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Abstract— This paper describes an efficient combinato- methods is incidental and not always controlled.
rial method for simplification of topological features in a \We adopt a more direct approach by explicitly

3.D scalar fun.ction. The Morsg—SmaIe complex, which pro- identifying features, ordering them, and selectively
vides a succinct representation of a function’'s associated removing the non-significant ones.

gradient flow field, is used to identify topological features

and their significance. The simplification process, guided . g .
by the Morse-Smale complex, proceeds by reIOe(,itediyRelated work. Scientific data is usually represented

applying two atomic operations that each remove a pair asS a set of discrete Samples of a function defined on
of critical points from the complex. Efficient storage of the a two- or three-dimensional domain. A continuous
complex results in execution of these atomic operations at function is obtained by interpolating the samples
interactive rates._ Vis_u_aliz_ation of the sir_npl_if_ied complex \within an underlying mesh of the domain. Several
_shows that the s_lmpln‘lcat!on preserves significant t(_)polog- mesh simplification methods have been proposed
ical features while removing small features and noise. . . .. . .
to support efficient visualization of increasingly
Index Terms—Morse theory, Morse-Smale complexes, |arge and complex data. These methods typically
computational topology, computational geometry, simplifi- - yocimate a mesh by repeated application of a fun-
cation, multiresolution, feature detection, volumetric data. . .
damental operation, the most common one being
edge contractiorfl]. The error introduced by edge
contraction can be computed as the sum of distances
l. INTRODUCTION to planes that are associated with end points of a
NDERSTANDING and effective explorationcontracted edge [2], and hyperplanes are used to
of increasingly complex scientific data necesneasure the error introduced in the function [3].
sitates the development of sophisticated schen@sginally developed for surface meshes, edge con-
that represent data sets at multiple resolutions. Sucdction has been successfully extended to tetrahe-
schemes ideally identify and preserve important fedral meshes [4]-[6] and other higher-dimensional
tures in all resolutions while removing insignificanineshes [7]. Also, related schemes have been devel-
features at lower resolutions. Beginning with theped to select data points and insert them iteratively
highest resolution, coarser resolutions are obtaingddefine a hierarchical approximation [8].
by repeated simplification of an input data set. Iden- We are interested in preservirigpological fea-
tification of a feature and ordering features basegres of scalar functions, which are defined by
on their significance is crucial to the constructiogritical points of the function. Such features cor-
of good multiresolution representations. Existingespond to changes in the behavior of isocontour
methods typically use a geometric approach, whegemponents. For example, for bivariate functions,
the numerical error associated with the simplifiegbon increasing the function value, minima create
model is used as the measure of approximati@@w isocontour components, maxima destroy com-
quality. Any removal of features caused by thegsonents, and saddle points merge or split isocon-

: . _ _tour components. A purely geometric approach to
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or preserving them while simplifying mesh geom- « describe a combinatorial algorithm that selec-
etry [9], [10]. Two data structures are commonly tively removes non-significant topological fea-
used for explicitly storing topological featurd?eeb tures by repeated application of the two atomic
graphsand Morse-Smale (MS) complexes operations, and

The Reeb graph [11] traces components of iso-e describe a data structure that stores the MS
contours/isosurfaces as they sweep the domain. In complex and allows optimal execution of the
the case of simply connected domains, the Reeb atomic operations.
graph has no cycles and is calledcantour tree
Reeb graphs, contour trees, and their variants hae extend the results of Bremer et al. [18] and
been used successfully to guide the removal Bflelsbrunner et al. [19] to functions defined on
topological features [12]-[16]. The MS complexhree-dimensional domains by following their basic
decomposes the domain of a function into regioagpproach and introducing new ideas to address
having uniform gradient flow behavior [17]. It hasssues that arise due to the added complexity of
been used recently to perform controlled simpliffeatures in volumetric domains. The extension is
cation of topological features in functions definethade non-trivial by the presence of two different
on two-dimensional domains [18], [19] and fotypes of saddles of trivariate functions. For bivariate
purposes of shape analysis [20]. The MS compléxnctions, simplification of the function using the
allows the simplification to utilize a global viewMS complex is accomplished by repeated cancella-
and spatial distribution of a function for detectingjon of critical point pairs, one of which is a saddle
ordering, and removing features. The MS complend the other an extremum (minimum/maximum).
also provides the ability to restrict simplification tarhe presence of a new type of saddle of trivariate
a local neighborhood of the non-significant featuréunctions creates the need for an additional type of
Reeb graph-based simplification methods do noancellation. We introduce two atomic operations
enjoy these benefits. Furthermore, when appliedtttat simplify a function: a saddle-saddle cancella-
trivariate functions, they are limited to detectingjon and a saddle-extremum cancellation. Repeated
and simplifying features that are associated with tlag@plication of these two operations on ordered pairs
creation and destruction of isosurface components.critical points results in a hierarchy. Critical point
These features are represented by pairs of critigelirs are ordered based on the notion pefrsis-
points consisting of one saddle and one extremutance [23], which measures the importance of the
The MS complex is also able to detect genwsssociated topological feature. We construct an ar-
changes within the isosurface, which are representdttial MS complex from a barycentric subdivision
by saddle-saddle pairs. We use this more comprd-the input mesh such that each vertex becomes
hensive approach for simplifying scalar functions iaritical. Several of the newly inserted critical points
three variables. are identified as having an infinitesimally small

