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Automatic generation of unstructured volume
grids inside or outside closed surfaces

Bernd HAMANN !, Jiann-Liang CHEN 2 and Guangzhi HONG ?

Summary - A new technique for unstructured volume grid generation
around closed surfaces is presented. The technique is based on iterative
point insertion. Grid point density depends on distance to the surface
and surface curvature. The technique 1s completely automatic.

1. Introduction

An unstructured grid of a finite volume consists of a set of tetra-
hedra. Unstructured grid generation techniques can be automated to a
high degree and typically require little user input, which is one of the
most important advantages of unstructured grid generation over struc-
tured grid generation. In addition, unstructured grids are used more
frequently now than a decade ago (see [10]).

There are two basic unstructured grid generation methodologies.
The first one is based on the advancing front technique (see [8] and [9]),
and the second one is based on the Delaunay triangulation of point sets
(see (1], [2], [3], [6], [7], and (11)).

The technique introduced in this paper controls grid point density
by considering distance to the surface and surface curvature. An initial
volume grid with nearly constant grid point density is generated by in-
tersecting line segments with the given geometry. The line segments are
edges of a Delaunay triangulation of a sufficiently large box that com-
pletely contains the given geometry. The initial volume triangulation
is iteratively modified by inserting points until a desired point distribu-
tion is obtained. In a preprocessing step, the method usually requires
the reduction of the given surface triangulation (see [4]) and the ap-
proximation of absolute curvature at all points in the reduced surface
triangulation (see (3]).
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It 1s assumed that a closed surface triangulation is given. Thus,
each 3D point can be characterized as an exterior, interior, or point on
the surface. It is possible to create an unstructured volume grid on the
outside or the inside of the given surface. The algorithm requires these
steps:

(1) Compute a first volume triangulation for a 3D region that
contains the given geometry.

(ii) Intersect edges of volume triangulation with the surface.

(i11) Characterize each vertex in the volume triangulation as an
exterior point (“-1”), point on the surface (“0”), or interior

point (“17).
(iv) Compute a second volume triangulation for the part lying in-
side (or outside) the closed surface.

(v) Weight each tetrahedron according to surface distance and cur-
vature of closest surface point.

(vi) Insert additional grid points and locally update/improve the
new volume triangulation.

2. Constructing the initial volume triangulation

The bounding box containing the closed surface is denoted by V.
The bounding box is scaled with respect to its centroid in order to
define a sufficiently large space for the grid generation step. The surface
itself 1s given by a set of points P = {x,- = (2;, pis'2illi = 1,...,n}, and
an assoclated surface triangulation, denoted by 7 = {(v],v],v3)|; =
1,...,m}, where a triple (v{,v},v]) refers to three points in P defining
a triangle. A parametric surface representation might or might not be
given.

Denoting the vertices of the (scaled) bounding box by by ;) =
(X1,Y5,2x), I,J,K € {0,1}, the hexahedron defined by these eight

vertices is discretized by the points

Yiik = ) brik Biw) BY(vj) Bh(ws),  (21)
I,JKE{0,1})

where Bj(t) = (1 -1t), Bi(t) = ¢, t € [0,1], and u;, vj, and wy are
uniformly distributed parameter values in the interval [0, 1]. Each cuboid
defined by eight vertices yiir j4s.k41, 7y5,¢t € {0,1}, is split into six
tetrahedra. Thus, an initial volume triangulation is defined.

Each edge in this initial volume triangulation is intersected with the
closed surface triangulation 7. Each point y; ;; can be characterized

as lying outside the surface (“-1"), inside a surface triangle (“0”), or

inside the surface (“1”). This characterization is necessary in order

to construct a volume triangulation for the outside (or inside) of the
surface. In the following, the discussion is restricted to the generation
of grids on the inside. If one needs to construct a grid on the outside,
one must exchange the words inside and outside.

4




189

Tetrahedra can lie entirely on the outside of the surface, entirely on

" “the inside, or lie partially on the outside and partially on the inside. The

part of the initial volume triangulation that lies inside the closed surface

must be extracted. Vertex indicators “-1,” “0,” and “1” are computed

© for each vertex of each tetrahedron in the initial volume triangulation.

© They are used to determine whether an edge V;v; of a tetrahedron has
an intersection point p;; with the given surface. Fourteen cases must
be considered, assuming that an edge intersects a surface triangle in at
most one point. Special care is required when an edge has more than
one intersection. Tab. 1 lists all fourteen cases.

