them. The latter, in
particular, requires a great deal of understanding how changes
in the application affect performance behavior. In both cases, it
is necessary to determine when and where application-specific
behavior causes performance degradation in order to improve
it.

Schulz et al. noted the significance of providing context
in terms of the application [7]. The programmer often has an
intuition of the application of a program, and Schulz et al.
found it useful to provide this intuitive context to performance
data that is otherwise difficult to interpret.

By nature, the application context cannot be generally de-
termined. For this reason, we provide three semantic attributes
that are generally useful in providing application context to
a memory access sample and created the capability for the
programmer to easily define additional attributes. The gen-
eral attributes provided are the timestamp, access index, and
accessed value. The timestamp can be loosely corresponded
to the program state or executing iteration at the time of the
access. The index indicates the location within a buffer that a
piece of data was accessed from. This may be used to deter-
mine whether the access occured near a data boundary or if the
flow of the program caused accesses to occur in an unexpected
spatial order. This, in conjunction with the timestamp, provides
insight into the access pattern achieved for a specific scenario.
The accessed value may be used to determine whether there
exists a correlation between anomalous data and anomalous
performance, such as performing arithmetic with denormalized
values or causing a divide-by-zero hardware exception.

The programmer may define any additionally desired se-
mantic attribute. Specifically, we have found it useful to define
an attribution to the spatial and temporal locations in the
domain of the applied dataset. For example, the spatial location
may refer to the 2-dimensional coordinates of an element
within an array that represents a matrix, and the temporal
location may refer to the iteration or time step during a
simulation. These attributes may be derived from the existing
sample data or looked up directly from globally accessible
variables in the program.

C. Code

Providing context in terms of the code is the most direct
form of attribution given the data in a memory access sample.
It is also one of the most essential for optimizing a program.
Most forms of performance optimization involve modifying
the source code (as opposed to configuring the hardware,
operating system, scheduling policies, etc.) and thus attributing
performance problems to the code often helps to determine
what may be modified in order to improve the achieved
performance.

Attribution of memory access data to the context of the
code has been recently done by Liu et al. [8] They mapped
memory access samples to their associated lines of code and
data objects using the instruction pointer and accessed data

address. We use the same method with a slightly different
implementation, as described in Section V.

We also record metadata regarding an allocated data object,
specifically the size of the buffer and individual data elements
in conjunction with the symbol name. This allows us to
understand how objects are allocated and gives additional
information regarding the access pattern, for example, if a
buffer is organized as an array of structs (AoS) or struct of
arrays (SoA).

The memory access samples thus include the original at-
tributes along with the following appended semantic attributes:

1) Source Code Line
2) Source Code File
3) Data Symbol
4) Buffer Size
5) Element Size
6) Access Index
7) Accessed Value
8) Resources Used

Additionally, we annotate performance data and resource
traversal onto the acquired hardware topology. We gather
general statistics regarding the access performance, such as
number of samples, total cycles, and average cycles for each
resource.

III. SYSTEM OVERVIEW

Our system is comprised of two main parts: a kernel
module and a source-level instrumentation module. The kernel
module manages memory access sampling, and the instrumen-
tation library is responsible for associating data addresses with
semantic values.

The programmer uses the instrumentation library to specify
data objects of interest and, optionally, functions to collect
additional application-specific semantic attributes. The library
also provides functions for configuring memory access sam-
pling, for which it communicates with the kernel module. The
module, in turn, communicates directly with the hardware.

Fig. 1 shows an overview of the basic system. The library
stores metadata for a programmer-provided data object in a
data structure called a Semantic Memory Range (SMR). All
SMRs are stored in a Semantic Memory Tree (SMT). The
kernel module begins the memory access sampling unit by
setting the appropriate Machine-Specific Registers (MSRs) in
the hardware and registers an interrupt handler to process
and collect samples as they are generated. As the module
produces samples, the instrumentation library consumes them,
performing semantic attribution and recording the results.
Semantic attribution involves searching the SMT for the SMR
associated with the data address of the sample and recording
the sample data along with the semantic information provided
by the SMR (and, optionally, by programmer-defined func-
tions). After sampling is terminated, the programmer may store
the acquired data for post-mortem analysis.

In order for semantic attribution to be possible, it must
occur during the execution of the program. Throughout the
execution, the address range of data objects may change due
to allocation and deallocation operations. In addition, during

Fig. 1: Basic overview of our system. After buffers are allocated, the programmer populates a special data structure called
an SMT containing metadata for specified data objects. When sampling begins, our library continuously reads raw samples,
attributes semantic information to them, and records them. Finally, when sampling is completed, the samples may be collected
for post-mortem analysis.

execution, we are able to access information regarding the
program state, such as the value of accessed data.

