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Abstract— This paper describes an efficient combinato-
rial method for simplification of topological features in a
3D scalar function. The Morse-Smale complex, which pro-
vides a succinct representation of a function’s associated
gradient flow field, is used to identify topological features
and their significance. The simplification process, guided
by the Morse-Smale complex, proceeds by repeatedly
applying two atomic operations that each remove a pair
of critical points from the complex. Efficient storage of the
complex results in execution of these atomic operations at
interactive rates. Visualization of the simplified complex
shows that the simplification preserves significant topolog-
ical features while removing small features and noise.

Index Terms— Morse theory, Morse-Smale complexes,
computational topology, computational geometry, simplifi-
cation, multiresolution, feature detection, volumetric data.

I. I NTRODUCTION

UNDERSTANDING and effective exploration
of increasingly complex scientific data neces-

sitates the development of sophisticated schemes
that represent data sets at multiple resolutions. Such
schemes ideally identify and preserve important fea-
tures in all resolutions while removing insignificant
features at lower resolutions. Beginning with the
highest resolution, coarser resolutions are obtained
by repeated simplification of an input data set. Iden-
tification of a feature and ordering features based
on their significance is crucial to the construction
of good multiresolution representations. Existing
methods typically use a geometric approach, where
the numerical error associated with the simplified
model is used as the measure of approximation
quality. Any removal of features caused by these
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methods is incidental and not always controlled.
We adopt a more direct approach by explicitly
identifying features, ordering them, and selectively
removing the non-significant ones.

Related work. Scientific data is usually represented
as a set of discrete samples of a function defined on
a two- or three-dimensional domain. A continuous
function is obtained by interpolating the samples
within an underlying mesh of the domain. Several
mesh simplification methods have been proposed
to support efficient visualization of increasingly
large and complex data. These methods typically
decimate a mesh by repeated application of a fun-
damental operation, the most common one being
edge contraction[1]. The error introduced by edge
contraction can be computed as the sum of distances
to planes that are associated with end points of a
contracted edge [2], and hyperplanes are used to
measure the error introduced in the function [3].
Originally developed for surface meshes, edge con-
traction has been successfully extended to tetrahe-
dral meshes [4]–[6] and other higher-dimensional
meshes [7]. Also, related schemes have been devel-
oped to select data points and insert them iteratively
to define a hierarchical approximation [8].

We are interested in preservingtopological fea-
tures of scalar functions, which are defined by
critical points of the function. Such features cor-
respond to changes in the behavior of isocontour
components. For example, for bivariate functions,
upon increasing the function value, minima create
new isocontour components, maxima destroy com-
ponents, and saddle points merge or split isocon-
tour components. A purely geometric approach to
simplification is able to remove small topological
features but does not provide the desired level
of control. Considerable work has been done on
topological simplification of scalar functions. Initial
work focused on simplifying topological features
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or preserving them while simplifying mesh geom-
etry [9], [10]. Two data structures are commonly
used for explicitly storing topological features:Reeb
graphsandMorse-Smale (MS) complexes.

The Reeb graph [11] traces components of iso-
contours/isosurfaces as they sweep the domain. In
the case of simply connected domains, the Reeb
graph has no cycles and is called acontour tree.
Reeb graphs, contour trees, and their variants have
been used successfully to guide the removal of
topological features [12]–[16]. The MS complex
decomposes the domain of a function into regions
having uniform gradient flow behavior [17]. It has
been used recently to perform controlled simplifi-
cation of topological features in functions defined
on two-dimensional domains [18], [19] and for
purposes of shape analysis [20]. The MS complex
allows the simplification to utilize a global view
and spatial distribution of a function for detecting,
ordering, and removing features. The MS complex
also provides the ability to restrict simplification to
a local neighborhood of the non-significant feature.
Reeb graph-based simplification methods do not
enjoy these benefits. Furthermore, when applied to
trivariate functions, they are limited to detecting
and simplifying features that are associated with the
creation and destruction of isosurface components.
These features are represented by pairs of critical
points consisting of one saddle and one extremum.
The MS complex is also able to detect genus
changes within the isosurface, which are represented
by saddle-saddle pairs. We use this more compre-
hensive approach for simplifying scalar functions in
three variables.

Simplification of topological features has also
been studied in the context of vector fields [21],
[22]. These methods, however, use numerical ap-
proaches to identify, order, and simplify the topol-
ogy and are therefore prone to instability. In con-
trast, Reeb graph and MS complex based methods
for simplification of scalar fields are combinatorial
in nature and hence stable.

Contributions. We describe a new method for ex-
plicit removal of topological features of a given
trivariate scalar function with the goal of construct-
ing a hierarchical representation. Specifically, we
• introduce two atomic operations that destroy

target topological features without affecting the
function globally,

• describe a combinatorial algorithm that selec-
tively removes non-significant topological fea-
tures by repeated application of the two atomic
operations, and

• describe a data structure that stores the MS
complex and allows optimal execution of the
atomic operations.

