
A Practical Approach to Morse-Smale Complex Computation:
Scalability and Generality

Attila Gyulassy, Peer-Timo Bremer, Member, IEEE, Bernd Hamann, Member, IEEE, and Valerio Pascucci, Member, IEEE

Abstract—The Morse-Smale (MS) complex has proven to be a useful tool in extracting and visualizing features from scalar-valued
data. However, efficient computation of the MS complex for large scale data remains a challenging problem. We describe a new
algorithm and easily extensible framework for computing MS complexes for large scale data of any dimension where scalar values
are given at the vertices of a closure-finite and weak topology (CW) complex, therefore enabling computation on a wide variety of
meshes such as regular grids, simplicial meshes, and adaptive multiresolution (AMR) meshes. A new divide-and-conquer strategy
allows for memory-efficient computation of the MS complex and simplification on-the-fly to control the size of the output. In addition
to being able to handle various data formats, the framework supports implementation-specific optimizations, for example, for regular
data. We present the complete characterization of critical point cancellations in all dimensions. This technique enables the topology
based analysis of large data on off-the-shelf computers. In particular we demonstrate the first full computation of the MS complex for
a 1 billion/10243 node grid on a laptop computer with 2Gb memory.

Index Terms—Topology-based analysis, Morse-Smale complex, large scale data.

1 INTRODUCTION

Scientific data is becoming increasingly complex, and sophisticated
techniques are required for its effective analysis and visualization. Ad-
ditionally, data size increases accordingly with the size of memory,
therefore analysis techniques must also be scalable. Topology-based
visualization has become a useful technique in extracting features for a
wide range applications, primarily due to its ability to simplify features
in a controlled manner. The MS complex is a structure that represents
the gradient flow behavior and completely encapsulates the topology
of level sets of a scalar function. It has been shown to be effective in
identifying, ordering, and selectively removing features. Computing
a combinatorially correct MS complex is very challenging, and previ-
ous algorithms are memory-intensive and computationally expensive,
restricting their use to smaller datasets.

We present a new algorithm for constructing a consistent MS com-
plex: a framework which utilizes a divide-and-conquer strategy for
dealing with large scale data in a variety of data formats and of any
dimension. The kernel of our algorithm computes the discrete gradi-
ent on a parcel of the input data, generates an MS complex from the
gradient on the parcel, and then merges the MS complexes together
across the boundaries of the parcels. We use the discrete formulation
of Morse theory as opposed to the continuous formulation for two rea-
sons: it is simpler to implement because there are no special cases
when dealing with higher dimensional components of the MS com-
plex; and it makes it possible to fix the gradient flow on the boundary
of parcels to enable a stratified approach. The discrete gradient and
MS complex are computed independently on each parcel, and only the
MS complex and gradient on the boundary of the parcel are necessary
to merge parcels. We can control the size of the parcels and size of
the MS complex through simplification to obtain a memory-efficient
algorithm. We resolve degeneracies in the scalar function, such as flat
regions and multi-saddles, in a consistent manner and construct the

• Attila Gyulassy is with UC Davis and Lawrence Livermore National
Laboratory, E-mail: aggyulassy@ucdavis.edu.

• Peer-Timo Bremer is with Lawrence Livermore National Laboratory,
E-mail: ptbremer@acm.org.

• Bernd Hamann is with University of California, Davis, E-mail:
hamann@cs.ucdavis.edu.

• Valerio Pascucci is with University of Utah, E-mail: pascucci@acm.org.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

discrete gradient field and associated MS complex to agree with the
scalar flow wherever possible. We characterize cancellation operations
for MS complexes of any dimensions. We present the algorithm in a
framework that makes it possible to implement multiple data formats
by means of simple query functions, and also permits format-specific
optimizations, for example, for regular grids. We show that this ap-
proach is comparable in performance to the fastest previous algorithm,
but applicable to significantly larger data sets.

1.1 Related work
Often, features in a scalar field correspond to topological changes in
the isosurface during a sweep of the domain. The life-cycle of a
topological feature during this sweep is indicated by a pair of criti-
cal points, one indicating the creation of the feature and the other the
feature’s destruction. Topology-aware methods have proven to be ef-
fective in controlled simplification of scalar functions and hence in
the creation of multiresolution representations. As opposed to geome-
try simplification using mesh decimation operators like edge contrac-
tion [7, 11, 12, 18, 23, 30], which result in unpredictable simplifica-
tion of topological features, topology-aware methods either monitor
changes to the topology [6, 13] or explicitly compute the topological
features and perform necessary geometric operations to remove small
features.

The Reeb graph [26] traces components of isosurfaces (or contours)
as one sweeps through the allowed range of isovalues. In the case
of simply connected domains, the Reeb graph has no cycles and is
called a contour tree. Reeb graphs, contour trees, and their variants
have been used successfully to guide the removal of topological fea-
tures [7, 4, 14, 31, 32, 33, 3]. Of particular note is the approach by
Pascucci et al. [24], which shows how the Reeb graph can be con-
structed in a streaming manner for large datasets. Reeb graphs and
contour trees have been used to trace the construction, merging, and
destruction of isosurface components. The MS complex, however, is
a more complete description, since it also detects genus changes in
isosurfaces.

Partitions of surfaces induced by a piecewise-linear function have
been studied in different fields, under different names, motivated by
the need for an efficient data structure to store surface features. Cay-
ley [5] and Maxwell [22] proposed a subdivision of surfaces using
peaks, pits, and saddles along with curves between them. The develop-
ment of various data structures for representing topographical features
was discussed by Rana [25].