Simplification of topological features has alspersistence value and cancelled in a pre-processing
been studied in the context of vector fields [21ktage. In an earlier paper [24], we reported the
[22]. These methods, however, use numerical dpnitation of this pre-processing to small data sizes.
proaches to identify, order, and simplify the topolHere, we present two new ideas that remove this
ogy and are therefore prone to instability. In corimitation, namely
trast, Reeb graph and MS complex based methods
for simplification of scalar fields are combinatorial « a streaming approach for the removal of several
in nature and hence stable. critical point pairs in the pre-processing stage,

o _ resulting in a low memory footprint for the
Contributions. We describe a new method for ex-  particular case when the scalar function is

plicit removal of topological features of a given  given on a regular grid, and
trivariate scalar function with the goal of construct- , a new data structure that supports efficient

ing a hierarchical representation. Specifically, we implementation of the atomic operations.
« introduce two atomic operations that destroy
target topological features without affecting th&/e demonstrate our approach by simplifying data
function globally, sets from various application areas.
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Fig. 1. Local configurations of a regular point and the four types of critical points (minimum, 1-saddle, 2-saddle, and maximum) with
shaded oceans, white continents and integral lines. The distinct structure of the oceans allows a combinatorial characterization of the critical
points.

I[I. MORSETHEORY
Our algorithms are based on Morse theory, which W Mt
was originally developed for smooth functions. In @ 2-Saddle
this section, we provide a_brief de_scription of idea_s O 1-Saddie
from Morse theory essential to this paper and their
extensions to piecewise-linear (PL) functions. For O Minimum

a comprehensive description of the extension, we
refer to Edelsbrunner et al. [25]. Morse theory is dLle_ig. 2. The boundary of a crystal in the Morse-Smale complex

cussed in detail by Milnor [26] and Matsumoto [27]eonsists of lower-dimensional cells: quads, arcs, and nodes. Every
crystal has a unique origin and destination node, the minimum and

Critical points_ LetM be a compact 3-manifold andmaximum, respectively, which are end points of integral lines lying
f M — R be a real-valued smooth function defineﬂ“hi”' I_\lote that the _glyphs used for critical p(_)ints indicate their

. . .. ocal neighborhood, with shaded oceans and white continents. Quads
on M. A function f is a Morse functionif none of contained in ascending disks are colored in red; those contained in
its critical points are degeneratee(, the Hessian descending disks are colored blue.
of f is non-singular for all critical points) and no
two critical points have the same function value.
The Morse Lemmastates that a Morse function haers of integral lines having common destination.
quadratic behavior within a local neighborhood dhscending and descending manifolds are dual to
every non-degenerate critical poipt This lemma €ach other: negating the function transforms one to
immediately characterizes critical points. Tinelex the other. Descending manifolds have a dimension
of a critical point is equal to the number of negativéqual to the index of the destination, and ascending
eigenvalues of the Hessian. Therefore, minima, Manifolds have a dimension equal to three minus
saddles, 2-saddles, and maxima have indices ediig index of their origin. The descending manifolds
to 0,1,2, and 3, respectively. Figure 1 shows loof dimension one and two are calletbscending
cal neighborhoods of a regular point and the fo@'csanddescending diskshe ascending manifolds
types of non-degenerate critical points. These loc dimension one and two are calleascending
configurations indicate that the criticality qf is arcs and ascending disksWe consider Morse-
characterized by the structure ofeansconsisting Smale functions whose ascending and descending
of pointsx on an infinitesimally small sphere aroundnanifolds intersect only transversally. For example,
p, where f(x) < f(p), andcontinentsconsisting of if an ascending disk with originp intersects a

pointsx on the sphere, wheré(x) > f(p). des_cending_ disk with de_stinaticm then the p_oints
of intersection form a simple path connecting the