We extend the results of Bremer et al. [18] and
Edelsbrunner et al. [19] to functions defined on
three-dimensional domains by following their basic
approach and introducing new ideas to address
issues that arise due to the added complexity of
features in volumetric domains. The extension is
made non-trivial by the presence of two different
types of saddles of trivariate functions. For bivariate
functions, simplification of the function using the
MS complex is accomplished by repeated cancella-
tion of critical point pairs, one of which is a saddle
and the other an extremum (minimum/maximum).
The presence of a new type of saddle of trivariate
functions creates the need for an additional type of
cancellation. We introduce two atomic operations
that simplify a function: a saddle-saddle cancella-
tion and a saddle-extremum cancellation. Repeated
application of these two operations on ordered pairs
of critical points results in a hierarchy. Critical point
pairs are ordered based on the notion ofpersis-
tence [23], which measures the importance of the
associated topological feature. We construct an ar-
tificial MS complex from a barycentric subdivision
of the input mesh such that each vertex becomes
critical. Several of the newly inserted critical points
are identified as having an infinitesimally small
persistence value and cancelled in a pre-processing
stage. In an earlier paper [24], we reported the
limitation of this pre-processing to small data sizes.
Here, we present two new ideas that remove this
limitation, namely

• a streaming approach for the removal of several
critical point pairs in the pre-processing stage,
resulting in a low memory footprint for the
particular case when the scalar function is
given on a regular grid, and

• a new data structure that supports efficient
implementation of the atomic operations.

We demonstrate our approach by simplifying data
sets from various application areas.
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Fig. 1. Local configurations of a regular point and the four types of critical points (minimum, 1-saddle, 2-saddle, and maximum) with
shaded oceans, white continents and integral lines. The distinct structure of the oceans allows a combinatorial characterization of the critical
points.

II. M ORSETHEORY

Our algorithms are based on Morse theory, which
was originally developed for smooth functions. In
this section, we provide a brief description of ideas
from Morse theory essential to this paper and their
extensions to piecewise-linear (PL) functions. For
a comprehensive description of the extension, we
refer to Edelsbrunner et al. [25]. Morse theory is dis-
cussed in detail by Milnor [26] and Matsumoto [27].

Critical points. Let M be a compact 3-manifold and
f : M→R be a real-valued smooth function defined
on M. A function f is a Morse functionif none of
its critical points are degenerate (i.e., the Hessian
of f is non-singular for all critical points) and no
two critical points have the same function value.
The Morse Lemmastates that a Morse function has
quadratic behavior within a local neighborhood of
every non-degenerate critical pointp. This lemma
immediately characterizes critical points. Theindex
of a critical point is equal to the number of negative
eigenvalues of the Hessian. Therefore, minima, 1-
saddles, 2-saddles, and maxima have indices equal
to 0,1,2, and 3, respectively. Figure 1 shows lo-
cal neighborhoods of a regular point and the four
types of non-degenerate critical points. These local
configurations indicate that the criticality ofp is
characterized by the structure ofoceansconsisting
of pointsx on an infinitesimally small sphere around
p, where f (x) < f (p), andcontinentsconsisting of
pointsx on the sphere, wheref (x) > f (p).

MS complex. An integral line of f is a maximal
path in M whose tangent vectors agree with the
gradient of f at every point of the path. Each
integral line has a natural origin and destination
coinciding with critical points off where the gradi-
ent becomes zero.Ascending manifoldsare obtained
as clusters of integral lines having common origin,
and descending manifoldsare obtained as clus-

Fig. 2. The boundary of a crystal in the Morse-Smale complex
consists of lower-dimensional cells: quads, arcs, and nodes. Every
crystal has a unique origin and destination node, the minimum and
maximum, respectively, which are end points of integral lines lying
within. Note that the glyphs used for critical points indicate their
local neighborhood, with shaded oceans and white continents. Quads
contained in ascending disks are colored in red; those contained in
descending disks are colored blue.