The MS complex is a topological data structure that provides
an abstract representation of the gradient flow behavior of a scalar
field [29, 28]. Edelsbrunner et al. [9] defined the MS complex for

piecewise-linear 2-manifolds by considering the PL function as the
limit of a series of smooth functions and used this intuition to transfer
ideas from the smooth case. They also provided an efficient algorithm
to compute the MS complex, restricted to edges of the input triangula-
tion, and to build a hierarchical representation by repeated cancellation
of pairs of critical points.

Bremer et al. [2] improved on the algorithm and described a multi-
resolution representation of the scalar field. Both algorithms trace
paths of steepest ascent and descent beginning at saddle points. These
paths constitute boundaries of 2D cells of the MS complex. Cells in
the MS complex of a 3D scalar field can be of dimension 0, 1, 2, or 3.
Tracing boundaries of the 3D cells while maintaining a combinatorial
valid complex is a non-trivial task and a practical implementation of
such an algorithm remains a challenge [8]. Nevertheless, the MS com-
plex has been computed for volumetric data and successfully used to
identify features through repeated application of atomic cancellation
operations [15]. Computation of the complex in this manner requires
a preprocessing step that subdivides every voxel by inserting “dummy”
critical points, and therefore has a large computational overhead. This
approach was improved by using a sweeping plane [16], but data size
and computational overhead still proved to be a limiting factor. An al-
gorithm based on region-growing [17] similar to the watershed trans-
form [27, 1] was introduced for simplicial meshes of three dimensions,
with a tenfold improvement in efficiency, however, the need to store
several fields at each cell of the input, and the requirement to repre-
sent the entire output explicitly limits the scalability of this approach.
In each of these approaches, the MS complex computed is consistent,
meaning that the structure of the complex is combinatorially correct.
Degenerecies in the data are overcome by consistent combinatorial
decisions, resulting in MS complexes that reflect a particular interpre-
tation of the input.

In our approach, we utilize discrete Morse theory as presented by
Forman [10]. Lewiner et al. [21] showed how a discrete gradient field
can be constructed and used to identify the MS complex, however,
this construction requires modification of the input mesh and an ex-
plicit representation of gradient paths, restricting the applicability of
the method. King et al. [19] presented a method for constructing a dis-
crete gradient field that agrees with the large-scale flow behavior of the
data defined at vertices of the input mesh. All of these algorithms for
constructing the MS complex have a critical shortcoming: they require
processing of the entire dataset and a representation of the complex at
the finest level of detail before any simplification can be done. In prac-
tice, this imposes limits on both the size, and the complexity of the data
that can be handled.

1.2 Contributions

We present the following new contributions:

• a complete characterization of cancellations of critical points of
an MS complex of any dimensions in terms of how the cancella-
tion affects the 1-skeleton and cells of the complex;

• a new algorithm for computing the discrete gradient field associ-
ated with a function with discrete samples at vertices of a mesh;

• a memory-efficient divide-and-conquer approach for construct-
ing MS complexes, which computes portions of the complex in-
dependently and “glues” them back together; and

• a simple framework that supports large data of many formats and
of any dimensions.

2 BACKGROUND

Morse theory has been well-studied in the context of smooth scalar
functions. However, scientific data is often presented as a set of dis-
crete samples over a domain, often also involving a volumetric grid
or a tetrahedralization, which necessitates an adaptation of the smooth
theory. Discrete Morse theory is a parallel theory which is specially
designed to operate on meshes.

7

2

1

5

0
2

3

4

5

6
7

2

1

4

3 3

4

5

0
2

3

4

5

6

Fig. 1. A discrete Morse function (left) assigned to the simplices of a
simple circle. The associated discrete gradient field (right) is a pairing
of the vertices and edges. Note that the critical simplices of the discrete
Morse function correspond exactly to the unpaired simplices of the dis-
crete gradient field. In both cases, the vertex f−1(0) and the edge f−1(7)
are the minimum and maximum respectively.

2.1 Morse Functions and the Morse-Smale Complex
A real-valued smooth map f : M → R defined over a compact d-
manifold M is a Morse function if all its critical points are non-
degenerate (i.e., the Hessian matrix is non-singular for all critical
points) and no two critical points have the same function value. An
integral line of f is a maximal path in M whose tangent vectors agree
with the gradient of f at every point of the path. Each integral line
has a natural origin and destination at critical points of f where the
gradient becomes zero. Ascending and descending manifolds are ob-
tained as clusters of integral lines having common origin and desti-
nation respectively. The Morse-Smale (MS) complex, denoted Γ, is a
partition of M into regions clustering integral lines that share common
origin and destination. In Morse-Smale functions, the integral lines
only connect critical points of different indices.

Each critical point of index n is the origin of a set of integral lines
that forms an ascending d−n-manifold. Symmetrically, it is the des-
tination of a set of integral lines that forms a descending n-manifold.
All ascending and descending manifolds of a Morse-Smale function
intersect transversally. Therefore, given two critical points a and b,
where the index of a is one less than the index of b, the intersection of
the ascending manifold of a and the descending manifold of b is either
empty or a 1-manifold. The critical points and these 1-manifolds are
called nodes and arcs. The one-skeleton formed by the nodes and arcs
forms the combinatorial structure of the MS complex. The combina-
torial structure contains much of the semantic information of f , and
is useful for simplification and feature identification. The neighbor-
hood of a node a of an MS complex Γ is the set of nodes Na that are
connected to a by an arc in Γ.

2.2 Discrete Morse Theory
The discrete Morse theory introduced by Forman [10], is a parallel
theory to smooth Morse theory, and shows how to apply principles
from smooth theory to the discrete setting. We present some basic
definitions from discrete Morse theory. A d-cell is a topological space
that is homeomorphic to a d-ball Bd = {x ∈ Ed : |x| ≤ 1}. For cells
α and β , α < β means that α is a face of β and β is a co-face of
α , i.e., the vertices of α are a proper subset of the vertices of β . If
dim(α) = dim(β)−1, we say α is a facet of β , and β is a co-facet of
α . A cell α has dimension d, and we denote this as α(d).