IV. MEMORY ACCESS SAMPLING MODULE

Because the PMUs are implemented in hardware, they
gather performance data system-wide. This means memory
access samples may be issued by instructions from any exe-
cuting software, including the operating system. This produces
a large quantity of data that is irrelevant to the program
being analyzed and causes a significant amount of unnecessary
overhead. For this reason, we developed a custom kernel
module responsible for configuring the associated PMUs and
developed functionality to filter out unwanted data.

This module sets sampling options via MSRs and maintains
the sample buffer for each CPU, called the Data Store (DS).
The module allocates one DS per CPU in kernel memory on
the NUMA node where the CPU resides. Because samples are
dumped directly from the CPU to its respective DS, it is critical
that the DS reside on a locally accessible resource. The module
also registers an interrupt handler for the interrupt generated
by a CPU when it fills the DS with a specified number of
samples.

This custom module allows us to accurately filter out
unwanted samples. The module maintains a statically allocated
FIFO queue in which it stores samples from all CPUs. Before
copying a sample from the DS into the CPU, the module can
perform a series of tests to determine whether the sample is
unwanted. We included the functionality to filter out samples
with accessed addresses outside the range of addresses marked
for semantic attribution.

The programmer manages memory access sampling via
our library, which communicates with the kernel module to
configure options in the hardware. The module configures
sampling by either writing to the appropriate Machine-Specific
Registers (MSRs) or by modifying the interrupt handler that
processes samples.

We provide functionality to configure sampling options,
begin sampling, and end sampling. The configurable options
include:

1) Sampling Frequency
2) Overflow Threshold
3) Latency Threshold
4) Sampling Address Range

The sampling frequency is determined by the number of
memory accesses to execute until one is sampled, i.e., for the
provided value N , one sample is taken after every N access
instructions are retired by the CPU. The achieved frequency
varies slightly from this value due to its implementation in
hardware [3].

Samples are collected continuously and saved in a block
of memory called the data store (DS), which is allocated and
maintained by the kernel module. When a certain amount of
samples are collected, the CPU creates a local interrupt. Our
kernel module handles this request by copying all collected
samples from all CPUs into a single FIFO queue, from
which the library may consume them and perform semantic
attribution. The overflow threshold specifies the number of
samples to collect before generating the interrupt.

Because memory access samples are collected upon re-
tirement, it is possible to collect only samples that used a
minimum number of core cycles. This value is the latency
threshold.

In order to filter out accesses to data that are not interesting
or relevant, we collect only samples that lie within a specified
address range, using the filtering method described above. By
default, the range is set to the smallest range that encompasses
all SMRs. After all options are set, the programmer wraps
blocks of code with functions to begin and end memory access
sampling.

This set of configurations makes it possible to collect
memory access data at a fine granularity while avoiding unnec-
essary overhead. The programmer is able to specify the areas
of the code, in terms of both source lines and data objects,
of particular interest in performance analysis. Furthermore, a
programmer can specify the level of detail of the performance
data, which provides control over both the overhead and the
amount of performance data to generate.

V. SOURCE-LEVEL INSTRUMENTATION

Semantic attribution requires the programmer to provide
knowledge from which the library will extract semantic infor-
mation. We developed a source-level instrumentation library
that accepts the required input and performs semantic attribu-
tion in run-time. We describe the methods to use our instru-
mentation library and the underlying mechanisms used, and
we demonstrate code snippets performing this instrumentation
in a simple example.

A. Specifying Data Objects

The programmer specifies a set of data objects for which
semantic attributes will be recorded. Data objects are con-
tiguous allocated blocks of memory, such as single variables,
arrays, and vectors. This is done by creating a Semantic
Memory Tree (SMT) and populating it with Semantic Memory
Ranges (SMR). The SMRs provide the necessary information
to extract semantic attributes from memory access samples in
run-time.

The SMT is an Adelson-Velskii and Landis’ (AVL) tree,
meaning it is a self-balancing binary tree. The programmer
initializes an SMT by calling its constructor and populates it
by inserting SMRs into it. An SMR consists of:

1) A label string
2) The start and end addresses
3) The size of each element
4) The number of elements

The programmer creates and inserts SMRs by passing these
variables as arguments to functions within our library. Leaves
in the SMT represent SMRs, and internal nodes are created
such that the address range of every parent encompasses the
address ranges of both its children.

Whenever the library consumes a memory access sample
produced by the kernel module, it searches for the SMR that
contains the data address accessed. Because this happens dur-
ing program execution, it is critical that the lookup be highly
efficient in order to minimize overhead. We organized the SMT
as an AVL tree, which guarantees O(logN) lookups. Liu and
Mellor-Crummey used a splay tree for a similar purpose [?].
Both implementations have advantages; the splay tree takes
advantage of temporal locality but has a worst-case complexity
of O(N), while the AVL tree has a consistent complexity of
O(logN). We chose the AVL tree because we cannot predict
what various instrumentation and sampling configurations the
programmer sets, and thus we cannot be certain if an execution
will create worst-case scenarios for the splay tree.