MS complex. An integral line of f is a maximal two saddlesp andg. If an ascending disk intersects

path in Ml whose tangent vectors agree with tha descending arc then the point of intersection is
gradient of f at every point of the path. Eacha single point, namely the 1l-saddle lying on the
integral line has a natural origin and destinatiomoundary of the descending arc. The MS complex
coinciding with critical points off where the gradi- partitionsM by clustering integral lines that share

ent becomes zerédscending manifoldare obtained both common origin and destination. For example,
as clusters of integral lines having common origithe three-dimensional cells of the MS complex
and descending manifoldsre obtained as clus-cluster integral lines that originate at a given mini-
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mum and terminate at an associated maximum (sategral lines, are not well defined for PL functions.
Figure 2). The cells of decreasing dimensions aHowever, monotonic curves and surfaces corre-
calledcrystals, quads, arcandnodes respectively. sponding to arcs and quads of the MS complex can
The MS complex is equivalently obtained as ape constructed by simulating a separation between
overlay of ascending and descending manifoldstegral lines that merge [25]. The function has
which individually partition M. Cells of the MS its critical points at the nodes of this complex and
complex satisfy several combinatorial propertiess monotonic within all arcs, quads, and crystals of
end points of arcs are critical points whose indicése MS complex. We work with this decomposition
differ exactly by one; quads contain exactly fouof the triangulation to determine feature-identifying
arcs on their boundary; and the boundary of a crysfadirs of critical points as the boundary nodes of a
contains a collection of quads, arcs, saddles acommon arc.
exactly one minimum and one maximum.

[1l. DATA STRUCTURE

Cancellation. A minimal Morse function is gen- e introduce a new data structure for storing the
erated fromf by repeated cancellation of pairs ofjys complex. The design of the data structure is
critical points. This operation is legal.€. it can governed by two major objectives: efficient execu-
be realized by a local perturbation of the gradtion of all simplification operations and minimal

ent vector field) if the indices of the two crltlcalmemory overhead. The data structure stores two
points differ by one and they are connected bygnes of information: connectivity of the complex

unique common arc in the MS complex. For Morsgnd geometry of each cell within the complex. The
functions defined on three-dimensional domains, W8 mbinatorial structure of the complex is deter-
have three types of legal cancellations: minimumined by the connectivity of nodes via arcs, and
and 1-saddle; 1-saddle and 2-saddle; and 2-sadgle geometric structure of the complex is given
and maximum. Cancellations play a crucial role ify the |ocation of nodes, arcs, and all ascend-
Morse theory for proving important results, includng/descending 2- and 3-manifolds. We store the

ing the generalized Poindarconjecture for higher connectivity of the complex as a graph, and augment
dimensions [28]. We use cancellations to reduce thgs graph with geometric components.

number of critical points and hence remove topolog-
ical features. The local change in the MS compleéonnectivity. We create a list of nodes and a list of
indicates a smoothing of the gradient vector fielarcs to store the connectivity of the MS complex.
and therefore a smoothing of the functidn The Each node contains its index of criticality, a list
ordering of critical point pairs is specified by theiof arcs that originate or terminate at this node, the
persistence value, which quantifies the importantenction value at this point, and relevant geometric
of the topological feature associated with a pair. Thieformation. A design goal is to have fixed-size
persistence of a critical point pair is defined as tledements in the lists. Instead of storing a list of arcs
absolute difference in value dof between the two incident at a node, we store a reference to exactly
points. one such arc. All arcs have a reference each to the
next arc that shares its end points. The list of arcs
PL functions. Scientific data is typically givenincident at a specific node is obtained by traversing
as a discrete sample over a smooth manifold ditrese references. Besides these two references, each
main. The smooth manifold is often discretized arafc also has references to its two end point nodes
represented by a triangulation. Given values ofand geometry. Figure 3 shows our data structure.
function f at vertices of a triangulation, we linearlyAll nodes of the complex are stored in an array,
interpolate within edges, triangles, and tetrahedeach element containing multiple fields. GO refers
of the triangulation to obtain a PL function. Theo the geometric location of a node. The TAG field
spherical neighborhood of a vertex is representstbres the index of criticality as well as internal flags
by a two-dimensional triangulation, which contain® represent boundary conditions. If the node is a
the oceans and continents. The number of connecsedldle, then the field G2 stores a reference to the
components and holes in the ocean uniquely identdfigometry of the 2-manifold originating from that
the index of the critical point. Gradients, and henaddle; otherwise, the critical point is an extremum,
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in which case the field G3 stores volumetric inin the DAG together constitute the geometry asso-
formation of the 3-manifold originating from theciated with that element. An arc references exactly
extremum. The field A stores a reference to thane element in the DAG to recover the complete
first arc in the list of arcs incident to this nodegeometry of the constituent line segments. The
Arcs are stored in an array as well, each entry agd@aves of this DAG are the geometric primitives of
containing multiple fields. G1 is a reference to thihe line segments. Similarly, the leaves of the DAG
geometry of the arcs (i.e., the integral line), CPdtoring the geometry of 2-manifolds contain the
and CP2 are the two end points of the arc, and Adces that compose the 2-manifolds. Each element
and A2 store the next element in the list of ards the DAG also stores the number of elements that
incident at CP1 and CP2, respectively. directly reference it. The element is deleted when
this counter is zero.