A finite CW-complex is a topological space X such that there exists
a finite-nested sequence

/0⊂ X0 ⊂ X1 ⊂ ·· · ⊂ Xn = X

such that for each i = 0, 1, 2, ... , n, Xi is the result of attaching a
cell to X(i−1). A regular CW complex is a finite CW-complex, where
any two incident cells ρ and τ with dim(τ) = dim(ρ)− 2, there are
exactly two cells σ1 and σ2 such that τ < σ1 < ρ and τ < σ2 < ρ .
This requirement imposes restrictions on the attaching map, forcing

(a) (b)

Fig. 2. The circled arc connects a saddle l to a maximum u (a). Can-
cellation of (l,u) removes all arcs attached to l or u, and creates new
arcs from the lower neighbors of u to the upper neighbors of l (b). In the
two-dimensional case, this connects all the saddles neighboring u to the
maximum neighboring l, in effect, merging l and u with the maximum).

the entire boundary of an attached cell to be glued to the topological
space, and restricting the boundary of a d-cell to be homeomorphic to
a (d−1)-sphere.

Let K be a regular complex that is a mesh representation of M. A
function f : K → R that assigns scalar values to every cell of K is a
discrete Morse function if for every α(d) ∈ K, its number of co-faces
|{β (d+1) > α| f (β)≤ f (α)}| ≤ 1, and its number of faces |{γ(d−1) <

α| f (γ) ≥ f (α)}| ≤ 1. A cell α(d) is critical if its number of co-faces
|{β (d+1) > α| f (β)≤ f (α)}|= 0 and its number of faces |{γ(d−1) <
α| f (γ)≥ f (α)}|= 0. Figure 1 illustrates these configurations.

A vector in the discrete sense is a pair of cells {α(d) < β (d+1)},
where we say that an arrow points from α(d) to β (d+1). Intuitively,
this simulates a direction of flow. A discrete vector field V on K is a
collection of pairs {α(d) < β (d+1)} of cells of K such that each cell is
in at most one pair of V .

Given a discrete vector field V on K, a V -path is a sequence of cells

α
(d)
0 ,β

(d+1)
0 ,α

(d)
1 ,β

(d+1)
1 ,α

(d)
2 , . . . ,β

(d+1)
r ,α

(d)
r+1

such that for each i = 0,..., r, the pair {α(d) < β (d+1)} ∈ V , and
{β (d+1)

i > α
(d)
i+1 6= α

(d)
i }. A V -path is the discrete equivalent of a

streamline in a smooth vector field. A discrete vector field in which
all V -paths are monotonic and do not contain any loops is a discrete
gradient field. We will use V -paths to compute the MS complex of a
discrete gradient field.

2.3 Persistence-based Simplification
A function f is simplified by repeated cancellation of pairs of critical
points. The local change in the MS complex indicates the smoothening
of the gradient vector field and hence of the function f . The ordering
of critical point pairs is defined by persistence, which quantifies the
importance of the topological feature associated with a pair. The per-
sistence of a critical point pair is the absolute difference in value of
f between the two points. We use the ordering given by persistence
to reduce the number of critical points and hence remove topological
features from f .

A cancellation operation is valid (i.e., it can be realized by a local
perturbation of the gradient vector field) on a pair of critical points if
and only if there is exactly one arc connecting them in the complex.
Therefore, the indices of the two critical points must differ by one.
Also, any critical point pair that is connected by multiple arcs repre-
sents a configuration known as a strangulation or a pouch, for which
there is no direct perturbation of the gradient that removes the critical
point pair.

We characterize the cancellation operation for MS complexes of
any dimensions in terms of a change in the combinatorial structure of
the complex. The geometric change in the manifolds of critical points
can be derived from this combinatorial change.

Cancellation: Let Γ be an MS complex for a scalar function de-
fined on a closed d-manifold M. Let l and u be the lower and upper
nodes of an arc a in Γ, with index i and i + 1 respectively. Let Al be

the set of arcs that have l as one end point, Au the set of arcs that have
u as one end point, Nl the set of nodes in the neighborhood of l, and
Nu the set of nodes in the neighborhood of u.

The combinatorial cancellation of (l,u) changes the combinatorial
structure of the MS complex and is characterized as follows:

1. Create a new arc connecting every critical point of index i+1 in
Nl to every critical point of index i in Nu, and add them to Γ.

2. All arcs in Al , Au are removed from the complex, and l and u are
also removed from the complex.

This operation changes the 1-skeleton of the MS complex, how-
ever, it also represents a change in the embedding. This change can
be derived from the combinatorial cancellation, and one simple way
to maintain a valid embedding is to characterize it as a merging of
the manifolds of the nodes involved in the cancellation. We call the
change in the embedding the geometric realization of the cancellation
and it is characterized as follows:

1. For every node of index i + 1 in Nl , merge its descending mani-
fold with the descending manifold of u.

2. For every node of index i in Nu, merge its ascending manifold
with the ascending manifold of l.

The cells of Γ after the cancellation are only different where there
are new intersections of the changed ascending and descending mani-
folds. These intersections are represented by the new arcs in the com-
binatorial structure of the MS complex. Although there are potentially
|Nl | × |Nu| new arcs and cells created in the complex, the number of
nodes in the complex is reduced by two, and eventually all the new
arcs are also removed in saddle-extremum cancellations. Figure 2
illustrates this cancellation operation in the case of two-dimensional
complexes.