B. Semantic Attribution

After the SMR associated with a memory access sample is
found, the library uses this information to derive the semantic
attributes listed in Section II. The data symbol, buffer size,
and element size are already available in the metadata of the
SMR, and the kernel module records the CPU timestamp at
the time it receives a memory access sample. The resources
used are available from the memory access sample.

We determine the line and file of the source code using the
instruction pointer and debug symbols in the code that provide

this mapping. We calculate the access index using the SMR
start address s, element size e, and accessed data address d, as
(d−s)/e. In cases where an individual element is comprised of
multiple values, such as a struct or tuple, we can also determine
which value within the element was accessed. Using the data
symbol and access index, we look up the accessed value for
a particular piece of data and record it as well.

C. Programmer-defined Semantic Attribution

In addition to the semantic attributes from Section II, we
provide the capability for the programmer to define functions
to derive further attributes. These may be application-specific
variables, such as variables values and program state at the
time of a memory access. We have particularly observed
the effectiveness of using programmer-defined attribution to
map an accessed index to a spatial or temporal location in
the context of the application. We demonstrate this with an
example in the following section.

Every SMR contains a function in which it performs se-
mantic attribution for a given SMR and memory access sample.
The programmer may define a set of additional attributes
and write a function that accepts an SMR and a memory
access sample and produces values for the additional attributes.
The programmer must keep in mind that this function will
run during the program execution for every sample, and thus
must take necessary precautions to avoid incurring excessive
overhead.

D. Instrumentation Example: Matrix Multiplication

We demonstrate the instrumentation steps necessary to use
our method for a simple matrix multiplication example. We
show code snippets for specifying the matrix data objects and
defining a custom semantic attribution.

We are interested in the accesses to three data objects: the
two input matrices to be multiplied and the output matrix.
As described, we create an SMT and one SMR for each data
object. To avoid redundancy, we show the code for specifying
one of the three matrices. The syntax is as follows:

#define N 1024
double A[N][N]; // matrix data object

SMRTree *smrt = new SMRTree();
SMRNode *A_SMR =

smrt->addSMR("A", sizeof(double), A, N*N);

By providing the pointer to the first element in each data
object as well as the size and number of elements, our library
can determine the complete range of addresses associated with
the object. The data symbol string must be provided during
instrumentation, as C does not allow code reflection.

This information is sufficient to gather memory access
data with the default provided semantic attributes. To specify
additional attributes, we first define new attributes, as such:

smrt->addIntegerAttribute("x_coord",-1);
smrt->addIntegerAttribute("y_coord",-1);

The x_coord and y_coord attributes refer to the 2-
dimensional coordinates of a data element within a matrix.
The second argument specifies the default value.

(a) (b)

Fig. 2: The radial hierarchy (sunburst) visualization for hard-
ware topology. (a) Dark purple arcs are NUMA domains, light
purple are L3 caches, dark orange are CPUs, and light orange
are L1 and L2 caches. (b) shows a more complex topology
with performance data annotated. We annotate the number of
cycles caused by access to a resource with color; darker means
more cycles. Resource traversal is indicated by lines between
resources, where thicker indicates more data.

Fig. 3: The parallel coordinate visualization for a single
memory access sample. The red line represents the sample,
and the black lines represent its attributes. The intersections
denote the values of the sample for each attribute.

With the knowledge that the matrices are stored in row-
major ordering, we define the following function to populate
these attributes:

void* mat_attribution(SMRNode *smr,
struct mem_sample *sample)

{
// Obtain the index of the address
int bufferIndex =

smr->indexOf(sample->daddr);

// Calculate the x and y indices (row-major)
sample->setAttribute("x_coord", bufferIndex % N);
sample->setAttribute("y_coord", bufferIndex / N);

}

The indexOf function provides the array index, with
which we can calculate the x and y coordinates for a row-major
ordering. The resulting data will have these values appended
for every memory access sample.

VI. VISUALIZATION AND ANALYSIS

We developed a tool, MemAxes, that allows a user to
visually analyze the acquired memory access performance
data. Here, we briefly describe the visualization methods
of MemAxes and how they are interpreted, and we show
screenshots of the tool to explain our results in Section VII.

MemAxes takes advantage of the semantic attributes of the
data to create intuitive visualizations with context. It features
multiple coordinated views, each of which represents the data
in a different context, and allows the user to specify selections
in the various views. The tightly linked nature of the different
views allows us to examine patterns and correlations between
different contexts. We briefly describe three views featured in
MemAxes, (1) the application view, (2) the hardware topology
view, and (3) the parallel coordinates [9] view.