Nodes Arcs
GO TAGG2/G3 A Gl CPl CP2 Al A2
© © © Q Q O//Cj( \\ h internal

N B L e PO
s gl ow s gt

Fig. 4. Geometry of arcs and ascending/descending disks are stored
Fig. 3. Data structure for connectivity of nodes and arcs in thgs DAGs to minimize storage.eft our simplification algorithm
MS complex. Nodes and arcs are stored in two arrays. Each endfgates new arcs by merging exactly three other arcs. So, each internal
in these two arrays contains multiple fields that together store tBRment stores references to three childRight after a cancellation,
connectivity of the MS complex. two disks merge into one. So, each internal element stores references
to two children.

Geometry. We design the geometry components to
minimize complexity of cancellations. These com- V. SIMPLIEICATION

ponents are: _ We simplify the MS complex of a Morse function
« GO is a reference to the location of a nods;, by performing a series of critical point pair

identified by an index. cancellations. A cancellation simulates a smoothing
. Gllls a reference to the path of the arcs, a SSberation applied td by modifying gradient flow
of line segments. in the neighborhood of two critical points. Arcs con-
« G2 is a reference to the geometry of the agacting critical points are lines of steepest descent
cending/descending 2-manifolds. or ascent, and changing them affects the gradient
- G3isa referenqe to the geometry of the agpw behavior off. Rules that apply to gradient flow
cending/descending 3-manifolds. must be adhered to in the simplification process. For

GO is an index referring to an array of inpuexample, integral lines must remain disjoint.
vertices that determines the geometry of a critical Critical point pairs that we consider are end
point. Storing the geometry of arcs and ascengeints of an arc in the MS complex and therefore
ing/descending 2-manifolds is more involved sindeave consecutive indices. We group the pairs into
we want to minimize storage. The key observationiao types: saddle-extremum (indices 1 and O or
that, upon simplification, arcs and 2-manifolds ofteindices 2 and 3) and saddle-saddle (indices 1 and
merge, and the same line segment or face becor@gsThe two types of cancellations are distinct in
a part of multiple arcs. This is a common behavidhe way they modify gradient flow behavior. The
in the pre-processing stage of our simplificatiocancellation procedure is similar to vertex removal
algorithm. After a cancellation, several arcs angsed in mesh simplification methods, with a pair
surfaces are re-routed to pass through the saofecritical points being removed instead of a single
geometry. Our data structure takes advantage vafrtex, and the reconnection of the complex gov-
this redundancy. G1 and G2 are stored as directthed by rules of Morse theory rather than mesh
acyclic graphs (DAGSs), as shown in Figure 4. Aljeometry. For reasons of clarity, we illustrate the
leaves of the DAG reachable from a given elemetwo types of cancellations using prototypical figures
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Fig. 5. Snapshot of a Morse-Smale complex before and after a saddle-maximum cancellation. (a) Three of the twelve crystals affected by
the cancellation are colored. (b) Close-up view of the three crystals and the maximum-saddle-maximum triple that is merged into a single
maximum. (c) After cancellation, all ascending arcs and disks that originally flow into the maximum lying below the saddle, flow into the
maximum lying above the saddle. One of the three crystals is deleted in this process. (d) Ascending arcs and disks in the other nine crystals
are similarly re-routed, resulting in a removal of three more crystals.

of MS complexes. The description, however, holdsancellation by performing the following sequence

for all possible configurations. of connectivity-modifying operations:
1) Letn be the end point of the arc originating
Saddle-extremum cancellation. The saddle- from s and not equal tan. Let b be this arc