3 ALGORITHM

OVERVIEW: Our algorithm for computing the MS complex relies
on a divide-and-conquer approach. Figure 3 shows an overview of
the algorithm. The divide-and-conquer approach divides the dataset
into parcels where the discrete gradient and MS complex are com-
puted locally on the boundary and in the interior. The boundary flow
is fixed such that any flow passing through the boundary must pass
through critical points restricted to the boundary. When two parcels
are merged, the gradient and MS complex on the new interior is up-
dated. In particular, the steps in this process are the following: the
dataset is split into parcels, and cells are classified as interior, bound-
ary, or exterior; the discrete gradient is computed on the boundary and
interior of each parcel, and then an MS complex is computed on the
interior of each parcel; the parcels are glued back together, merging
the MS complexes; and finally, the artifacts introduced by the merg-
ing are removed by cancellation of the ε-persistence pairs of the MS
complex. We describe each step in detail in the following.

3.1 Splitting and Classifying
A dataset may be given in any number of formats. It is partitioned
into parcels during a pre-processing stage. Each parcel is a set of
cells with certain attributes, which will be discussed in section 4.1.
Logically, a parcel P is a collection of spatially coherent cells which
form a regular CW complex, and is a subset of the input complex,
P⊆ K. The complex P has scalar values defined at its vertices.

The cells of a parcel P are categorized as interior, exterior, or bound-
ary according to the following conditions:

1. A cell in P with all its faces and co-faces also in P is considered
interior to P.

2. A cell with one or more of its faces in K−P is considered exte-
rior to P.

3. A cell with a co-face in K − P or exterior to P is considered
boundary.

The boundary cells form a closed manifold of dimension less than
d for any input mesh P, where the highest dimension of any cell in P is
d. The steps of partitioning the data, and classifying interior, exterior,
or boundary cells are illustrated in Figure 3 (a) and (b).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. An overview of the algorithm. The dataset (a) is broken up (b) into parcels, and cells are classified as interior (grey), exterior (green), or
boundary (orange). The discrete gradient is found on the boundary and interior of each parcel (c) and the MS complex is computed (d). The parcels
are merged, reclassifying boundary and exterior cells (e), and the discrete gradient is computed on the newly introduced boundary and interior
cells (f). The complex is computed in these cells to complete the merging process (g). Simplification of ε-persistence pairs removes artifacts that
have resulted from merging (h).

3.2 Computing the Discrete Gradient

Given a regular CW-complex K with scalar values defined at the ver-
tices and cells of dimension d and lower, we compute the discrete
gradient by assigning gradient arrows in a greedy manner in ordered
sweeps over cells of K of increasing dimension, done by this algo-
rithm:

1: for i ∈ [0, ..,d] do
2: Iter = K→sortedCellIterator(i)
3: while Iter→hasNext() do
4: cellID = Iter→Item()
5: if ! K→isMarked(cellID) then
6: if K→hasPairableCoFacet(cellID) then
7: pairID = K→lowestPairableCoFacet(cellID)
8: K→pair(cellID,pairID)
9: K→mark(cellID); K→mark(pairID)

10: else
11: K→setCritical(cellID)
12: K→mark(cellID)
13: end if
14: end if
15: end while
16: end for

This algorithm iterates through all cells in increasing order of di-
mension and function value, assigning gradient pairs in a greedy
manner. The sortedCellIterator(i) iterates through the i-cells of
K in order of increasing function value. The lowest cell of di-
mension i that has not been paired or set as critical is cellID,
and its co-facets are searched for a possible pair. The function
hasPairableCoFacet(cellID) returns true if there is a co-facet with ex-
actly one facet that is not marked. If there are multiple such co-facets
lowestPairableCoFacet(cellID) will return the lowest one. While any
pairable co-facet could be paired with the cell, we select the one in the
direction of steepest descent to represent gradient flow of the function.
When pair(cellID, pairID) forms a gradient arrow, the cell is set as
the head and the co-facet is marked as the tail.

The discrete vector field that is produced is a discrete gradient field,
since each cell is paired exactly once, and no loops can be created in
V -paths, since each V -path has a critical cell as a source that cannot be
further paired. The flow across cells in a discrete Morse function does
not necessarily correspond to scalar flow. However, we assign function
values to all cells in a manner that allows gradient arrows to agree with
the scalar flow. The particular sorting order of the cells of a dimension
given by sorted cell iterator (line 2) and the lowest facet selected for
pairing (line 7) determine the shape of the discrete gradient flow. If

the sorting is done from lowest to highest, and the facet selected is in
the direction of steepest descent, the discrete gradient flow generated
will mostly agree with the scalar gradient.

Augmented Function The sorting of all the cells of a particular
dimension requires function values to be assigned to every cell. We
use the augmented function F , where each cell has a function value
slightly larger than the highest value of its faces:

F(α) = MAX{σ : σ < α}+ ε

In this manner, every cell is a critical cell in the discrete sense, and the
formation of pairs performed by the algorithmic kernel corresponds to
an ε-persistence cancellation of adjacent critical cells. We use sym-
bolic perturbation to resolve the sorting order of two cells with the
same function value.

Gradient on a Parcel Although the gradient computation kernel
operates on any regular CW-complex, when computing the discrete
gradient of a parcel we impose some restrictions. The boundary cells
of a parcel represent the interface where flow can pass from one parcel
to the next when the parcels are merged later on. To keep this inter-
face as simple as possible, we first compute the discrete gradient on
the boundary of a parcel and then on the interior. This re-ordering en-
sures that no boundary cell will be paired with an interior cell. The
motivation behind this reordering is to restrict the number of places
where flow can enter/exit the parcel from/to another parcel to the crit-
ical points on the boundary. This is an important property that will
make merging parcels possible in subsequent steps of the algorithm.
The computation of a gradient is a step in the algorithm shown in Fig-
ure 3(c), where the gradient is first computed on each parcel, and then
the gradient is computed in the interior.