A. Application

As described in Section V, we can attribute memory access
samples to spatial locations with respect to the applied dataset.
We can then employ the same visualization methods that are
typically used to show the dataset. MemAxes employs direct
volume rendering (DVR), a technique capable of displaying
scalar 3-dimensional data, to do so. DVR represents scalar
values using colors and opacities in 3-dimensional space. In
this case, locations of higher opacity and green color indicate
more cycles taken to access elements mapped to a particular
spatial location (shown in Fig. 4). In order to effectively
navigate the 3-dimensional space, MemAxes allows interactive
rotating and zooming as well.

B. Hardware Topology

We record performance data in terms of the node hardware
topology, as outlined in Section V, and thus we can visualize
the data laid out in a representation of the topology. MemAxes
displays the hardware topology in the form of a radial hierar-
chy known as a sunburst chart [10]. Larger memory resources
are placed in the center, CPU IDs are placed on the outer
leaves, and caches are shown for their associated CPUs in
between, as shown in Fig. 2. The color of each segment in
the sunburst chart indicate the number of cycles associated
with the access samples that resolved in a particular resource.
The resource traversal is represented by black lines connecting
radial segments—thicker indicates more samples were copied
between a pair of resources.

C. Parallel Coordinates

Lastly, MemAxes employs a multidimensional visualiza-
tion technique called parallel coordinates [9]. This view shows
each sample as a polyline intersecting a set of parallel axes.
The polyline is constructed such that the intersection between
it and the parallel axes indicate the value of a single attribute in
the sample. An example is shown in Fig. 3. This view enables
a user to view correlations between a high number of different
attributes by examining line segments between axes—crossing
line segments indicate negative correlation, while parallel line
segments indicate positive correlation.

We modified the standard parallel coordinate implementa-
tion to include histograms along each axis in MemAxes. The

histograms represent the distribution of values along one axis
for the shown data, shown in Fig. 6 and 7

D. Analysis Methodology

The process of exploring the dataset to find features of
interest requires the user to make interesting selections. This
is often not straightforward, and as such we developed a
basic methodology for useful interaction in MemAxes. This
methodology is essentially (1) identify any anomalies in any
of the views, and (2) select the anomalous data and look for
patterns or correlations in the selected data.

Here, data anomalies refer to data outliers or identifiable
distributions (such as a cluster of memory accesses originating
from a small set of variables). Patterns and correlations that
may be observed are relative to the view in which they are
visible, e.g. the hardware topology view may show that a
selection of memory accesses were requested mainly from
even-numbered CPUs. Parallel coordinates are particularly
suited for viewing correlations between pairs of attributes—
the axes may be reordered to place two dimensions next to
each other, and if the lines between them are uncrossed, the
data is positively correlated, while many crossings indicate a
negative correlation.

VII. CASE STUDIES

We used our method to identify real performance problems
in two different benchmark applications, LULESH and XS-
Bench. All executions were performed on an isolated single
node of the Hyperion HPC test bed [11]. This node uses
an Intel Xeon E5-2660, which features 32 logical CPUs (16
physical), 16 32kB L1 caches, 16 256kB L2 caches, 2 20MB
L3 caches, and 2 32GB NUMA domains.

A. LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydro-
dynamics (LULESH) is a proxy application for calculating
the Sedov blast problem [12]. It highlights the performance
characteristics involved with performing simulations on an
unstructured mesh. Specifically, as the mesh deforms to match
the underlying Lagrangian structures, the changing mesh co-
ordinate locations must be looked up via a secondary array.
This indirect method for determining coodinate locations often
causes memory access inefficiency. LULESH takes advan-
tage of parallelism via OpenMP, and we hoped to determine
whether the parallel decomposition could be related to its
memory performance characteristics.

We instrumented all persistent data buffers that contained
state information for the simulated mesh. We also provided two
application-specific semantic attributes: 3-dimensional location
and iteration. Like the example in Section V we created a
function to determine mesh coordinates. In this case, the mesh
is a 3-dimensional, row-major ordered array. We also provided
a function to look up and record the currently executing
iteration.

We ran LULESH for a 453-resolution mesh while obtaining
semantic memory access samples for the code segment that
runs the iterative simulation steps. We set the memory sam-
pling configuration to sample an access every four instructions
and only those with access latencies greater than 30 cycles.

Fig. 4: The memory access performance data visualized in
the context of the application dataset. Colored boxes in 3-
dimensional space indicate the number of samples taken to
access a data element associated with that location over the
whole execution. We selected a range of values along the z
axis similar to Fig. 5 and can see a fairly uniform distribution
of access cycles within it.