extremum cancellation removes either a 2-saddle- that connects to n.
maximum pair or a 1-saddle-minimum pair. 2) Replace all arcs; that terminate am with
The two pairs are dual to each other as can be new arcsh; that share their origin witly and
seen by negating the function: maxima become terminate atn. Add b; to the arc list of its
minima, 2-saddles become 1-saddles and vice- origin and the arc list of.
versa. We restrict our discussion to 2-saddles and3) Delete nodes andm and all arcs incident to
maxima. A 2-saddle, by definition, is connected by  them. Delete all references of these arcs from
ascending arcs to exactly two maxima. When one  the arc lists of their endpoints.
of these _max!ma is re_moved ir_l a sadd_le-maximUﬁhe geometry of ardy is obtained as the con-
cancellation, integral lines ending at this maximuLtanation of arcs;, a, and b. References to the
flow toward the sgcond maximum. One can th'_”ﬂfeometry of these arcs are added from a new
of a S?qdle'm?‘x'mym cancellat_|on as Mer9iNYement added to the DAG. All ards share the
three critical p0|_nts into one maximum. A_Pply'nggeometry ofa and b, which makes the DAG an
the saddle-maximum ca‘l‘ncellatJon_ simplifies  thgxicient representation of the geometry. The single
function by removing a “bump.” Figure 5 shows, anifold corresponding ts is deleted from the
how the integral lines terminating at the tWQgmplex along with the saddle. Re-direction of arcs
maxima flow into the remaining maximum aftehs gescribed above changes boundaries of the 2-
cancellation. manifolds that it touches. However, it does not
The saddle-maximum cancellation is similar tohange their surface geometry, and the interior of
its two-dimensional analog, which can also be ithe ascending/descending 2-manifolds remain sim-
terpreted as merging three critical points. We mergdy connected after the cancellation. Therefore, we
neighboring cells in the ring around the saddlenake no changes to the representation of the surface
maximum arc. Therefore, besides removing twgeometry of these 2-manifolds.
critical points, this cancellation also removes several A saddle-maximum cancellation is legal only if
crystals, quads, and arcs from the complex. etthe 2-saddle is connected to two distinct maxima. If
andm be the saddle and extremum to be cancell#uis condition is not met, then we recognize that the
anda be the arc connecting them. We implement theancellation causes strangulationof the descend-
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Fig. 6. A saddle-maximum pair that cannot be cancelled. Tw
integral lines beginning at a 2-saddle flow to the same maximur
Cancelling the saddle-maximum pair causes a strangulation of t
blue descending disk since integral lines terminating at the 2-saddle
are left without a destination.

@) (b)

Fig. 7. A saddle-saddle cancellation. (a) Descending disks affected

ing disk that originates at the 2-saddle. In fact, it fay the cancellation. The red arc connects the pair to be cancelled. All
ibl he int Li t inati fOfJI’ disks (,v,w, andx) have two common descending arcs (shown

not possible tQ route the integral lines termina '_ng A green) on their boundary, both originating from the 1-saddle to

the 2-saddle if we cancel such a saddle-maximus@removed. (b) Descending disks that remain after cancellation. The

pair. Figure 6 shows this configuration. green descending arcs are deleted from the boundary of the three
surviving disks, which now extend to inherit the boundary xof

. Ascending manifolds are dual to the descending manifolds and hence
Saddle-saddle cancellationThe saddle-saddle canmodified in a similar way.

cellation removes a 1-saddle-2-saddle pair, see Fig-

ures 7 and 8. This cancellation does not have an

analog in lower dimensions. A 1-saddle descendsA good way to think about reconnecting the com-
to exactly two minima, and a 2-saddle ascends ptex after a saddle-saddle cancellation is in terms of
exactly two maxima. After cancelling this saddlascending and descending disks: All surviving de-
pair, we need to ensure that the two pairs of extrerseending disks expand to share the boundary of the
originally separated by these saddles remain tldsleted disk, thereby creating connections between
way. This constraint necessitates the introductigorviving 2-saddles and 1-saddles on the newly
of new cells to fill in space between the two pairiserted boundary. Similarly, surviving 1l-saddles
of extrema. One can think of this cancellation bgonnect to 2-saddles on the newly inserted boundary
considering what happens to the descending disktheir ascending disks, which guarantees full re-
originating from the 2-saddle and the ascending disbknnectivity of the complex after a cancellation. Let
originating from the 1-saddle. After cancellations; ands, be a 1-saddle and 2-saddle pair connected
these two disks disappear, and neighboring diskg an arca. We implement the cancellation as a
stretch out and share their boundary. We can sequence of operations on our data structure:
Io_n_ger consnder the cancellation as merging threel) For each pair of 1- and 2-saddle, (t)
critical pglnts as we can for the saddle-maxmum different from &, s5), where the pairt{, )
cancellation. Consider thg descending disk thatlls is connected by ara;, and the pairth, s;) is
removed by the cancellation: The boundary of this  .gnnected by arey, do the following:

disk consists of alternating 1-saddles and minima. 11) Create a new afg from t; to t

Arcs lying within the disk connect the 1-saddles 1'2) Inserth into the arc Iistslof ité. end-
on the boundary to the 2-saddle where the disk ' :

originates. One of these 1-saddles is involved in the points. ) .
cancellation. This 1-saddle and its two descending?) Delete all arcs in the arc lists f ands; and
arcs are deleted as a result of the cancellation. delete the two nodes.