Vertex indicators Intersection point possible
Case Vo baln o Mgt g Pi2 P1,3 P14 P23 P24 P34
1 -1 -1 -1 -1 n n n n n n
2 0 -1 -1 =1 n n n n n n
3 0 0 -1 =1 n n n n n n
4 0 0 0 -1 n n n n n n
5 0 0 0 0 n n n n n n
6 3 -1 -1 -1 y y y n n n
7 1 0 -1 -1 n y y n n n
8 1 0 0 -1 n n y n n n
9 1 0 0 0 n n n n n n
10 g -1 -1 n v y y y n
2! 1 1.4 -1 n n y n y n
14 1 1 1 ~1 n n y n y y
13 1 1 1 0 n n n n n n
14 1 1 1 1 n n n n n n

Tab. 1: Indicators and possible intersections for single tetrahedron
(pi,j = y/n : edge V;V; does/does not intersect surface in point p; ;).

~ Three of these fourteen cases are illustrated in Fig. 1. Circles
indicate exterior points, stars indicate points in a surface triangle, and
boldface points indicate interior points.

Fig. 1: Vertex indicators and intersection point.

Possible volume triangulations for the part of a tetrahedron that
lies on the inside of the surface are listed in Tab. 2.
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Case First tetrahedron Second tetrahedron Third tetrahedron
1-4 - - -

(V1,V2,Va, Vq) e =
(V1,P1.2,P1,3,P1,4) T .
(Vl,V2aP1.3,P1,4) = -

(Vl,Vz,V3,P1,4) % i

(V1,V2»V3,V4) x T

10a (vi,v2,P13,P1,4)  (V2,P13,P1,4,P24) (V2,P1,3,P23,P2,4)
10b (vi,v2,P1,3,P2.4) (V1,P1,3,P1,4,P24) (V2,P1,3,P2,3,P2,4)
10c (V1,V2,P1,4,P2,3) (vi,P13,P1,4,P23) (V2,P1,4,P2,3,P2,4)
10d (v1,v2,P2.3,P2,4) (V1,P1,3:P1.4,P24) (V1,P1,3,P2,3,P2,4)

O 00 =1 . ChCn

lla (v1,V2,V3,P1,4) (v2,V3,P1,4,P2,4) =
11b (v1,V2,V3,P2,4) (Vi,V3,P1,4,P2.4) -
12a (vi,v2,V3,P1,4) (v1,v2,P3,P3.4) (v2,P1,4,P2,4,P3,4)
12b (Vi,vz,vs,pu) (Vz,Va,P1,4,P2,4) (Vs,P1,4,P2,4,P3,4)
12¢ (Vi,V2,V3,P1.4) (v2,v3,P14,P34) (V2,P1,4,P2,4,P3,4)
12d (Vi,V2,V3,P2,4) "(v1,V3,P1,4,P24)  (V3,P1,4,P2,4,P3,4)
12¢ (vi,v2,V3,P2,4) (V1,V3,P2,4,P3.4) (V1,P1,4,P2,4,P3,4)
12f (vi,V2,V3,P3,4) (vi,V2,P2.4:P3,4)  (V1,P1,4,P2,4,P3,4)
13 (vi,v2,Vs,Vs) - i
14 (vy,V2,V3,Vy) - -

Tab. 2: Possible volume triangulations for cases 1-14.

Two volume triangulations are not listed in Tab. 2. They result
from case 12 (Tab. 1). These two triangulations are necessary for the
truncated part of a tetrahedron with a prism topology. Both triangu-
lations require an additional vertex. The centroid c of the six points
Vi, Va2, Vi, V1.4, V2.4, and V3 4 is used as additional vertex. In order to
ensure consistency, i.e., face-to-face matching among all tetrahedra, one
must choose either the eight tetrahedra (v,,va,vs,c), (V1,V2,V14,C),

(v11v3av3,4ac)7 (VQ,V;;.,VQA,C), (VI,VL,{,V:;A,C), (VZ,V1‘4,V2,4,C),
(vs,Va2.4,V3.4,C), and (V1,4,V2,4,V3,4,C), yielding volume triangulation
12h1 or the tetrahedra (V],VQ,V:;,C), (v1>v27v2,47c)a (Vl,\’g,V1,4,C),

(VQ,VQ,, V3.4, C), (V] ) v1,41 ¥ 4, C), (Vg, V2.4, v3,47 C), (v3av1,4 y V3,4, C),
and (v;.4,V2.4,V34,C), yielding volume triangulation 12i.