ters of integral lines having common destination.
Ascending and descending manifolds are dual to
each other: negating the function transforms one to
the other. Descending manifolds have a dimension
equal to the index of the destination, and ascending
manifolds have a dimension equal to three minus
the index of their origin. The descending manifolds
of dimension one and two are calleddescending
arcs anddescending disks; the ascending manifolds
of dimension one and two are calledascending
arcs and ascending disks. We consider Morse-
Smale functionsf whose ascending and descending
manifolds intersect only transversally. For example,
if an ascending disk with originp intersects a
descending disk with destinationq, then the points
of intersection form a simple path connecting the
two saddlesp andq. If an ascending disk intersects
a descending arc then the point of intersection is
a single point, namely the 1-saddle lying on the
boundary of the descending arc. The MS complex
partitionsM by clustering integral lines that share
both common origin and destination. For example,
the three-dimensional cells of the MS complex
cluster integral lines that originate at a given mini-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

mum and terminate at an associated maximum (see
Figure 2). The cells of decreasing dimensions are
calledcrystals, quads, arcs,andnodes, respectively.
The MS complex is equivalently obtained as an
overlay of ascending and descending manifolds,
which individually partition M. Cells of the MS
complex satisfy several combinatorial properties:
end points of arcs are critical points whose indices
differ exactly by one; quads contain exactly four
arcs on their boundary; and the boundary of a crystal
contains a collection of quads, arcs, saddles and
exactly one minimum and one maximum.

Cancellation. A minimal Morse function is gen-
erated from f by repeated cancellation of pairs of
critical points. This operation is legal (i.e., it can
be realized by a local perturbation of the gradi-
ent vector field) if the indices of the two critical
points differ by one and they are connected by a
unique common arc in the MS complex. For Morse
functions defined on three-dimensional domains, we
have three types of legal cancellations: minimum
and 1-saddle; 1-saddle and 2-saddle; and 2-saddle
and maximum. Cancellations play a crucial role in
Morse theory for proving important results, includ-
ing the generalized Poincaré conjecture for higher
dimensions [28]. We use cancellations to reduce the
number of critical points and hence remove topolog-
ical features. The local change in the MS complex
indicates a smoothing of the gradient vector field
and therefore a smoothing of the functionf . The
ordering of critical point pairs is specified by their
persistence value, which quantifies the importance
of the topological feature associated with a pair. The
persistence of a critical point pair is defined as the
absolute difference in value off between the two
points.

PL functions. Scientific data is typically given
as a discrete sample over a smooth manifold do-
main. The smooth manifold is often discretized and
represented by a triangulation. Given values of a
function f at vertices of a triangulation, we linearly
interpolate within edges, triangles, and tetrahedra
of the triangulation to obtain a PL function. The
spherical neighborhood of a vertex is represented
by a two-dimensional triangulation, which contains
the oceans and continents. The number of connected
components and holes in the ocean uniquely identify
the index of the critical point. Gradients, and hence

integral lines, are not well defined for PL functions.
However, monotonic curves and surfaces corre-
sponding to arcs and quads of the MS complex can
be constructed by simulating a separation between
integral lines that merge [25]. The functionf has
its critical points at the nodes of this complex and
is monotonic within all arcs, quads, and crystals of
the MS complex. We work with this decomposition
of the triangulation to determine feature-identifying
pairs of critical points as the boundary nodes of a
common arc.

III. D ATA STRUCTURE

We introduce a new data structure for storing the
MS complex. The design of the data structure is
governed by two major objectives: efficient execu-
tion of all simplification operations and minimal
memory overhead. The data structure stores two
types of information: connectivity of the complex
and geometry of each cell within the complex. The
combinatorial structure of the complex is deter-
mined by the connectivity of nodes via arcs, and
the geometric structure of the complex is given
by the location of nodes, arcs, and all ascend-
ing/descending 2- and 3-manifolds. We store the
connectivity of the complex as a graph, and augment
the graph with geometric components.

Connectivity. We create a list of nodes and a list of
arcs to store the connectivity of the MS complex.
Each node contains its index of criticality, a list
of arcs that originate or terminate at this node, the
function value at this point, and relevant geometric
information. A design goal is to have fixed-size
elements in the lists. Instead of storing a list of arcs
incident at a node, we store a reference to exactly
one such arc. All arcs have a reference each to the
next arc that shares its end points. The list of arcs
incident at a specific node is obtained by traversing
these references. Besides these two references, each
arc also has references to its two end point nodes
and geometry. Figure 3 shows our data structure.
All nodes of the complex are stored in an array,
each element containing multiple fields. G0 refers
to the geometric location of a node. The TAG field
stores the index of criticality as well as internal flags
to represent boundary conditions. If the node is a
saddle, then the field G2 stores a reference to the
geometry of the 2-manifold originating from that
saddle; otherwise, the critical point is an extremum,
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in which case the field G3 stores volumetric in-
formation of the 3-manifold originating from the
extremum. The field A stores a reference to the
first arc in the list of arcs incident to this node.
Arcs are stored in an array as well, each entry again
containing multiple fields. G1 is a reference to the
geometry of the arcs (i.e., the integral line), CP1
and CP2 are the two end points of the arc, and A1
and A2 store the next element in the list of arcs
incident at CP1 and CP2, respectively.

G1 CP1 CP2 A1 A2
Arcs

AG2/G3TAGG0
Nodes

Fig. 3. Data structure for connectivity of nodes and arcs in the
MS complex. Nodes and arcs are stored in two arrays. Each entry
in these two arrays contains multiple fields that together store the
connectivity of the MS complex.