Descending disks that contain these descending axesw arcsb are created by concatenating the geom-
in their boundary expand to share the boundaeyry of arcsa;, a, anday. The 2-manifolds of all

of the removed disk. Similarly, one ascending disk-saddles; merge with the 2-manifold o§;, and

is removed and its boundary is shared by thbhe 2-manifolds of all 2-saddles merge with the
neighboring ascending disks. Figure 7 illustrates tRemanifold ofs,. Deletings; ands, removes a ref-
operation by showing the descending disks befoeeence to their 2-manifolds. However no geometry
and after cancellation. needs to be removed since this surface geometry
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@) (b) (©) (d) (e) )

Fig. 8. Cells destroyed and created by a saddle-saddle cancellation. The neighborhood of the saddle-saddle pair is divided into four regions
of three crystals each. Only one region is shown for reasons of clarity. Cells within the other regions are modified in a similar manner. (a)
Three crystals before cancellation of the highlighted pair of saddles. (b) Four crystals after cancellation. (c) Top crystal stretching down to
the lower 2-saddle. (d) A crystal defined by a new minimum-maximum pair stretching from lower-left to upper-right corner of the region.

(e) Middle crystal shrinking after losing the saddle-saddle pair. (f) Bottom crystal stretching up to the 1-saddle in the upper right.

has become part of many ascending/descendingléion introduces significant complexity that does
manifolds. When two surfaces merge, we createnat occur in lower dimensions. Furthermore, the
new element in the DAG, add references to tremplexity of this cancellation indicates that exten-
merged surfaces, and include a reference to the ngans to higher dimensions are likely to be rather
element from the saddle. complicated.

The MS complex actually gains cells after a
saddle-saddle cancellation since re-routing ascend-
ing and descending disks creates new intersections
between them, thus adding new cells to the complex.
Figure 8 shows the cells destroyed and created by
this operation. For simplicity, these figures show
only three of the twelve crystals destroyed by the
cancellation and the cells that reconnect this corfig- 9. A saddle-saddle pair that cannot be cancelled. Cancelling
plex. within this: region. Introducing new cells ig)® P eud este a cysa caled  pouch ral cortains exacty
counter-intuitive. Although the MS complex growst such a pouch cannot be represented as a collection of quads.
in size, the function is smoothed by the removal of

saddle pairs. Also, the cells created by the saddle-an arc connecting two saddles does not guarantee
saddle cancellation are introduced into rings around/gjid saddle-saddle cancellation. Performing a
saddle-extremum pairs. A future saddle-extremuBncellation could lead to the formation opauch
smoother Morse function and, ultimately, a smallg§fcident on the arc has exactly two quads, one
MS complex. A simple proof that the algorithmeonnecting the saddle pair to a minimum and the
terminates, despite the increase in number of celjger connecting them to a maximum. Removing
after a saddle-saddle cancellation, follows from thge 1-saddle and 2-saddle creates a crystal with zero
fact t.hat every cancellation results in the removal @§qdles and zero quads, corresponding to a possibly
a pair of nodes from the complex. valid Morse function but resulting in an invalid com-

In theory, the maximum number of cancellationinatorial structure for the MS complex. Pouches
is bounded by half the number of critical pointsand strangulations (in the case of saddle-extremum
In practice, however, we stop earlier to presengancellation) do occur in practice, which implies
more persistent features. The saddle-saddle candleit there exists a minimal MS complex that cannot
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be further simplified using legal cancellations. a pre-processing step, and therefore exploration of
the data can still be done interactively. Besides
V. MS CoMPLEX CONSTRUCTION its simplicity, another advantage of the artificial
ymplex is that it automatically resolves the issue of
egenerate critical pointdultiple saddles which
are typically unfolded into simple 1- and 2-saddles,

Artificial MS complex. Given a PL function de- are not presentin the artificial complex. This follows

fined on a volumetric mesh, we first construct difom the fact that each 1-saddle, at the barycenter
artificial MS complex by inserting dummy criticalof an edge, now has exactly two descending arcs
points at the barycenters of all cells having agPnnecting it to minima at the end points of the

index of criticality equal to the dimension of theedge. Similarly, all 2-saddles are simple since there
cell. All input data points become local minimaare exactly two ascending arcs that connect each one
We add new arcs connecting the barycenter ofoAthem to local maxima. Both types of cancellation

cell with the barycenters of its faces. The dumm§o not change the number of extrema that connect
vertices and arcs naturally subdivide each simplé&xa saddle and hence do not introduce any multiple
into arcs, quads, and crystals. Minima inherit thgaddles. Multiple saddles can exist in input data sets,
function value from the corresponding data poinut our construction splits these into simple saddles.