If an edge in the initial volume triangulation has more than one
intersection with the given surface (or if an edge lies partially/completely
in a triangle of the surface triangulation), an edge-surface intersection
test is necessary. This test makes use of the fact that the end points
of an edge V;v; having an even number of intersections with a closed
polyhedron, which is the closed surface triangulation, are both inierior
or both ezterior points. Tab. 3 shows how to adjust the vertex indicators
in this case.
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Initial # of intersec- New Selected inter-
indicators tions between indicators for section between
¥ Ny v; and v; Yi vy v; and v;

1 -1 -1 any number -1 -1 none

2 -1 0 any number -1 -1 none

3a -1 1 even number -1 -1 none

3b -1 1 odd number -1 1 one closest to v;

4 0 0 any number 1 1 none

5 0 1 any number 1 1 none

6 1 1 any number 1  § none

Tab. 3: Adjusting indicators for multiple edge-surface intersections.

If an entire edge (or part of an edge) in the initial volume trian-
gulation is contained in a triangle (or more than one), the end points
of the intersection are computed, and the end points are assigned the
appropriate indicators.

If a parametric surface representation is known for the given surface,
each intersection point between edges in the initial volume triangulation
and the surface triangulation is mapped onto the parametric surface.
This is done by expressing an intersection point in a triangle in terms of
barycentric coordinates, using these barycentric coordinates to obtain a
parameter value, and computing the corresponding point on the surface.

3. Adapting the volume triangulation by point insertion

At this point, the point density is nearly uniform throughout the
unstructured grid on the surface’s inside. A strategy is introduced that
allows an increase in the point density close to the surface. Each tetra-
hedron is weighted according to its volume and the distance d; between
its centroid and the surface. The tetrahedral volumes should decrease
with increasing distance. This can be achieved by defining a function
V(d;) for the desired tetrahedral volume. This function is

o= [ (8 ]+ () w o

p&d.., 4 : ;, ;, 1,2,3,...}, where V; and V; are specified tetrahedral vol-
umes at d1stance 0 and distance d; > 0. Obviously, the gradient of the
point density depends on the exponent p. It is possible to have tetra-
hedral volumes increase in a linear fashion (p = 1) genera.l polynoxma.l

fashion (p = 2,3,4,...), or root fashion (p = .. ,‘:, 3,2
The distance d; between tetrahedron T; with vertices v}, vj, vj,
and v} and the surface is defined as the smallest distance between the

tetrahedron’s centroid and the vertices in the surface triangulation, 1.e.,

1
d;:mm{—z — Xk

where “|| ||” denotes the Euclidean norm. Equation (3.1) can be inter-
preted in the following way: If V; is the volume of tetrahedron T}, and T;

.= 1,...,n}, (3.2)

S
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has a distance d; to the surface, T; should have a volume V(d;). Thus,
the difference between actual volume V; and desired volume V(d;) 1s

given by
E; = |Vi=V(d)|. (3.3)

The average difference of the set of all tetrahedra and the desired tetra-
hedral volumes is defined as

1
Ea.vg s 'E in, (34)

=1

where L is the number of tetrahedra.

A tetrahedron T; € {Ti|i = 1,..., L} is identified such that splitting
it results in the smallest possible value E,vg'. The new average difference
is given by

L+3

£ 1 '
Ews' = T3 b (3.5)

1=}

Furthermore, the distance d; of a tetrahedron can be weighted by
the absolute curvature &; of the surface point closest to the tetrahedron’s
centroid. If the objective is to create relatively small tetrahedra 1n
regions close to surface areas with high absolute curvature, the value

Kmax — Ki 1 Ki — Kmin 1

wi = —max TR - T mR ¢ ha,l] (3.6)

Kmax — Kmin 10 Kmax — Kmin

can be used as a weight for d;, provided that Kmin # Kmax- Here, Kmin 18
the minimum and Kmax the maximum absolute curvature, considering
all surface points.

Special care is required when splitting tetrahedra having edges or
faces that are not shared by other tetrahedra. Case distinctions are
based on a tetrahedron’s neighbors and the number of surface points
among its vertices. The surface boundary and the outer boundary must
still be represented accurately after splitting. The possible cases are
listed in Tab. 4.