Geometry. We design the geometry components to
minimize complexity of cancellations. These com-
ponents are:

• G0 is a reference to the location of a node,
identified by an index.

• G1 is a reference to the path of the arcs, a set
of line segments.

• G2 is a reference to the geometry of the as-
cending/descending 2-manifolds.

• G3 is a reference to the geometry of the as-
cending/descending 3-manifolds.

G0 is an index referring to an array of input
vertices that determines the geometry of a critical
point. Storing the geometry of arcs and ascend-
ing/descending 2-manifolds is more involved since
we want to minimize storage. The key observation is
that, upon simplification, arcs and 2-manifolds often
merge, and the same line segment or face becomes
a part of multiple arcs. This is a common behavior
in the pre-processing stage of our simplification
algorithm. After a cancellation, several arcs and
surfaces are re-routed to pass through the same
geometry. Our data structure takes advantage of
this redundancy. G1 and G2 are stored as directed
acyclic graphs (DAGs), as shown in Figure 4. All
leaves of the DAG reachable from a given element

in the DAG together constitute the geometry asso-
ciated with that element. An arc references exactly
one element in the DAG to recover the complete
geometry of the constituent line segments. The
leaves of this DAG are the geometric primitives of
the line segments. Similarly, the leaves of the DAG
storing the geometry of 2-manifolds contain the
faces that compose the 2-manifolds. Each element
in the DAG also stores the number of elements that
directly reference it. The element is deleted when
this counter is zero.

geometric
primitives

elements

internal
DAG

S1 S2L1 L2 L3

Fig. 4. Geometry of arcs and ascending/descending disks are stored
as DAGs to minimize storage.Left: our simplification algorithm
creates new arcs by merging exactly three other arcs. So, each internal
element stores references to three children.Right: after a cancellation,
two disks merge into one. So, each internal element stores references
to two children.

IV. SIMPLIFICATION

We simplify the MS complex of a Morse function
f by performing a series of critical point pair
cancellations. A cancellation simulates a smoothing
operation applied tof by modifying gradient flow
in the neighborhood of two critical points. Arcs con-
necting critical points are lines of steepest descent
or ascent, and changing them affects the gradient
flow behavior off . Rules that apply to gradient flow
must be adhered to in the simplification process. For
example, integral lines must remain disjoint.

Critical point pairs that we consider are end
points of an arc in the MS complex and therefore
have consecutive indices. We group the pairs into
two types: saddle-extremum (indices 1 and 0 or
indices 2 and 3) and saddle-saddle (indices 1 and
2). The two types of cancellations are distinct in
the way they modify gradient flow behavior. The
cancellation procedure is similar to vertex removal
used in mesh simplification methods, with a pair
of critical points being removed instead of a single
vertex, and the reconnection of the complex gov-
erned by rules of Morse theory rather than mesh
geometry. For reasons of clarity, we illustrate the
two types of cancellations using prototypical figures
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(a) (b) (c) (d)

Fig. 5. Snapshot of a Morse-Smale complex before and after a saddle-maximum cancellation. (a) Three of the twelve crystals affected by
the cancellation are colored. (b) Close-up view of the three crystals and the maximum-saddle-maximum triple that is merged into a single
maximum. (c) After cancellation, all ascending arcs and disks that originally flow into the maximum lying below the saddle, flow into the
maximum lying above the saddle. One of the three crystals is deleted in this process. (d) Ascending arcs and disks in the other nine crystals
are similarly re-routed, resulting in a removal of three more crystals.

of MS complexes. The description, however, holds
for all possible configurations.

Saddle-extremum cancellation. The saddle-
extremum cancellation removes either a 2-saddle-
maximum pair or a 1-saddle-minimum pair.
The two pairs are dual to each other as can be
seen by negating the function: maxima become
minima, 2-saddles become 1-saddles and vice-
versa. We restrict our discussion to 2-saddles and
maxima. A 2-saddle, by definition, is connected by
ascending arcs to exactly two maxima. When one
of these maxima is removed in a saddle-maximum
cancellation, integral lines ending at this maximum
flow toward the second maximum. One can think
of a saddle-maximum cancellation as merging
three critical points into one maximum. Applying
the saddle-maximum cancellation simplifies the
function by removing a “bump.” Figure 5 shows
how the integral lines terminating at the two
maxima flow into the remaining maximum after
cancellation.

The saddle-maximum cancellation is similar to
its two-dimensional analog, which can also be in-
terpreted as merging three critical points. We merge
neighboring cells in the ring around the saddle-
maximum arc. Therefore, besides removing two
critical points, this cancellation also removes several
crystals, quads, and arcs from the complex. Lets
andm be the saddle and extremum to be cancelled
anda be the arc connecting them. We implement the

cancellation by performing the following sequence
of connectivity-modifying operations:

1) Let n be the end point of the arc originating
from s and not equal tom. Let b be this arc
that connectss to n.