(a) (b)

(c) (d)

Fig. 5: The visualized memory access performance data for
two executions of LULESH with different specified thread
affinities. (a) and (b) correspond to the execution with the
default thread affinity, and (c) and (d) correspond to the
execution using an optimized thread affinity for this particular
hardware. The first execution shows that while the selected data
is associated with a contiguous block of locations along the
z axis, the utilized resources are split between both sockets,
indicating poor thread locality. The second shows the same
selection, this time with utilized resources lying next to each
other on a single socket, indicating improved thread locality.

Thread Affinity Default Optimized
L1 samples 2745 1966
L2 samples 2931 1996
L3 samples 1568 1099
NUMA samples 4 0
Sampled Memory Access Cycles 1112677 624305
Average Cycles / Sampled Access 112.77 91.48
Execution Time 69.64s 62.65s

TABLE I: The memory access performance and execution
time for running LULESH with and without optimized thread
affinity. The optimized version shows a significant reduction
in the number of samples, indicating fewer accesses with more
than 30 cycles. In addition, no NUMA accesses were recorded
in the optimized version, which typically require 500+ cycles.
The total number of cycles reduced by 44%, and the total
execution time reduced by 10%.

Post-mortem analysis revealed a detrimental relationship
between the utilized resources and the decomposition of the
dataset. In our visualization program, we selected the accesses
associated with a portion of the mesh, specifically, a range
of coordinates in the z-axis. Fig. 4 shows the location of
this selection in terms of the application mesh. This selection
represents a contiguous block of data in the application, but
we can see in Fig. 5 (a) and (b) that its accesses are associated
with a set of hardware resources with little locality.

Initially, the OpenMP directives were unchanged from the
defaults except to bind threads to CPUs. The default thread
affinity is in order, meaning OMP thread N is bound to
CPU N for all threads and CPUs. On architectures where
consecutive CPU IDs share memory resources, this effectively
enables CPUs to read and write to shared caches. However,
on this architecture, the CPUs are numbered such that all odd-
numbered CPUs lie on one socket, and all even-numbered
CPUs lie on another. Furthermore, logical CPUs that lie on
the same physical CPU are numbered such that the difference
between each pair is 16 (e.g., 2 and 18 share a physical CPU).

The program was originally organized with the intention of
exhibiting locality between threads. The dataset was decom-
posed such that the portion of data processed by thread 0 be
close in address space to that of thread 1. However, due to the
CPU numbering scheme, the execution achieved poor locality
between parallel threads.

We modified the thread affinity to reflect the order origi-
nally intended by LULESH. We set it such that consecutive
pairs of thread IDs lie on the same physical CPU, and neigh-
boring pairs lie on the same socket. The resulting execution
exhibited highly improved memory access performance and
ran 10% faster than the execution with default thread affinity.
Fig. 5 shows the achieved thread locality for each of the
two executions. The detailed performance results are shown
in Table I.

We may also detect more subtle performance behaviors,
though we cannot make any definite conclusions based on
these observations, but rather form hypotheses to test. We
observed a correlation between memory access performance
and the executing iteration. By selecting different sets of data

Fig. 6: Parallel coordinates showing memory access samples
for an execution of LULESH. The number of samples increases
linearly with the iteration, indicating a possible application-
specific performance degradation. We also see a slight neg-
ative correlation between iterations and indices (indicated by
crossing lines between the two axes), which possibly attributes
the degradation to low-index accesses.

objects, we found some that exhibited patterns of behavior.
The data object m_dvdz in particular was sampled at a
linearly increasing rate over the iterations of the execution,
suggesting that access efficiency for this object degrades over
time (Fig. 6). This may be due to later iterations accessing
the object more frequently or more sporadically, or it may be
indicative of performance issues propagating delays to later
iterations. The parallel coordinates view also shows a slight
negative correlation between the access index and iterations.
We can hypothesize that the performance degradation is due to
slow accesses at lower indices. The lowest indices show a spike
in the number of accesses, possibly indicating compulsory
cache misses.

B. XSBench

XSBench isolates a computationally costly portion of
OpenMC, a code that calculates neutron criticality [13]. The
portion is responsible for calculating the effects of different
media on a particle’s trajectory using Monte-Carlo methods.
Because the code uses a Monte-Carlo sampling method, it
incurs highly random accesses across large data buffers. This
access pattern violates spatial and temporal locality, thus
poorly utilizing caches. We instrumented the two large data
objects that are pseudo-randomly sampled, one that contains
energies and another that contains nuclide information.

In the acquired XSBench data, we detected unexpected
behavior in the hardware. The behavior found was independent
of the program and further scrutiny revealed that it also
appeared in the LULESH data, though not as clearly.

