Optimal Linear Spline Approximation of Digitized Models

Bernd Hamann', Oliver Kreylos', Giuseppe Monno? and Antonio E. Uva’

!Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science, University of California, Davis, USA
hamann(@cs.ucdavis.edu, okreylos@gallagher.cipic. ucdavis.edu

’Dipartimento di Progettazione e Produzione Industriale
Politecnico di Bari, Bari, Italy

gmonno@poliba.it, uva@dppi.poliba.it

Abstract

In this paper we present a new lechnique for surface
reconstruction of digitized models in three dimensions.
Concerning this problem, we are given a data sel in three-
dimensional space, represented as a set of poinls without
connectivity information, and the goal is to find, for a
fixed number of vertices, a sel of approximating triangles
which minimize the error measured by the displacement
from the given points.

Our method creates near-optimal linear spline
approximations, using an iterative optimization scheme
based on simulated annealing. The algorithm adapts the
mesh to the data set and moves the triangles to enhance
feature lines. At the end, we can use the approach to
create a hierarchy of different resolutions for the model.

1. Introduction

Surface reconstruction is concerned with the extraction of
shape information from point sets. Often, these point sets
describe complex objects and are generated by scanning
physical objects, by sampling other digital representations
(e.g., contour functions), or by merging data from different
sources. The result of this scanning process is usually a
cloud of points at a very high resolution but without
connectivity information. In order to utilize this data for
actual modeling in a CAD system, it is important 10 reduce
the amount of data significantly and determine a polygonal
representation from the samples. Moreover, multiple
approximation levels are often needed to allow rapid
rendering and interactive exploration of massive data sets
of this type. Surface reconstruction problems arise in a
wide range of scientific and engineering applications,
including reverse engineering, industrial design, geometric
modeling, grid generation, and multiresolution rendering.

0-7695-0210-5/99 $10.00 © 1999 IEEE

1.1. Related Work

Hoppe et al.[4] address the problem of reconstruction of
surfaces using only the three-dimensional coordinates of
the data points. Their method uses a “zero-set” approach to
reconstruction, using the input points to create a signed
distance function d, and then triangulating the isosurface
d=0. They determine an approximate tangent plane at each
sample point, using a least-squares approximation based
on k neighbors. The isosurface is then generated using the
marching cubes algorithm.

Amenta[14] directly uses a three-dimensional Voronoi
diagram, and an associated Delaunay triangulation to
generate certain “crust” triangles which are used in the
final triangulation. The output of their algorithm is
guaranteed to be topologically correct and convergent to
the original surface as the sampling density increases.

Heckel et al.[2] introduce a surface reconstruction
method that is based on cluster analysis. The reconstructed
model is generated in two steps. First, an adaptive
clustering method is applied to the data set, which yields a
set of almost flat shapes, so-called tiles. Second, the gaps
are eliminated between the tiles by using a constrained
Delaunay triangulation, producing a valid geometrical and
topological model. This method allows one to create a
hierarchy of representations.

1.2. Our Approach

We present a new “optimal” (more precisely, near-

optimal) method for the generation of surface
triangulation. Our method exhibits the following
characteristics:

e It requires only scattered points in the space,
without connectivity information;

. it needs a minimal user-interaction for a general
topology, none for particular topologies;

o it generates an optimal approximation of the
surface, with a fixed number of vertices; and

e it produces a multiresolution approximation of the
data, where the user can specify the number of vertices in
the reconstruction.

(®)

(@ (c)

(a) The original point data set. (b) The final triangulation.
(c) The shaded reconstructed model. The original data set
consists of 37,594 sample points and the model has been
reconstructed with 400 vertices.

Figure 1. Laser scan of a Ski-Doo hood.

The algorithm reconstructs a valid triangulated surface
model in a three-step procedure:

e Cutting the data set in topological simple areas

e Optimization applied to all areas

o Stitching the shells together

2. Cutting Step

The core reconstruction algorithm treats the point cloud
as a set of samples of a two-dimensional function f(x,y),
where the samples are taken at random sites (x;, y;). If the
original surface, or the surface we want to reconstruct, is
not functional, the algorithm will deliver invalid results.
This forces us to first find a mapping M from three-
dimensional space (x,y,z) into two-dimensional parameter
space (s, t) such that the mapping satisfies