The function values at the dummy nodes are chosen _ o
to be greater, by an infinitesimally small valae Streaming. Pre-processing is costly. It creates seven

than the largest value of the vertices of the cedditional nodes (for cube lattices) in the com-
in which it is located. Initial cancellations of- Plex for each data point. Thus, our earlier exper-
persistence critical pairs in this artificial compledMents [24] were restricted to data sizes up to
remove dummy nodes. A barycentric subdivisiof X 64 x 64. \We have overcome this restriction
when applied to a cube leads to an artificial compld¥ Utilizing the regularity of the artificial complex

with minima at the originally given data locations!® Pré-process the input in a streaming fashion.
We begin with this artificial complex when inputAfter removal ofe-persistence pairs, the size of the

data is given on a cube lattice. Figure 10 illustrat€9@Mplex is proportional to the number of critical
how we subdivide a tetrahedron and a cube. points in the original data. We create the complex
incrementally: We start by adding a couple of slices

of the artificial complex, and then cancel at
persistence pairs before adding another slice. We do
not permit cancellations that affect the slice in order
to maintain the regularity of the artificial complex.
However, critical point pairs whose neighborhoods
are disjoint from an incoming slice are valid pairs
Fig. 10 Creation of an artificial MS complex by subdivision‘for cancellation. Flgurg 1 _ShQWS a SnapShOt -Of a
I gomplex constructed in this incremental fashion.

Dummy critical points are introduced at barycenters of all cellg .
thereby turning original data points into local minima. The functiod he Streaming approach has several advantages.
value at a dummy critical point is (an infinitesimally small positive
value) greater than the largest value of the vertices of the cell in which
it is located. Therefore, the dummy critical point has infinitesimally
small persistence.

We now describe issues related to the constr
tion of MS complexes from a given data set.

We choose to construct the complex in this way
because of its simplicity as opposed to the intricate
algorithm described by Edelsbrunner et al. [25]. A
disadvantage of starting with this artificial complex
is that the number of nodes is equal to the total, 11. A snapshot of the artificial complex being constructed
number of cells in the input mesh, thereby limitingne-slice-at-a-time. The unprocessed region is to the left of the slice.
the size of the data set that can be efficiently
processed. However, dummy nodes are removedMiost importantly, the size of the memory footprint
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is O(n? 4 k) instead ofO(n?), wheren is the leading as regions associated with persistent critical points.
dimension of the data set ardis the size of the Similar to Takahashi et al [15], we automatically
MS complex. We only need to store two full sliceslesign a transfer function to enhance critical values
in addition to the complex at any time, as opposeélat correspond to these features. Our simplification
to storing the entire artificial complex. Computatioallows us to limit the number of critical values
of the complex for larger data sets becomes possilaléecting the transfer function to exactly those rep-
via such a streaming method. However, we still pagsenting important features.

the O(n®) time penalty, since all dummy critical
points must be removed. The other factor influenc-
ing pre-processing time is the maximum number

of arcs incident on any node. Since this is stored
as a linked list, search and deletion of arcs in this
list costO(m) time, and can pose serious overhead.
Even though the streaming algorithm performs the
same number of cancellations as before [24], our
use of a more efficient data structure leads to &an 8
speedup.

Fig. 12. Atoms and bonds in the484 molecule are identified by
Boundary. Our input data is defined over a volhigh-persistence critical points and ascending arcs in the simplified

umetric domain that has a non-empty boundarjerse-Smale complex.
We use a standard technique from point set topol-