We found a significant correlation between the socket IDs
and two clusters in the access cycles. Socket 0 was associated
with a cluster of lower average latency while socket 1 was
associated with one of higher average latency, as shown in
Fig. 7. We hypothesized that this behavior could possibly

(a) (b)

(c) (d)

Fig. 7: The visualized data for two different selections of the
XSBench performance data. (a) and (c) show the views when
accesses from socket 0 are selected, and (b) and (d) show the
same when accesses from socket 1 are selected. There is a
significant correlation between the node and two clusters of
samples along the latency axis.

indicate that the frequently accessed memory resides mostly
on the NUMA domain of socket 0, thus causing multiple slow
remote accesses from socket 1. It could also indicate a different
hardware configuration for different sockets.

We tested various hypotheses and eventually diagnosed the
problem as a hardware configuration issue. Specifically, the
architecture has a feature for automatic frequency scaling. We
checked the scaling values and found that one socket had on
average a higher frequency scaling that would account for the
difference in cycles between the two clusters. Work has been
done in the area of frequency scaling and has shown that often
the scaling does not accurately reflect the workload and is
often unpredictable [14]. In the case of multiple sockets, this
behavior may cause sockets to vary significantly in capability
and cause load imbalances.

VIII. OVERHEAD ANALYSIS

A primary goal for our method is minimizing overhead.
This includes the computation time involved in the sampling
module and semantic attribution as well as the corruption of
memory resources. Particularly, as the SMT is searched for
data addresses, its contents may populate caches and evict
data that would otherwise have not been evicted. However,
we evaluated the overhead of our method in terms of the
added time alone, since there is no direct way to measure
cache corruption overhead without causing more corruption.

Threshold \Frequency 1 100 10000
8 7.279616 6.932973 6.944184
16 2.974080 2.984340 2.987014
32 2.944022 2.97409 2.949461
64 2.881519 2.872536 2.878411
128 2.870055 2.872094 2.870017

TABLE II: Execution times for different configurations of
memory access sampling. Rows are different latency thresh-
olds and columns are different frequencies. While overhead
correlates highly with latency thresholds, the frequency does
not greatly affect overhead.

Latency Threshold # of Samples
8 16901
16 6239
32 206
64 92
128 33

TABLE III: Number of sampled memory accesses for different
latency thresholds. Frequency is fixed to 1. Samples quickly
drop in number for higher thresholds.

As mentioned in Section V, using programmer-defined
semantic attribution functions may greatly affect overhead.
We evaluated the results using the instrumented version of
LULESH explained in Section VII, which involves relatively
simple semantic attribution functions.

We show the execution times for different sampling con-
figurations on LULESH in Table II. Decreasing the latency
threshold greatly affects the overhead, but frequency has a
fairly negligible effect on overhead in this case. A threshold of
less than 7 causes such excessive overhead that the program
crashes. On the other hand, the difference in execution times
from a threshold of 64 to a threshold of 128 was nearly
negligible. We know that changing the sampling frequency
changes the number of dumped samples linearly, and from
this information we can observe that the relationship between
the latency threshold and overhead resembles a hyperbolic
function—steeply decreasing at low values and approaching
constant at higher values.

We also performed tests to determine the granularity of
the acquired data. Because frequency did not greatly affect the
overhead, we measured the sample data for a fixed frequency
and varying levels of latency thresholds. The results are shown
in Table III. These results confirm those of Table II—the
number of samples is primarily controlled by the latency
threshold.

We found that our method can successfully acquire a large
number of memory access samples (6000-17000 samples in a
3-7 second run) while staying within feasible limits of added
overhead. However, our module can also be configured to
acquire a vast amount of samples with excessive overhead, and
thus care must be taken to determine the proper configuration.

IX. RELATED WORK

Many tools have attempted to address the memory bot-
tleneck. However, prior work focuses mainly on connecting
memory accesses to source code and to particular variables in
the source code. It does not allow rich exploration of correla-
tions with the NUMA topology or with dynamic application
data structure properties, such as mesh coordinates.

A. Memory Instruction Measurement

Dean et al. [15] developed the first instruction sampling
techniques in their ProfileMe framework for the DEC Alpha
processors. This was the precursor to modern instruction
sampling techniques only now appearing in Intel and AMD
chips as PEBS and IBS, respectively [4].

PAPI [16] is a portable API for hardware performance
counters. PAPI’s interface allows memory events to be counted
and sampled, but with less precision than modern instruction
sampling. For architectures without instruction sampling, Rutar
and Hollingsworth [17], [18] have developed techniques to
mitigate instruction skid so that data-centric attribution can
be used with traditional PMUs and PAPI. These techniques
would allow our measurement techniques to be applied with
some precision loss on architectures that do not provide PEBS
or IBS.