2) Replace all arcsai that terminate atm with
new arcsbi that share their origin withai and
terminate atn. Add bi to the arc list of its
origin and the arc list ofn.

3) Delete nodess andm and all arcs incident to
them. Delete all references of these arcs from
the arc lists of their endpoints.

The geometry of arcbi is obtained as the con-
catenation of arcsai , a, and b. References to the
geometry of these arcs are added from a new
element added to the DAG. All arcsbi share the
geometry ofa and b, which makes the DAG an
efficient representation of the geometry. The single
2-manifold corresponding tos is deleted from the
complex along with the saddle. Re-direction of arcs
as described above changes boundaries of the 2-
manifolds that it touches. However, it does not
change their surface geometry, and the interior of
the ascending/descending 2-manifolds remain sim-
ply connected after the cancellation. Therefore, we
make no changes to the representation of the surface
geometry of these 2-manifolds.

A saddle-maximum cancellation is legal only if
the 2-saddle is connected to two distinct maxima. If
this condition is not met, then we recognize that the
cancellation causes astrangulationof the descend-
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Fig. 6. A saddle-maximum pair that cannot be cancelled. Two
integral lines beginning at a 2-saddle flow to the same maximum.
Cancelling the saddle-maximum pair causes a strangulation of the
blue descending disk since integral lines terminating at the 2-saddle
are left without a destination.

ing disk that originates at the 2-saddle. In fact, it is
not possible to route the integral lines terminating at
the 2-saddle if we cancel such a saddle-maximum
pair. Figure 6 shows this configuration.

Saddle-saddle cancellation.The saddle-saddle can-
cellation removes a 1-saddle-2-saddle pair, see Fig-
ures 7 and 8. This cancellation does not have an
analog in lower dimensions. A 1-saddle descends
to exactly two minima, and a 2-saddle ascends to
exactly two maxima. After cancelling this saddle
pair, we need to ensure that the two pairs of extrema
originally separated by these saddles remain that
way. This constraint necessitates the introduction
of new cells to fill in space between the two pairs
of extrema. One can think of this cancellation by
considering what happens to the descending disk
originating from the 2-saddle and the ascending disk
originating from the 1-saddle. After cancellation,
these two disks disappear, and neighboring disks
stretch out and share their boundary. We can no
longer consider the cancellation as merging three
critical points as we can for the saddle-maximum
cancellation. Consider the descending disk that is
removed by the cancellation: The boundary of this
disk consists of alternating 1-saddles and minima.
Arcs lying within the disk connect the 1-saddles
on the boundary to the 2-saddle where the disk
originates. One of these 1-saddles is involved in the
cancellation. This 1-saddle and its two descending
arcs are deleted as a result of the cancellation.
Descending disks that contain these descending arcs
in their boundary expand to share the boundary
of the removed disk. Similarly, one ascending disk
is removed and its boundary is shared by the
neighboring ascending disks. Figure 7 illustrates the
operation by showing the descending disks before
and after cancellation.

(a) (b)

Fig. 7. A saddle-saddle cancellation. (a) Descending disks affected
by the cancellation. The red arc connects the pair to be cancelled. All
four disks (u,v,w, andx) have two common descending arcs (shown
in green) on their boundary, both originating from the 1-saddle to
be removed. (b) Descending disks that remain after cancellation. The
green descending arcs are deleted from the boundary of the three
surviving disks, which now extend to inherit the boundary ofx.
Ascending manifolds are dual to the descending manifolds and hence
modified in a similar way.

A good way to think about reconnecting the com-
plex after a saddle-saddle cancellation is in terms of
ascending and descending disks: All surviving de-
scending disks expand to share the boundary of the
deleted disk, thereby creating connections between
surviving 2-saddles and 1-saddles on the newly
inserted boundary. Similarly, surviving 1-saddles
connect to 2-saddles on the newly inserted boundary
of their ascending disks, which guarantees full re-
connectivity of the complex after a cancellation. Let
s1 ands2 be a 1-saddle and 2-saddle pair connected
by an arca. We implement the cancellation as a
sequence of operations on our data structure:

1) For each pair of 1- and 2-saddles (t1, t2)
different from (s1, s2), where the pair (t1, s2)
is connected by arca1, and the pair (t2, s1) is
connected by arca2, do the following:

1.1) Create a new arcb from t1 to t2.
1.2) Insertb into the arc lists of its end-

points.

2) Delete all arcs in the arc lists ofs1 ands2 and
delete the two nodes.