ogy, calledone-point compactificationto convert featyre identification. We show that our sim-
the domain into a 3-manifold without boundaryyjification technique extracts known features and
The compactification involves addition of a vertexemoves noise in well-studied data sets. Table |
at infinity that connects to all boundary verticegists the data sets used, their sizes, and the time
This extension of the triangulation is a simple angeeded for pre-processing. All experiments were
efficient way to handle the domain boundary [Sﬁerformed on a desktop PC (3GHz Pentium 4, 1GB
[15], [19]. Instead of explicitly adding the vertex a AM). The reduction in memory required for the
infinity and simplices connecting it to the bounda%re-processing stage allows us to handle large data
we create a layer around the domain consisting §fts \when compared to prior results [24]. After
dummy critical points for each simplex that containgre_processing, the remaining critical pairs can be
the vertex at infinity. These dummy critical pointfemoved interactively. The first data set represents
become nodes of the artificial complex and akg, electron density distribution in aB4 molecule.
removed when we cancel-persistence pairs. Wepncee-persistence critical point pairs are removed,
restrict all cancellations to pairs that lie completelye complex correctly outlines the bond structure of
in the interior of the domain or within the boundarype C4H4 molecule. High-persistent maxima corre-
to ensure that we do not change the topology of tgong to locations of atoms in the molecule, and
domain. ascending arcs that connect 2-saddles with these
maxima correspond to bonds between atoms, see
VI. RESULTS Figure 12. This correspondence is a visual depiction
We pre-process the input data by first creatiraf the topological approach to identifying atoms in
an artificial complex and then removing severaholecules as proposed by the AIM theory [29].
dummy critical points by cancelling-persistence The other data sets listed in Table | were obtained
pairs. This process loads the input one slice ategher from simulations or from x-ray scans. Visu-
time to construct the MS complex incrementally. Walization of our results for these data sets are shown
perform further simplification of the MS complexin Figures 13 and 14. The hydrogen atom data set
in an interactive process to identify features. Onakescribes the spatial electron density in a hydrogen
the dummy critical points are removed, the complestom subjected to a large magnetic field. The data
provides an efficient representation of features set exhibits high density around the nucleus, two
the original data. We identify important featuresegions of high density on either side, and a torus
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TABLE |
DATA SETS USED IN EXPERIMENTS THEIR SIZE, AND TIMING
RESULTS FOR PREPROCESSING(tpp).

Data set || Size | tpp
CaHg 33%x33x33 5s
Silicium 34x34%98 15s
Neghip 64 x 64 % 64 2m 35s

Aneurysm || 128x 128x 128 30m
Hydrogen || 128x 128x 128 45m

of high density around the nucleus. We correctly
identify these features. After thepersistence crit-
ical points are removed, there are still two disks of
saddles separating the maxima in the data set, whic
correspond to noise. Initial cancellations remove the
spurious 1-saddles and 2-saddles, leaving behin
four maxima, which represent the four regions of
high electron density.

Distinctive features in the silicium, neghip, and o
aneurysm data sets are revealed using a low thresrr;://f N S
old. We observed that a threshold value of 10% . S
of the maximum persistence suffices to detect ang
remove all insignificant features. This can clearly be
seen in the neghip data set, where we are able t
isolate the different clusters of atoms automatically.
We do not, however, expect that the same thresholc
should be used for all types of data sets. Rather, we.— B
view the simplification as an interactive filter that o
will allow scientists to explore the data at different

scales. Fig. 13. Topological simplification applied to various data sets (top
to bottom: hydrogen, neghip, and aneurysm). The input (left) has a

Noise removal. We use synthetic data to illustratgarge number of critical points, several of which are identified as being
insignificant and removed by repeated application of two atomic

hO\_N the cancellation of critical point pairs remov{:"i?perations. Features are identified by the surviving critical points
noise in a natural manner and hence leads to a robagtenhanced in a volume-rendered image, using an automatically
identification of features. Our input is a simple surgtesigned transfer function (right).

of Gaussian distributions that decrease radially from

seed points. Each radial function contributes to a

local maximum at its seed point. The local maxi- VII. CONCLUSIONS

mum at the center of the domain is the largest andWe have described an algorithm to simplify a
those near the domain boundary are the smallgsivariate Morse function by cancelling pairs of
Figure 15 shows how the function is successivetyitical points in its MS complex and demonstrated
simplified by removing critical points based orits application to the identification of features in
persistence. The smaller maxima represent smadlumetric scalar fields. This topological approach
perturbations in the data and hence represent nosgpports a direct manipulation of features including
The corresponding maxima have low persistentigeir detection, ordering, and removal during inter-
and are removed early during the simplificatioactive data exploration. The combinatorial nature
process. Negligible local maxima are removed firsf our algorithm leads to a robust and efficient
followed by the next tier of maxima with small buimplementation and hence allows us to perform
considerable persistence, leaving behind the primdopological analysis on complex and noisy data
feature/maximum at the center. sets. We use the notion of persistence to define
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Fig. 14. Topological simplification of the silicium data set. Cancellation of low-persistence critical pairs reveals the shape of the silicium
lattice structure.

Fig. 15. Noise in a synthetic function introduces features with negligible persistence. Left: The function consists of various spikes with the
central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: All nine spikes are clearly visible
after removing noise that created the thin shells surrounding the spheres. Right: Further simplification destroys all maxima except the one
representing the crucial features.
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