(. y,2)=M" (5,1, (s, 1))

for a function f. If we restrict ourselves to use orthogonal
projections onto planes to define such a mapping, we have
to find a plane the surface can be projected onto without
self-overlap. If the model is too complex to find such a
projection plane, we subdivide the model into smaller parts
of simpler topology and provide different projection planes
for the parts. To achieve this we first visualize the cloud of
points. The wuser interacts with “cutting planes”
subdividing the data set in sub-domains. Instead of cutting

245

planes we should more precisely say “half-spaces” since we
visualize the planes and the oriented normals. All the
points included in those half-spaces are mapped (using
orthogonal projection) onto the respective planes. Since the
result of this subdivision is quite hard to visualize, the
convex hull of the projections on the plane is shown to a
user. This subdivision phase is typically not necessary if we
are given a set of laser scanned images. This type of device
usually captures points as distance from a sensor and then
geometrically evaluates the xyz-coordinates. For all the
points coming from a single pass scan, we are sure to find
one single orthogonal projection plane.

3. Optimization Step

For each of the sub-domains (where all the points are
“functional” in the way described above), we apply our
iterative optimization algorithm based on the principle of
simulated annealing, see [8][9][10]. The core of this
algorithm is a function that changes the current
triangulation randomly in every iteration step. After each
step, a distance between the triangulation and the original
data set is calculated, and the current step is accepted or
rejected based on the change of distance during the step.
The main difference between simulated annealing
algorithms and classic optimization algorithms is that a
simulated annealing algorithm not only accepts “good”
steps, but also accepts some steps that increase the
distance.

The strategy to accept steps is borrowed from
thermodynamics, where Boltzmann’s law states that a
change AE in internal energy of a body occurs with the
probability:

AE

p=e

where k is the Boltzmann constant, and T is the
absolute temperature of the body. We use the same
function here, replacing AE with the change in distance
during a step and kT with an arbitrary value we
nonetheless call “temperature.” If AE is negative, meaning
the step was a good step, we always accept it; in the other
case, we accept it with the probability given by
Boltzmann’s law.

We then lower the value kT during the course of
iteration to decrease the probability of accepting “bad”
steps. In the end, when the temperature is almost zero, the
algorithm proceeds like a classic optimization. The
function decreasing the temperature over time is called
“annealing schedule,” and [1] presents a heuristic to create
it. The benefit of allowing “bad” steps is, that such
algorithms do not as easily get stuck at local minima as
classic algorithms do. This is an important property for us,

since we are dealing with problems typically having local
minima in abundance, see Figure 2.

E(t)

3.64958

: 14
iteration steps

Figure 2. Typical error graph: general error behavior as a
function of iteration steps.

The previous formula shows the effect of the
temperature on the probability of accepting a bad step.

The user can define the number of vertices to be used in
the triangular approximation of the sub-domains. The
following pseudo-code summarizes the optimization
algorithm, which is described in more detail in the
following sections.

Algorithm 1: Optimal linear spline approximation.
Create initial configuration (vertex placement and
connectivity);
Determine initial temperature and create annealing
schedule;
While iteration is not finished
{
Change current configuration;
Calculate change in error measure;
Undo iteration if rejected by simulated annealing;

}

Rerurn current configuration;

3.1. Creating an Initial Configuration

To evaluate a reasonable initial configuration we start to
determine the data set’s convex hull by selecting all
non-interior vertices; then we choose the rest of the
vertices (according to the user-specified number) randomly
from the original data set. A Delaunay triangulation of the
initial vertices' sites defines the initial connectivity.

To define the annealing schedule, we first estimate the
mean change in distance during the first iteration steps and
set the initial temperature such, that an “expected bad”
step is initially accepted with a probability of one half.
Next. we lower the temperature in steps, leaving it constant
for a fixed number of iterations and scaling it by a fixed
factor afterwards.

246

3.2. Changing the Configuration

The simulated annealing algorithm's core is its ileraﬁon
step. In principle, one can use any method to change the
current configuration, but we have found out that the
“split” approach, presented in Algorithm 2, works very
well.