New arcsb are created by concatenating the geom-
etry of arcsa1, a, and a2. The 2-manifolds of all
1-saddlest1 merge with the 2-manifold ofs1, and
the 2-manifolds of all 2-saddlest2 merge with the
2-manifold ofs2. Deletings1 ands2 removes a ref-
erence to their 2-manifolds. However no geometry
needs to be removed since this surface geometry
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(a) (b) (c) (d) (e) (f)

Fig. 8. Cells destroyed and created by a saddle-saddle cancellation. The neighborhood of the saddle-saddle pair is divided into four regions
of three crystals each. Only one region is shown for reasons of clarity. Cells within the other regions are modified in a similar manner. (a)
Three crystals before cancellation of the highlighted pair of saddles. (b) Four crystals after cancellation. (c) Top crystal stretching down to
the lower 2-saddle. (d) A crystal defined by a new minimum-maximum pair stretching from lower-left to upper-right corner of the region.
(e) Middle crystal shrinking after losing the saddle-saddle pair. (f) Bottom crystal stretching up to the 1-saddle in the upper right.

has become part of many ascending/descending 2-
manifolds. When two surfaces merge, we create a
new element in the DAG, add references to the
merged surfaces, and include a reference to the new
element from the saddle.

The MS complex actually gains cells after a
saddle-saddle cancellation since re-routing ascend-
ing and descending disks creates new intersections
between them, thus adding new cells to the complex.
Figure 8 shows the cells destroyed and created by
this operation. For simplicity, these figures show
only three of the twelve crystals destroyed by the
cancellation and the cells that reconnect this com-
plex within this region. Introducing new cells is
counter-intuitive. Although the MS complex grows
in size, the function is smoothed by the removal of
saddle pairs. Also, the cells created by the saddle-
saddle cancellation are introduced into rings around
saddle-extremum pairs. A future saddle-extremum
cancellation will remove all these cells, leading to a
smoother Morse function and, ultimately, a smaller
MS complex. A simple proof that the algorithm
terminates, despite the increase in number of cells
after a saddle-saddle cancellation, follows from the
fact that every cancellation results in the removal of
a pair of nodes from the complex.

In theory, the maximum number of cancellations
is bounded by half the number of critical points.
In practice, however, we stop earlier to preserve
more persistent features. The saddle-saddle cancel-

lation introduces significant complexity that does
not occur in lower dimensions. Furthermore, the
complexity of this cancellation indicates that exten-
sions to higher dimensions are likely to be rather
complicated.

Fig. 9. A saddle-saddle pair that cannot be cancelled. Cancelling
the pair would create a crystal, called a pouch, that contains exactly
one minimum and one maximum as boundary nodes. The boundary
of such a pouch cannot be represented as a collection of quads.

An arc connecting two saddles does not guarantee
a valid saddle-saddle cancellation. Performing a
cancellation could lead to the formation of apouch,
see Figure 9. This situation occurs when a crystal
incident on the arc has exactly two quads, one
connecting the saddle pair to a minimum and the
other connecting them to a maximum. Removing
the 1-saddle and 2-saddle creates a crystal with zero
saddles and zero quads, corresponding to a possibly
valid Morse function but resulting in an invalid com-
binatorial structure for the MS complex. Pouches
and strangulations (in the case of saddle-extremum
cancellation) do occur in practice, which implies
that there exists a minimal MS complex that cannot
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be further simplified using legal cancellations.

V. MS COMPLEX CONSTRUCTION

We now describe issues related to the construc-
tion of MS complexes from a given data set.

Artificial MS complex. Given a PL function de-
fined on a volumetric mesh, we first construct an
artificial MS complex by inserting dummy critical
points at the barycenters of all cells having an
index of criticality equal to the dimension of the
cell. All input data points become local minima.
We add new arcs connecting the barycenter of a
cell with the barycenters of its faces. The dummy
vertices and arcs naturally subdivide each simplex
into arcs, quads, and crystals. Minima inherit the
function value from the corresponding data point.
The function values at the dummy nodes are chosen
to be greater, by an infinitesimally small valueε,
than the largest value of the vertices of the cell
in which it is located. Initial cancellations ofε-
persistence critical pairs in this artificial complex
remove dummy nodes. A barycentric subdivision
when applied to a cube leads to an artificial complex
with minima at the originally given data locations.
We begin with this artificial complex when input
data is given on a cube lattice. Figure 10 illustrates
how we subdivide a tetrahedron and a cube.

Fig. 10. Creation of an artificial MS complex by subdivision:
Dummy critical points are introduced at barycenters of all cells
thereby turning original data points into local minima. The function
value at a dummy critical point isε (an infinitesimally small positive
value) greater than the largest value of the vertices of the cell in which
it is located. Therefore, the dummy critical point has infinitesimally
small persistence.