B. Memory profiling tools

Many tools have been developed to highlight cache locality
problems [19]–[21], to highlight NUMA issues in code [22],
[23], and to map these issues to particular variables through
static analysis [17], [21], [24]. These techniques differ from
ours in that they examine a much more limited set of cor-
relations, and do not provide intuitive linked views of the
different domains for analysis. In particular, none of these
views provides mapping onto a hardware topology view to
highlight data movement or load imbalance. Further, none of
them provides mappings onto application semantic concepts
such as mesh coordinates.

C. Data-centric analysis

Alpern et al. [25] introduced a memory visualization show-
ing how data structures fit into different levels of cache. The
visualization was a model and was not based on detailed
measurement. Xu and Mellor-Crummey [8], [26] have devel-
oped the most sophisticated existing data-centric measurement
techniques within HPCToolkit. Their techniques can highlight
memory access patterns, latencies, and NUMA problems.
However, their tool shows data numerically or with simple
memory-domain visualization. It does not show correlations
to the application domain or to the processor topology, and
it does not allow for rich exploration of memory data. The
measurement techniques and views in their tool could be used
to complement our tool with additional access pattern analysis.

X. CONCLUSIONS AND FUTURE WORK

We developed novel methods to understand on-node mem-
ory access performance. This method involves a new sampling
technique that is highly configurable and supports the acqui-
sition of fine-grained memory access samples while avoiding

overhead and excessive unwanted data. Furthermore, we cre-
ated a novel technique to map several semantic attributes to
the samples that provide several meaningful contexts. These
contexts allow performance analysts to better interpret memory
access data. We evaluated both the effectiveness of analyzing
our acquired data and the overhead incurred by our method.
The data successfully helped us detect, diagnose, and solve
performance problems in benchmark applications. In terms of
overhead, we found that we could gather a sufficient amount
of data for analysis with low overhead.

The portions of our methods that have proven most suc-
cessful are the gained intuition from high-level contexts and
the ability to relate information between these contexts. Under-
standing data for analysis often requires a point of reference.
Our method provides points of reference via a set of contexts
that have proven intuitive to the programmers it is intended for.
However, the context is intricately tied to a set of performance
characteristics that it may elucidate, so it is essential to provide
a varied set of contexts.

The presented case studies involved only benchmark or
proxy applications. We would like to apply our method to
more complex codes and domains, such as AMR codes and
multi-physics simulations, and explore the available contexts
in them.

Although we developed the instrumentation library with
simplicity in mind, it still requires moderate familiarity with
the code for successful instrumentation. Data objects of interest
are specified by the programmer, and therefore the programmer
is responsible for determining the relevant objects and the
correct areas in the code to instrument them. It is possible
to remove the burden of instrumentation by performing binary
analysis and interception of memory allocation calls, similar
to [8], and we would like to explore the kind of semantic
attribution possible in such a scenario.

The idea of semantic attribution is not specific to memory
access performance data. We hope to expand the definition
to include different types of performance data, such as power
consumption. We expect different types of data to require the
definition of new contexts and attributes in order to capture
the performance characteristics associated with them.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
658626).

This effort was also supported by the University of Califor-
nia through its UC Laboratory Fees Research Grant Program.

We thank John Tramm and Tanzima Islam for their valuable
input regarding the performance characteristics of XSBench
and the administrators for the Hyperion test bed for helping
us in the testing phase of the kernel module.

REFERENCES

[1] “The International Technology Roadmap for Semiconductors (ITRS),
System Drivers, 2009, http://www.itrs.net/.”

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall:
Implications of the obvious,” SIGARCH Comput. Archit. News,
vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/216585.216588

[3] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume
3B, Intel Corporation, August 2007.

[4] P. J. Drongowski, L. Yu, F. Swehosky, S. Suthikulpanit, and
R. Richter, “Incorporating instruction-based sampling into amd
codeanalyst.” in ISPASS. IEEE Computer Society, 2010, pp. 119–120.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ispass/ispass2010.
html#DrongowskiYSSR10

[5] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “Hwloc: A generic framework
for managing hardware affinities in hpc applications,” in Proceedings
of the 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, ser. PDP ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 180–186. [Online]. Available:
http://dx.doi.org/10.1109/PDP.2010.67

[6] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,”
CoRR, vol. abs/1004.4431, 2010. [Online]. Available: http://dblp.
uni-trier.de/db/journals/corr/corr1004.html#abs-1004-4431

[7] M. Schulz, J. A. Levine, P. T. Bremer, T. Gamblin, and V. Pascucci,
“Interpreting Performance Data across Intuitive Domains,” in Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 2011,
pp. 206–215.

[8] X. Liu and J. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 28:1–28:12. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503297

[9] A. Inselberg and B. Dimsdale, “Parallel coordinates: a tool for visual-
izing multi-dimensional geometry,” in VIS ’90: Proceedings of the 1st
conference on Visualization ’90. IEEE Computer Society Press, Oct.
1990, pp. 361–378.