3.3 The MS Complex on a Parcel

The MS complex of a discrete gradient vector field is uniquely de-
termined by the gradient paths. To compute an MS complex from
the discrete gradient vector field produced by the algorithm kernel, we
find the critical cells, and compute the ascending and descending man-
ifolds by following the gradient paths. All the cells of a path whose
origin is a critical cell α belong to the ascending manifold of α . Sym-
metrically, all the cells of a path whose destination is a critical cell β

belong to the descending manifold of β . These paths are computed
using a depth-first search through the discrete gradient field. The cells
of the MS complex are attained as the intersection of ascending and
descending manifolds. The nodes and arcs forming the combinatorial
structure of the complex are the critical cells and the gradient paths
connecting the critical cells.

Computing the ascending and descending manifolds requires a
complete traversal of the gradient paths. Our algorithm computes all
cells of the MS complex. However, many cases arise where analysis of
the data only requires the combinatorial structure (1-skeleton) of the
MS complex. In this case, we can perform a more efficient compu-
tation by only tracing ascending manifolds. Nevertheless, computing
the ascending manifolds of all minima requires a complete traversal
of the entire gradient field. If we are only interested in the combi-
natorial structure of the complex, this traversal is not necessary, and
we compute 1-saddle-minima connections by tracing gradient paths
downwards from the 1-saddles. It is guaranteed that there are exactly
two paths that terminate at a minimum for each 1-saddle, and the paths
cannot split. This makes the computation of 1-saddle minimum con-
nections efficient.

In general, ascending and descending manifolds can merge in a dis-
crete gradient field. We maintain the MS complex by simulating a
separation between ascending manifolds and descending manifolds.
The result of computing the MS complex on a parcel is shown in Fig-
ure 3(d). Note that one major advantage of using discrete Morse theory
is that special rules for identifying manifolds of different dimensions
are not required, as was the case in [17].

3.4 Merging Parcels
Merging two parcels is a three-step process that involves gluing the
two meshes together and updating and classification of cells, comput-
ing the discrete gradient on the new boundary and interior, and finally
merging the two MS complexes. Two meshes are glued together by
updating the interior, boundary, or exterior classification on its cells.
The interior cells remain interior, while the boundary cells can become
interior cells or remain boundary, and the exterior cells can become in-
terior or boundary or remain exterior. The same rules apply that were
presented in section 3.1 for determining this classification. Figure 3 (e)
shows the new classification of cells after this first step in the merging
process.

We repeat the algorithmic kernel for finding the discrete gradient
field on the merged parcels. First the gradient is computed for the
cells that became boundary in the first step of the merging process,
and then the gradient is computed for the cells that became interior in
the first step of the merging process. Figure 3 (f) shows the discrete
gradient computed on the new boundary and in the interior cells.

Finally, the MS complexes of each parcel are merged. Due to the
way we first computed the discrete gradient on the boundary and then
in the interior in section 3.3, flow can only enter or leave a parcel
through its boundary critical points. Therefore, we extend the MS
complex in each parcel by tracing gradient paths from all the newly
classified interior and boundary critical cells. The only possible new
connections in the merged MS complex are between newly classified
interior critical cells. This fact makes it possible to remove the dis-
crete gradient on the interior of each parcel from memory prior to the
merging process, allowing for the memory-efficiency of the divide-
and-conquer approach. Figure 3 (g) shows how the complexes are
merged by connecting them with critical cells in the new boundary
and in the interior.

Artifact Removal The merging of two parcels results in an MS
complex on the new parcel with “extra” nodes and arcs where the old
boundaries were. These extra nodes and arcs have low persistence, and
are removed by canceling all ε-persistence pairs in the MS complex of
a parcel. Figure 3 (h) shows how the MS complex in the interior is
cleaned up by canceling low-persistence arcs.

4 A FRAMEWORK FOR GENERALITY

The algorithm described in the previous section relies on queries that
are supported by a wide range of data formats. The internal repre-
sentation of a parcel can vary based on the needs or optimizations
possible for any particular data format. For example, for regular data,
the connectivity and classification of cells is attainable directly from
their indices and the extents of the parcel, therefore the queries can
be resolved in an efficient manner. A more general data format, such
as an AMR grid, or simplicial complex, may require a more elaborate
storage mechanism. The data format handles queries regarding char-
acteristics of the cells in a parcel as well as the connectivity of the cells
within that parcel.

4.1 Queries on the Parcel
To compute the discrete gradient, certain queries must be implemented
for the data structure. Given a unique identifier id for a cell, our im-
plementation supports these functions:

• dimension(id): returns the dimension of the cell
• isPaired(id): returns true if the cell has been paired
• isPairable(id): returns true if the cell has one unpaired facet
• greaterThan(id1, id2): returns true if id1 has higher function

value than id2

A parcel must also be able to provide iterators that access cells and
their neighbors, which are implemented by these functions:

• d-cellIterator(): returns an iterator over all d-dimensional cells
in the parcel in sorted order

• boundary-d-cellIterator(): returns an iterator over all d-
dimensional cells on the boundary of a parcel in sorted order

Fig. 4. A new slice is created to be merged with pbase. The orange cells
mark boundary, the green mark exterior, and the grey area indicates the
processed interior of pbase.