We choose to construct the complex in this way
because of its simplicity as opposed to the intricate
algorithm described by Edelsbrunner et al. [25]. A
disadvantage of starting with this artificial complex
is that the number of nodes is equal to the total
number of cells in the input mesh, thereby limiting
the size of the data set that can be efficiently
processed. However, dummy nodes are removed in

a pre-processing step, and therefore exploration of
the data can still be done interactively. Besides
its simplicity, another advantage of the artificial
complex is that it automatically resolves the issue of
degenerate critical points.Multiple saddles, which
are typically unfolded into simple 1- and 2-saddles,
are not present in the artificial complex. This follows
from the fact that each 1-saddle, at the barycenter
of an edge, now has exactly two descending arcs
connecting it to minima at the end points of the
edge. Similarly, all 2-saddles are simple since there
are exactly two ascending arcs that connect each one
of them to local maxima. Both types of cancellation
do not change the number of extrema that connect
to a saddle and hence do not introduce any multiple
saddles. Multiple saddles can exist in input data sets,
but our construction splits these into simple saddles.

Streaming.Pre-processing is costly. It creates seven
additional nodes (for cube lattices) in the com-
plex for each data point. Thus, our earlier exper-
iments [24] were restricted to data sizes up to
64× 64× 64. We have overcome this restriction
by utilizing the regularity of the artificial complex
to pre-process the input in a streaming fashion.
After removal ofε-persistence pairs, the size of the
complex is proportional to the number of critical
points in the original data. We create the complex
incrementally: We start by adding a couple of slices
of the artificial complex, and then cancel allε-
persistence pairs before adding another slice. We do
not permit cancellations that affect the slice in order
to maintain the regularity of the artificial complex.
However, critical point pairs whose neighborhoods
are disjoint from an incoming slice are valid pairs
for cancellation. Figure 11 shows a snapshot of a
complex constructed in this incremental fashion.
The streaming approach has several advantages.

Fig. 11. A snapshot of the artificial complex being constructed
one-slice-at-a-time. The unprocessed region is to the left of the slice.

Most importantly, the size of the memory footprint
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is O(n2+k) instead ofO(n3), wheren is the leading
dimension of the data set andk is the size of the
MS complex. We only need to store two full slices
in addition to the complex at any time, as opposed
to storing the entire artificial complex. Computation
of the complex for larger data sets becomes possible
via such a streaming method. However, we still pay
the O(n3) time penalty, since all dummy critical
points must be removed. The other factor influenc-
ing pre-processing time is the maximum numberm
of arcs incident on any node. Since this is stored
as a linked list, search and deletion of arcs in this
list costO(m) time, and can pose serious overhead.
Even though the streaming algorithm performs the
same number of cancellations as before [24], our
use of a more efficient data structure leads to an 8X

speedup.

Boundary. Our input data is defined over a vol-
umetric domain that has a non-empty boundary.
We use a standard technique from point set topol-
ogy, calledone-point compactification, to convert
the domain into a 3-manifold without boundary.
The compactification involves addition of a vertex
at infinity that connects to all boundary vertices.
This extension of the triangulation is a simple and
efficient way to handle the domain boundary [5],
[15], [19]. Instead of explicitly adding the vertex at
infinity and simplices connecting it to the boundary,
we create a layer around the domain consisting of
dummy critical points for each simplex that contains
the vertex at infinity. These dummy critical points
become nodes of the artificial complex and are
removed when we cancelε-persistence pairs. We
restrict all cancellations to pairs that lie completely
in the interior of the domain or within the boundary
to ensure that we do not change the topology of the
domain.

VI. RESULTS

We pre-process the input data by first creating
an artificial complex and then removing several
dummy critical points by cancellingε-persistence
pairs. This process loads the input one slice at a
time to construct the MS complex incrementally. We
perform further simplification of the MS complex
in an interactive process to identify features. Once
the dummy critical points are removed, the complex
provides an efficient representation of features in
the original data. We identify important features

as regions associated with persistent critical points.
Similar to Takahashi et al [15], we automatically
design a transfer function to enhance critical values
that correspond to these features. Our simplification
allows us to limit the number of critical values
affecting the transfer function to exactly those rep-
resenting important features.

Fig. 12. Atoms and bonds in the C4H4 molecule are identified by
high-persistence critical points and ascending arcs in the simplified
Morse-Smale complex.

Feature identification. We show that our sim-
plification technique extracts known features and
removes noise in well-studied data sets. Table I
lists the data sets used, their sizes, and the time
needed for pre-processing. All experiments were
performed on a desktop PC (3GHz Pentium 4, 1GB
RAM). The reduction in memory required for the
pre-processing stage allows us to handle large data
sets when compared to prior results [24]. After
pre-processing, the remaining critical pairs can be
removed interactively. The first data set represents
an electron density distribution in a C4H4 molecule.
Onceε-persistence critical point pairs are removed,
the complex correctly outlines the bond structure of
the C4H4 molecule. High-persistent maxima corre-
spond to locations of atoms in the molecule, and
ascending arcs that connect 2-saddles with these
maxima correspond to bonds between atoms, see
Figure 12. This correspondence is a visual depiction
of the topological approach to identifying atoms in
molecules as proposed by the AIM theory [29].