Case Surface points Configuration

& vy :

22 Vv, V2 Another tetrahedron shares the edge V1 V2.

28 - vy Vs No other tetrahedron shares the edge V1 va.

3a.. .V, V2, V3 Another tetrahedron shares the face (V1,V2,V3)-
3h vy Ve Vs No other tetrahedron shares the face (v1,V2,V3)-

4a v, va, vz, v4 All four faces are shared by other tetrahedra.

4b vy, Vs, V3, V4 The three faces (vi,v2,v3), (V1,V2,V4), and
vi,Vs, Vs) are shared by other tetrahedra,
Va,V3,Vy) is not shared.
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4c $-vy, V2, V3, v4 The two faces (vi1,v2,vs) and (vy, Ve, Vvy) are

e T shared by other tetrahedra, (vy,vs,v4) and

(v2,Vs,Vs) are not shared.

4d v, Va2, v3, vy The face (vy,Va,V3) is shared by another tetra-
hedron, the other three faces are not shared.

4e vy, V2, Vs, v4 No face is shared by another tetrahedron.

Tab. 4: configurations when splitting tetrahedra with surface vertices.

When splitting tetrahedra having surface points among their ver-
tices, midpoints of edges and centroids of faces are mapped onto the
surface, provided its parametric definition is known (see Section 2).
Possible volume triangulations for three of the cases listed in Tab. 4
are shown in Fig. 2.

1 2b 3b
Ve Ve v,
gl .
v, v, 6] v, O
e R €123 ¥V,

Fig. 2: Splitting tetrahedra having surface points as vertices.

4. Improving the volume triangulation locally

In order to avoid tetrahedra that have small solid angles (S) or
small aspect ratios (D/A) it is necessary to locally alter the volume
triangulation. Considering a vertex v of a tetrahedron, the solid angle
S at v measures the ratio of the surface area of the spherical triangle
“cut out” by the edges and faces of the tetrahedron and the surface area
of the associated sphere having v as its center. Here, the aspect ratio
D/A of a tetrahedron is defined as the smallest distance D of any of
the four vertex to an opposite face with area A. For most applications,
a triangulation with fewer small solid angles/aspect ratios 1s a “better
triangulation.”

The volume triangulation is altered locally if this results in a better
triangulation. A convex hexahedron CH given by six triangular faces,
nine edges, and five vertices can be triangulated in two ways. One can
use either two or three tetrahedra. The alternative that maximizes the
fn]inimum solid angle is chosen. This is discussed in detail in 2], [6], and

7).

When splitting a tetrahedron 7}, the potential modifications of the

volume triangulation are restricted to the neighbors of T} and the tetra-

hedra replacing T;. These are the steps of the local optimization proce-
dure:

(1) Determine the set O; consisting of all neighbors of T; and the
tetrahedra replacing T;.

-]
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(ii) Perform steps (iii) and (iv) until the volume triangulation can
not be improved any further.

(iii) Find a convex hexahedron in O;; for this hexahedron, select
the triangulation that maximizes the minimum solid angle.

(iv) Update O; if the volume triangulation has been altered.

This procedure might lead to a volume triangulation whose quality
has decreased with respect to (3.1). Therefore, one should invoke the
local optimization procedure only when the insertion of a point has
created a solid angle that is smaller than some tolerance.

5. Examples

The method has been tested for parametrically defined closed sur-
faces (Fig. 3, Fig. 4, and Fig. 5) and for a closed surface triangulation
without known parametric representation (Fig. 6). The surface trian-
gulation without known parametric representation is an isosurface of a
computerized axial tomography (CAT-scan) data set. In all four exam-
ples, grid points have been inserted by considering distance to the sur-
face, but not considering surface curvature. The volume triangulations
have been optimized locally by maximizing the minimum aspect ratio
D/A after point insertion (see Section 4). The volume triangulations
are intersected with cutting planes, and the intersections of the tetra-
hedra and the cutting planes (triangles and quadrilaterals) are shown.
Certain tetrahedra have been made visible to illustrate their increas-
ing/decreasing sizes.
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Fig. 5: Unstructured grid around wing.
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Fig. 6 : Unstructured grid around skull.

6. Conclusions

A completely automatic algorithm for constructing unstructured
volume grids has been presented. The method is computationally fairly
involved, but the test results confirm the validity of the approach. The
fact that no user interaction is required for the grid generation process
makes this method useful for complex closed geometries.
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