• neighborIterator(id): returns an iterator over the facets and co-
facets of a cell

Finally, a parcel must also be able to change the state of some of its
cells, which is enabled by the following functions:

• markCritical(id): marks the particular cell as a critical cell
• markAndPair(id1, id2): marks both as paired, and sets the pair of

each to the other

To compute the MS complex from the discrete gradient field, the
following queries must be supported:

• criticalPointIterator(): returns an iterator over the critical points
in a parcel

• getPair(id): returns the identifier of the cell that id is paired with

Finally, the queries necessary for visualization of the complex re-
quire that the geometric information of a cell can be recovered from
its identifier:

• getGeometry(id): returns an array of vertices that are the 0-
dimensional faces of id

4.2 Flow of Control
The basic steps of the algorithm discussed in section 3 are used to
compute and merge the MS complex on parcels, however, the order in
which computation and merging take place are regulated by the data
manager. The data manager is a data-format-specific module that or-
ganizes the flow of computation for maximal efficiency. In fact, each
dataset may have its own data manager to optimize for any structural
properties of the data format or feature queries in the function.

The details of dividing the data into parcels, ordering the computa-
tion of the gradient and MS complex on parcels, ordering the merging
of parcels, and any on-the-fly simplification of the MS complex are
left to the implementation. The interface with the algorithm is defined
by the following functions:

1. computeGradAndComplex(Parcel p): computes the gradient and
MS complex on boundary of a parcel; the results are stored in the
state of p. Additionally, the parcel is prepared for merging, by
removing the interior cells from memory.

2. merge(Parcel p1, Parcel p2): combines p1 and p2 into p1, in-
ternally updating interior, boundary, and exterior classifications,
computing the discrete gradient on the new boundary and in-
terior cells, merging the MS complexes, and performing an ε-
persistence simplification. After merging, p2 is empty.

3. simplify(Parcel p, Filters f): performs simplification of the MS
complex on p according to filters defined in f .

A parcel may only be merged with another if the gradient and MS
complex have been computed on its boundary and in its interior, or if it
composed entirely of exterior cells. It is the responsibility of the data
manager to create parcels and load the data.

Case Study: Slices on a Grid The implicit structure of data
defined on a regular grid (with inherent indices i, j, and k) can be
exploited to achieve an efficient implementation. For example, the
dimension, geometric location, and neighbors of a cell can be derived
from its index in the cases of simple Cartesian or uniformly spaced
rectilinear grids. Also, rectangular parcels can be defined as lower and
upper extents in each dimension. In this case, the extents determine
whether a cell is interior, exterior, or boundary. Merging the meshes
of two aligned parcels can be accomplished by simply modifying the
extents. All these properties make it possible to devise highly efficient
implementations of the queries on the parcel and its cells.

In the following, we consider the simple case of a dataset defined
on a rectilinear grid with uniform spacing, aligned with the three co-
ordinate axes. The simplest possible data manager creates a parcel for
every slice along one axis of the data. For example, in a 3D uniform
rectilinear axis-aligned grid of size X ×Y ×Z, the data manager cre-
ates an X ×Y parcel for every z value. Although there are many ways
to order the creation and merging of parcels, the simplest way is to
accumulate them in a growing parcel along one axis. In this case the
data manager would operate as follows:

1: Parcel pbase = empty
2: for z ∈ [0, ..,Z−1] do
3: Parcel slice = createXYSlice(z)
4: computeGradAndComplex(slice)
5: merge(pbase, slice)
6: simplify(pbase, filters)
7: end for

Here the createXYSlice(z) reads the data from the input file corre-
sponding the the XY slice at z and initializes state variables in the slice.
The slice that is created is an array of size X×Y ×8, required for stor-
ing the eight cells for every vertex of the data. The slices are merged
with pbase, until pbase contains the complex of the entire mesh. Fig-
ure 4 shows the addition of a slice onto pbase. The simplification step
controls the size of the complex as each slice is added on.

5 RESULTS

We provide results for data given on a uniform rectilinear grid, using
the slicing data manager. The results were generated on an off-the-
shelf 2.21GHz AMD Athlon with 2.0Gb memory, the same hardware
configuration used in [17]. We compare the performance of our algo-
rithm to the previously fastest approach [17] in Table 1. Our run times
are similar, however, while the approach in [17] has a dataset size limit
of 256× 256× 256, we also have produce results for one timestep of
a simulation of a Raleigh-Taylor instability, which has a resolution of
1152× 1152× 1000, shown in Figure 5. In Laney et al. [20], a param-
eter was used to select a 2-manifold level set, and the two-dimensional
MS complex used on the height map to identify bubbles in the turbu-
lent mixing layer. A similar kind of analysis is possible using the full
complex we computed of the three-dimensional data without the need
for parameter selection, nevertheless, performing this kind of in-depth
analysis is beyond the scope of this paper. Our run times are larger
for the small data set sizes because we simplify ε-persistence arcs on
the fly, incorporating some of the post-processing into the construc-
tion time. The results of [17] do not include this extra time needed
for simplification, and the complex extracted by that method must be
simplified to remove noise and attain an MS complex comparable to
the result of our approach. Nevertheless, the optimizations made pos-
sible by our general framework make the run times similar. The size of
the memory footprint was controlled by the on-the-fly simplification,
with the overhead for storing parcels being 42Mb, and the size of the
complex kept under 1.3Gb.

6 ANALYSIS OF THE ALGORITHM

RUN TIME ANALYSIS The run time analysis of the complete algo-
rithm is heavily dependent on the particular implementation of parcels
and the data manager. The run time analysis of the particular steps
of the algorithm can be performed using certain reasonable assump-
tions, such as access to the faces and co-faces of a cell requiring

Total Run Time 23h 15m 22s
∇ + MS-complex on parcel 2h 9m 45s

merging parcels 2h 38m 52s
5% simplification 18h 12m 41s

cancellations 51,004,765
parcels 1,000

merge operations 1,000
remaining critical points 957,560

remaining arcs 6,320,506

Fig. 5. A single timestep of a dataset of a simulated Raleigh-Taylor instability simulating the
mixing of two fluids. This timestep has a resolution of 1152× 1152× 1000 and is an early
timestep of the simulation. The data is noisy, therefore we perform a 5% persistence sim-
plification to remove “excess features.” We compute the complex for the entire dataset, and
the inset shows a small subsection of the data with selected nodes and arcs of the com-
plex. Minima and maxima (blue and red spheres) and their saddle connections trace out the
bubble structure in the data. The maxima represent isolated pockets of high-density fluid
that have crossed the boundary between the two fluids. The structural complexity is over-
whelming, but our prototype allows interactive exploration and visualization, and selective
inclusion/omission of user-specified components of the MS complex.