Algorithm 2: Changing the configuration.
if{acceptWithProbability(moveVertex)) /*move a vertex*/
{
Choose an interior vertex v;
Estimate v's contribution vE to the error measure;
ifvE < localMovementFactor x E)
Move v globally;
else
Move v locally;
if(moveVertex == 1) /* Vertex movements only?*/
Restore Delaunay property;
/
else /* swap an edge */
{
Choose a swappable edge e;
Swap edge e;
/

The constant moveVertex gives the probability of
moving a vertex during an iteration step. If it is zero, the
algorithm never moves vertices, but becomes a data-
dependent triangulation algorithm as presented in [8]. If
moveVertex is one, we only move vertices, and we decided
to uphold the connectivity’s Delaunay property throughout
the iteration in this case. In all other cases the algorithm
can either move a vertex or swap an edge, thereby
optimizing both vertex placement and triangulation
simultaneously. When moving a vertex, we use two
different strategies:
If the chosen vertex is located in a planar region
of the surface, we move it globally to a random new
position inside the point set’s convex hull, see Figure 3.
If the chosen Vertex is located in a high-curvature

region of the surface, we move it locally to a random

new position inside its platelet, see Figure 4.

We decide which strategy to use by estimating how much
the chosen vertex contributes to the current distance. If this
contribution is larger than a constant factor
localMovementFactor times the distance, we move the
vertex globally, otherwise, we move it locally.

By using global movements we ensure that vertices get
driven away from nearly planar regions of a function
during early stages of the iteration.

1) Initial state; 2) removing vertex; 3) filling hole; 4) inserting
new vertex; 5) restoring Delaunay property.

Figure 3. Moving a vertex globally.

If the vertex is currently located in an important high-
curvature region of the surface, we keep this vertex “in
loco” and we try to move it to a better site inside its
platelet. To move a vertex locally, we “slide” the vertex on
the line from its old to its new site, dragging the edges
connecting it to all surrounding vertices along. Whenever a
surrounding simplex becomes degenerate during the
vertex’ motion, we swap one edge of the affected simplex

before moving the vertex any further, see Figure 4.

XX

1) Initial state; 2) swapping edge to prevent triangle T from
becoming degenerate; 3) resulting state.

Figure 4. Moving a vertex locally.

In our case, the quality of a configuration depends on
both vertex placement and connectivity. The output of this
second step is a set of two-manifold shells, which
correspond to the number of topological sub-domains the
whole data set was subdivided into. Defining an increasing
number of vertices, we can create a hierarchy of linear
spline approximations, each one being a superset of all
lower-resolution ones (Figure 6.)

4, Stitching Step

In this step we stitch together the boundaries of the
shells to define a consistent model. We do not move the
vertices of the shell boundaries to match. but we add a new
set of fill-the-gap triangles. The input of the stitching
algorithm consists of two boundaries, each of them
described by a sequence of vertices and edges. To define

247

the boundaries we first project each point into the selected
half-space onto the cutting plane. Then we calculate the
convex hull boundary on the plane and afierwards map the
segments back into three-dimensional space. The second
boundary is evaluated with the same procedure with a few
modifications for the unselected half-space. In this case not
all the points participate in the definition of the convex
hull.

The stitching algorithm is applied every time a cut is
performed. In this way we already have two sets of points
(and edges) to define a strip to be triangulated. We start
from a random point and we find the closest point on the
other boundary. Those two points define a new edge. For
each vertex we maintain a flag indicating whether this
vertex was already matched or not. We repeat this edge-
creation step until all the vertices are matched. Then we
scan the edge list to eliminate duplicates and we extract the
fill-the-gap triangles (Figure 5.a.) When a new cut is
performed over a previous subset, an edge of its boundary
(defined by the previous cut) is hit by the cutting plane.
This edge is preserved in the subsequent phase to ensure
that this new fill-the-gap set will match exactly on the
boundary (Figure 5.b.)

Fill-the-gap

Cutting plane trianglation

New cutting
plane

New fill-the-gap
triangulation

(a) First stitch. (b) subsequent stitch preserving the first
triangulation.

Figure 5. Stitching two boundaries.

5. Results

This method has revealed to be very powerful with
regard to error reduction. Concerning the Ski-Doo test
case, after a few thousand iteration steps (requiring just a
few seconds on an SGI Octane), we reduced the error to
40% of the initial configuration error (Delaunay
triangulation). Figure 6 shows how the vertices move away
from flat areas (large triangles) to converge towards the
features of the model (high curvature, small triangles). The
last example shows the reconstruction of a model with
2,000 vertices starting from a 1,2000 points data set