[10] J. Stasko and E. Zhang, “Focus+context display and navigation tech-
niques for enhancing radial, space-filling hierarchy visualizations,”
Information Visualization, 2000. InfoVis 2000. IEEE Symposium on,
pp. 57–65, 2000.

[11] K. Light, “Hyperion: A titan of high-performance computing systems,”
Science and Technology Review, pp. 15–16, Dec. 2009.

[12] “Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory,” Tech. Rep. LLNL-TR-490254.

[13] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench–The
development and verification of a performance abstraction for Monte
Carlo reactor analysis,” mcs.anl.gov.

[14] B. Rountree, D. Ahn, B. De Supinski, D. Lowenthal, and M. Schulz,
“Beyond dvfs: A first look at performance under a hardware-enforced
power bound,” in Parallel and Distributed Processing Symposium
Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International, May
2012, pp. 947–953.

[15] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos,
“Profileme: Hardware support for instruction-level profiling on out-
of-order processors,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO 30.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 292–302.
[Online]. Available: http://dl.acm.org/citation.cfm?id=266800.266828

[16] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proc. Department of
Defense HPCMP User Group Conference, Jun. 1999.

[17] N. Rutar and J. K. Hollingsworth, “Data centric techniques for mapping
performance data to program variables,” Parallel Computing, vol. 38,
no. 1-2, pp. 2–14, 2012.

[18] ——, “Software techniques for negating skid and approximating cache
miss measurements,” Parallel Computing, vol. 39, no. 3, pp. 120–131,
2013.

[19] W. Cachegrind, “a cache-miss profiler,”
http://valgrind.org/docs/manual/cg-manual.html.

[20] B. R. Buck and J. K. Hollingsworth, “Data centric cache measurement

on the Intel Itanium 2 processor,” in Supercomputing (SC’04), Wash-
ington, DC, USA 2004, p. 58.

[21] M. Martonosi, A. Gupta, and T. Anderson, “Memspy: Analyzing
memory system bottlenecks in programs,” in Proceedings of
the 1992 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’92/PERFORMANCE ’92. New York, NY, USA: ACM, 1992, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/133057.133079

[22] C. McCurdy and J. S. Vetter, “Memphis: Finding and fixing NUMA-
related performacne problems on multi-core platforms,” in IEEE Intl.
Symp. on Performance Analysis of Systems Software (ISPASS’10),
March 2010, pp. 87–96.

[23] R. Lchaize, B. Lepers, and V. Quéma, “MemProf: a memory profilers
for NUMA multicore systems,” in USENIX Annual Technical Confer-
ence (USENIX ATC’12), Berkeley, CA, 2012.

[24] R. B. Irvin and B. P. Miller, “Mapping performance data for high-
level and data views of parallel program performance,” in International
Conference on Supercomputing (ICS’96), New York, NY, USA, 1996,
pp. 69–77.

[25] B. Alpern, L. Carter, and T. Selker, “Visualizing computer memory
architectures,” in Visualization, 1990. Visualization ’90., Proceedings
of the First IEEE Conference on. IEEE Comput. Soc. Press, 1990, pp.
107–113.

[26] X. Liu and J. Mellor-Crummey, “A tool to analyze the performance
of multithreaded programs on NUMA architectures,” in PPoPP ’14:
Proceedings of the 19th ACM SIGPLAN symposium on Principles and
practice of parallel programming. New York, New York, USA: ACM
Request Permissions, Feb. 2014, pp. 259–272.

http://doi.acm.org/10.1145/216585.216588
http://dblp.uni-trier.de/db/conf/ispass/ispass2010.html#DrongowskiYSSR10
http://dblp.uni-trier.de/db/conf/ispass/ispass2010.html#DrongowskiYSSR10
http://dx.doi.org/10.1109/PDP.2010.67
http://dblp.uni-trier.de/db/journals/corr/corr1004.html#abs-1004-4431
http://dblp.uni-trier.de/db/journals/corr/corr1004.html#abs-1004-4431
http://doi.acm.org/10.1145/2503210.2503297
http://dl.acm.org/citation.cfm?id=266800.266828
http://doi.acm.org/10.1145/133057.133079

	Introduction
	Memory Access Performance Data and Semantic Attributes
	Node Hardware Topology
	Application
	Code

	System Overview
	Memory Access Sampling Module
	Source-Level Instrumentation
	Specifying Data Objects
	Semantic Attribution
	Programmer-defined Semantic Attribution
	Instrumentation Example: Matrix Multiplication

	Visualization and Analysis
	Application
	Hardware Topology
	Parallel Coordinates
	Analysis Methodology

	Case Studies
	LULESH
	XSBench

	Overhead Analysis
	Related Work
	Memory Instruction Measurement
	Memory profiling tools
	Data-centric analysis

	Conclusions and Future Work
	References