constant-time processing. The discrete gradient computation on a par-
cel with n cells uses a sorted ordering provided by the parcel, which
is of complexity O(nlogn). The computation of the MS complex on a
parcel performs a depth-first search from each critical cell which will
cover its entire ascending manifold. Since the ascending manifolds
can merge, if there are O(n) critical cells, in the worst case, this step
can require O(n2) time. However, in practice, the number of critical
points can be modeled as a constant k, and tracing the ascending and
descending manifolds requires O(n) time. Merging two parcels with
m cells on the interface is accomplished in O(mlogm) time, as the gra-
dient computatation again requires O(nlogn), and the merging of the
complexes requires O(m) time. The cancellation of a pair of nodes
where the number of neighbors of each is bounded by some value i
requires at most O(i2) time. Therefore, removing the artifacts intro-
duced in a merge operation requires O(k i2).

We analyze the run time for the particular implementation used for
generating the results, where slices are attached to a growing base for
regular data. Let n be the total size of the data. For each of n1/3 slices,
a slice is read from the data, and cells are created and initialized in a
traversal of the slice taking n2/3 time. The gradient and complex are
computed on the slice taking n2/3logn2/3 + n2/3 time. Each slice is
then merged in n2/3logn2/3 +n2/3 time, and simplified in i k2 time for
a total run time of O(nlogn)+n1/3i k2. We do not remove the constant
final term, since in the worst case this can lead to a total number of n2

operations.
The memory requirements of our method are determined mainly by

Data set Size (a) (b)
Neghip 64×64×64 8s 7s
Hydrogen 128×128×128 47s 27s
Aneurism 256×256×256 5m 1s 3m 51s
Instability 1152×1152×1000 23h 15m 22s ∞

Table 1. An MS complex is computed for well-known datasets. We com-
pare the run time of our algorithm (a) to the fastest previously published
algorithm presented in [17] (b).

two parts: the overhead required for storing the gradient on a parcel,
and the storage required for the computed MS complex. Once the
MS complex has been computed on a parcel, the interior cells can be
removed from memory. In fact, a parcel, with its boundary gradient,
external cells, and MS complex, only needs to be kept in memory
during a merge operation. Let a parcel P have n interior cells and m
boundary cells. During computation of the discrete gradient field, the
total footprint of P is (n+m)×|α|+ |K|+ |Γ|, where |α| is the size of
a single cell, |K| is the memory overhead of the data structures storing
the CW complex, and |Γ| is the size of the MS complex computed
on the parcel. During the merging of two parcels P1 and P2, the total
amount of memory required is (m1 +m2)×|α|+ |K1|+ |K2|+ |Γ1|+
|Γ2|. The MS complexes Γ1 and Γ2 can be simplified independently
prior to the merging operation to reduce their sizes. For regular data,
the mesh connectivity is defined implicitly, therefore K = 0. In the
particular implementation we used for generating the results, given a
dataset of size x× y× z, each parcel is a slice of the data requiring
x×y×8×|α| space, and only two parcels (the base and the new slice)
were kept in memory.

Implications of Divide-and-Conquer The discrete gradient is
first computed on the boundary of a parcel and then in the interior,
and the restriction of the flow on the boundary potentially creates dif-
ferent MS complexes for the same data if the data is divided in dif-
ferent ways. In simulation of simplicity, order-dependence determines
the structures identified whenever degeneracies are encountered, such
as flat regions and multi-saddles. The augmented function and the
flexible ordering of the pairing of cells allow us to pick a particular
ordering such that the flow can be fixed first on the boundary, then on
the interior of a parcel, while maintaining consistency. In practice, a
subset of the cells of the d−1-dimensional MS complex restricted to
the boundary of a parcel form the intersection of the cells of the d-
dimensional MS complex with the boundary. As a result, after merg-
ing parcels and simplifying the artifacts introduced in the process, the
choices made in dividing the data result in only slight geometrical dif-
ferences in the computed MS complexes. Most significantly, however,
the complexes extracted are consistent, which means that they repre-

Fig. 6. The critical points of the tetrahedrane are identified using slicing
across the z axis (left) and across the x axis (right). The locations of the
critical points vary up to a cell, as do the shape of the arcs connecting
them. However, the fundamental structure that is found by both meth-
ods is the same. Note that the MS complexes found with each slicing
direction are consistent with one another, and both are consistent with
the MS complex found for the same dataset in [15].

sent a Morse function arbitrarily close to the function defined by the
scalar values at vertices. Figure 6 shows the difference when slicing
the same data across the z axis and across the x axis. The discrete
gradient produced is always a valid gradient field with monotonically
descending V -paths.

7 CONCLUSIONS

The algorithm we presented in this paper is robust and efficient,
and the framework is general and works for various data formats of
any dimension. Our divide-and-conquer strategy allows for memory-
efficient computation of the MS complex and simplification on the fly
to control the size of the output. We sacrifice some time efficiency to
gain relatively more storage efficiency and scalability. Furthermore,
the operations on each parcel are independent and can be computed
in parallel, and our future work will be directed at a parallel imple-
mentation. The algorithm works for data of any dimension, and we
will investigate using slicing across the time axis in 3D + time data to
track features over time. The majority of time in computing the MS
complex is spent on simplification. Future work will involve finding
a more efficient representation of the MS complex to further acceler-
ate the cancellation process, and also finding an order of cancellations
which leads to highly efficient execution.