(Figure 7).
6. Acknowledgements

This work was supported by various grants and contracts
awarded to the University of California, Davis, and to the
Politecnico di Bari, Italy, including the National Science
Foundation under contract ACI 9624034 (CAREER
Award), the Office of Naval Research under contract
N00014-97-1-0222, the Army Research Office under
contract ARO 36598-MA-RIP, the NASA Ames Research
Center under contract NAG20-1216, the Lawrence
Livermore National Laboratory under contract W-7405-
ENG-48 (B-335358), the Department of Energy as part of
the Accelerated Strategic Computing Initiative (ASCI)
under contract W-7405-ENG-48, the North Atlantic Treaty
Organization (NATO) under contract CRG. 971628, and
the National Research Council (CNR), Italy. We also
acknowledge the support of Silicon Graphics, Inc. We
thank all members of the Visualization Thrust at the
Center for Image Processing and Integrated Computing
(CIPIC) at the University of California, Davis, and of the
Dipartimento di Progettazione e Produzione Industriale,
Politecnico di Bari, Italy. for their help.

7. References

[1] Kreylos, O., Hamann, B., “On simulated annealing and the
construction of linear spline approximations for scattered data”,
EUROGRAPHICS-IEEE TVCG Symposium on Visualization,
Vienna, Austria, May 1999 (to appear).

(2] Heckel, B, Uva, A. E,, and Hamann, H., “Clustering-based
generation of hierarchical surface models, in: Wittenbrink, C.
M. and Varshney, A., eds, Late Breaking Hot Topics
Proceedings, Visualization '98 (Research Triangle Park, North
Carolina, October 1998), IEEE Computer Society Press, Los
Alamitos, California, pp. 41-44.

248

[3] Bonneau, G. P., Hahmann, S. and Nielson, G. M,, “BLaC-
wavelets: A multiresolution analysis with non-nested spaces”,in
Yagel, R. and Nielson, G. M., eds., Visualization '96 (1996),
IEEE Computer Society Press, Los Alamitos, CA, pp. 43-48.

[4] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and
Stuetzle, W., “Surface reconstruction from unorganized points,”
in Computer Graphics (SIGGRAPH '92 Proceedings), pp. 71-78,
1992.

[5] Gieng, T. S., Hamann, B., Joy, K. 1, Schussman, G. L. and
Trotts, 1. J., “Constructing hierarchies for triangle meshes”, IEEE
Transactions on Visualization and Computer Graphics 4(2)
(1998), pp. 145-161.

[6] Hamann, B., “A data reduction scheme for triangulated
surfaces”, Computer Aided Geometric Design 11(2) (1994), pp.
197-214.

[7) Hamann, B., Jordan, B. J. and Wiley, D. A, “On a
construction of a hierarchy of best linear spline approximations
using repeated bisection”, IEEE Transactions on Visualization
and Computer Graphics 5(1) (1999).

(8] Schumaker, L. L. “Computing Optimal Triangulations Using
Simulated Annealing”, Computer Aided Geometric Design 10
(1993), pp- 329-345.

[9] Nielson, G. M., “Scattered data modeling”, IEEE Computer
Graphics and Applications 13(1) (1993), pp. 60-70.

[10] Press, W. H., Teukolsky, S. A, Vetterling, W.T., and
Flannery, B. P., Numerical Recipes in Co.2nded. (1992),
Cambridge University Press, Cambridge, MA.

[11] Barequet, G., Duncan, C.A., and Kumar, S., “RSVP: A
geometric toolkit for controlled repair of solid models”, IEEE
Trans. on Visualization and Computer Graphics (TVCG), vol. 4
(2), pp. 162-177, April-June 1998.

[12] Barequet, G. and Sharir, M., “Filling gaps in the boundary
of a polyhedron”, Computer Aided Geometric Design 12(2), pp-
207-229, 1995.

[13] Gueziec, A., Taubin, G., Lazarus, F., Homm, W., “Converting
Sets of Polygons to Manifold by Cutting and Stitching”, in Yagel,
R. and Nielson, G. M., eds., Visualization '98 (1998), IEEE
Computer Society Press, Los Alamitos, CA, pp. 43-48.

[14] Amenta, N., Bern, M., Kamvysselis, M., “A new Voronoi-
based surface reconstruction algorithm”, Siggraph 98, (1998), pp
415421.

Figure 6. Multiresolution reconstructions using 400. 700, and 1000 vertices for the Ski-Doo data set.

a) Randomly chosen points b) After optimization step

Figure 7. Reconstruction of a mechanical part using 2,000 vertices for a 12,000 points data set.

249