The other data sets listed in Table I were obtained
either from simulations or from x-ray scans. Visu-
alization of our results for these data sets are shown
in Figures 13 and 14. The hydrogen atom data set
describes the spatial electron density in a hydrogen
atom subjected to a large magnetic field. The data
set exhibits high density around the nucleus, two
regions of high density on either side, and a torus
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TABLE I

DATA SETS USED IN EXPERIMENTS, THEIR SIZE, AND TIMING

RESULTS FOR PRE-PROCESSING(tpp).

Data set Size tpp
C4H4 33×33×33 5s
Silicium 34×34×98 15s
Neghip 64×64×64 2m 35s
Aneurysm 128×128×128 30m
Hydrogen 128×128×128 45m

of high density around the nucleus. We correctly
identify these features. After theε-persistence crit-
ical points are removed, there are still two disks of
saddles separating the maxima in the data set, which
correspond to noise. Initial cancellations remove the
spurious 1-saddles and 2-saddles, leaving behind
four maxima, which represent the four regions of
high electron density.

Distinctive features in the silicium, neghip, and
aneurysm data sets are revealed using a low thresh-
old. We observed that a threshold value of 10%
of the maximum persistence suffices to detect and
remove all insignificant features. This can clearly be
seen in the neghip data set, where we are able to
isolate the different clusters of atoms automatically.
We do not, however, expect that the same threshold
should be used for all types of data sets. Rather, we
view the simplification as an interactive filter that
will allow scientists to explore the data at different
scales.

Noise removal.We use synthetic data to illustrate
how the cancellation of critical point pairs removes
noise in a natural manner and hence leads to a robust
identification of features. Our input is a simple sum
of Gaussian distributions that decrease radially from
seed points. Each radial function contributes to a
local maximum at its seed point. The local maxi-
mum at the center of the domain is the largest and
those near the domain boundary are the smallest.
Figure 15 shows how the function is successively
simplified by removing critical points based on
persistence. The smaller maxima represent small
perturbations in the data and hence represent noise.
The corresponding maxima have low persistence
and are removed early during the simplification
process. Negligible local maxima are removed first
followed by the next tier of maxima with small but
considerable persistence, leaving behind the primary
feature/maximum at the center.

Fig. 13. Topological simplification applied to various data sets (top
to bottom: hydrogen, neghip, and aneurysm). The input (left) has a
large number of critical points, several of which are identified as being
insignificant and removed by repeated application of two atomic
operations. Features are identified by the surviving critical points
and enhanced in a volume-rendered image, using an automatically
designed transfer function (right).

VII. C ONCLUSIONS

We have described an algorithm to simplify a
trivariate Morse function by cancelling pairs of
critical points in its MS complex and demonstrated
its application to the identification of features in
volumetric scalar fields. This topological approach
supports a direct manipulation of features including
their detection, ordering, and removal during inter-
active data exploration. The combinatorial nature
of our algorithm leads to a robust and efficient
implementation and hence allows us to perform
topological analysis on complex and noisy data
sets. We use the notion of persistence to define



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 14. Topological simplification of the silicium data set. Cancellation of low-persistence critical pairs reveals the shape of the silicium
lattice structure.

Fig. 15. Noise in a synthetic function introduces features with negligible persistence. Left: The function consists of various spikes with the
central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: All nine spikes are clearly visible
after removing noise that created the thin shells surrounding the spheres. Right: Further simplification destroys all maxima except the one
representing the crucial features.

the importance of critical points and the features
that they represent. This measure has been proven
to be robust under the presence of noise [30].
Other spatial measures have also been successfully
used to define and detect features [12]. We plan to
incorporate such measures into our framework and
perform a comparative study. Compared to earlier
work [24], we can handle larger data sets since
memory overhead is no longer a concern during
the pre-processing phase. However, computing the
MS complex remains a bottleneck. An algorithm
that schedulesε-persistence pairs for cancellation
while penalizing the creation of nodes with high
valence, would decrease the pre-processing time
significantly. Future work will also be directed at
designing a multiresolution representation for con-
tinuous trivariate functions by performing indepen-
dent cancellations in the MS complex. A numerical
realization of the cancellations discussed in this
paper is necessary for the design of a multires-
olution representation. As a first step toward this
goal, we plan to investigate different methods to
create and represent efficiently the geometry of the
ascending/descending manifolds consistent with the
integral lines. We are also exploring different ideas
for effective visualization of the quads and crystals.
We are currently not able to utilize them efficiently
in the exploration process due to visual clutter.
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