ACKNOWLEDGEMENTS

Attila Gyulassy was supported by the Lawrence Scholar Program (LSP). In addition, this
research was supported in part by the National Science Foundation, under grant CCF-
0702817. We would like to thank the members of the Center for Applied Scientific Com-
puting (CASC), at LLNL, and the members of the Visualization and Computer Graphics
Research Group of the Institute for Data Analysis and Visualization (IDAV), at UC Davis.
This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] S. Beucher. Watershed, heirarchical segmentation and waterfall algo-
rithm. In J. Serra and P. Soille, editors, Mathematical Morphology and
its Applications to Image Processing, pages 69–76, 1994.

[2] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topolog-
ical hierarchy for functions on triangulated surfaces. IEEE Transactions
on Visualization and Computer Graphics, 10(4):385–396, 2004.

[3] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all di-
mensions. In Symposium on Discrete Algorithms, pages 918–926, 2000.

[4] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosur-
faces using local geometric measures. In Proc. IEEE Conf. Visualization,
pages 497–504, 2004.

[5] A. Cayley. On contour and slope lines. The London, Edinburgh and
Dublin Philosophical Magazine and Journal of Science, XVII:264–268,
1859.

[6] Y.-J. Chiang and X. Lu. Progressive simplification of tetrahedral
meshes preserving all isosurface topologies. Computer Graphics Forum,
22(3):493–504, 2003.

[7] P. Cignoni, D. Constanza, C. Montani, C. Rocchini, and R. Scopigno.
Simplification of tetrahedral meshes with accurate error evaluation. In
Proc. IEEE Conf. Visualization, pages 85–92, 2000.

[8] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In Proc. 19th Ann. Sympos.
Comput. Geom., pages 361–370, 2003.

[9] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds. Discrete and Compu-
tational Geometry, 30(1):87–107, 2003.

[10] R. Forman. A user’s guide to discrete morse theory, 2001.
[11] M. Garland and P. S. Heckbert. Simplifying surfaces with color and tex-

ture using quadric error metrics. In Proc. IEEE Conf. Visualization, pages
263–269, 1998.

[12] M. Garland and Y. Zhou. Quadric-based simplification in any dimension.
ACM Transactions on Graphics, 24(2):209–239, 2005.

[13] T. Gerstner and R. Pajarola. Topology preserving and controlled topology
simplifying multiresolution isosurface extraction. In Proc. IEEE Conf.
Visualization, pages 259–266, 2000.

[14] I. Guskov and Z. Wood. Topological noise removal. In Proc. Graphics
Interface, pages 19–26, 2001.

[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.
Topology-based simplification for feature extraction from 3d scalar fields.
In Proc. IEEE Conf. Visualization, pages 535–542, 2005.

[16] A. Gyulassy, V. Natarajan, V. Pascucci, P. T. Bremer, and B. Hamann. A
topological approach to simplification of three-dimensional scalar fields.
IEEE Transactions on Visualization and Computer Graphics (special is-
sue IEEE Visualization 2005), pages 474–484, 2006.

[17] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient com-
putation of morse-smale complexes for three-dimensional scalar func-
tions. IEEE Transactions on Visualization and Computer Graphics,
13(6):1440–1447, 2007.

[18] H. Hoppe. Progressive meshes. In Proc. SIGGRAPH, pages 99–108,
1996.

[19] H. King, K. Knudson, and N. Mramor. Generating discrete morse func-
tions from point data. Experimental Mathematics, 14(4):435–444, 2005.

[20] D. Laney, A. Mascarenhas, and P. Miller. Understanding the structure of
the turbulent mixing layer in hydrodynamic instabilities. IEEE Transac-
tions on Visualization and Computer Graphics, 12(5):1053–1060, 2006.
Member-P. -T. Bremer and Member-V. Pascucci.

[21] T. Lewiner, H. Lopes, and G. Tavares. Applications of forman’s discrete
morse theory to topology visualization and mesh compression. IEEE
Transactions on Visualization and Computer Graphics, 10(5):499–508,
2004.

[22] J. C. Maxwell. On hills and dales. The London, Edinburgh and Dublin
Philosophical Magazine and Journal of Science, XL:421–427, 1870.

[23] V. Natarajan and H. Edelsbrunner. Simplification of three-dimensional
density maps. IEEE Transactions on Visualization and Computer Graph-
ics, 10(5):587–597, 2004.

[24] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
on-line computation of reeb graphs: simplicity and speed. ACM Trans.
Graph., 26(3):58, 2007.

[25] S. Rana. Topological Data Structures for Surfaces: An Introduction to
Geographical Information Science. Wiley, 2004.

[26] G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus de L’Académie
ses Séances, Paris, 222:847–849, 1946.

[27] J. Roerdink and A. Meijster. The watershed transform: Definitions, algo-
rithms and parallelization techniques, 1999.

[28] S. Smale. Generalized Poincaré’s conjecture in dimensions greater than
four. Ann. of Math., 74:391–406, 1961.

[29] S. Smale. On gradient dynamical systems. Ann. of Math., 74:199–206,
1961.

[30] O. G. Staadt and M. H. Gross. Progressive tetrahedralizations. In Proc.
IEEE Conf. Visualization, pages 397–402, 1998.

[31] S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro. Topolog-
ical volume skeletonization using adaptive tetrahedralization. In Proc.
Geometric Modeling and Processing, pages 227–236, 2004.

[32] S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skele-
tonization and its application to transfer function design. Graphical Mod-
els, 66(1):24–49, 2004.

[33] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Removing excess
topology from isosurfaces. ACM Transactions on Graphics, 23(2):190–
208, 2004.

