210 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 3, SEPTEMBER 1995

On Particle Path Generation
Based on Quadrilinear Interpolation
and Bernstein-Bézier Polynomials

Bernd Hamann, Member, IEEE, Donghua Wu, and Robert J. Moorhead II

Abstract—Particle path computation in unsteady 3D vector
fields given in discrete, structured form (i.e., as a hexahedral
curvilinear grid) requires the local approximation of the vector
field and the path. Quadrilinear interpolation and Bernstein-
Bézier polynomials are used for the local vector field and path
approximation. The next point in a sequence of points on a par-
ticle path is computed using this local approximation. Bern-
stein-Bézier polynomials are primarily used in geometric model-
ing, and their properties allow direct computation of points on a
particle path.

Index Terms—Approximation, Bernstein-Bézier polynomial,
particle path, curvilinear grid, path line, scientific visualization,
structured grid, trajectory, vector field.

I. INTRODUCTION

T HIS paper is concerned with the computation of a point
sequence approximating a particle path in an unsteady
3D vector field. It is assumed that a 3D structured grid, com-
posed of hexahedral elements, is given. The coordinates of
the grid vertices are allowed to change over time, while the
topology—the connectivity among grid vertices—must remain
unchanged. Given an initial 3D position X,, the described
algorithm generates a point sequence X;, X,, Xj, ... on the
resulting particle path based on quadrilinear interpolation
and a local particle path approximate in Bernstein-Bézier
representation. The time step used to generate a next point is
chosen adaptively using a one-step method for differential
equations.

The main reasons for the proposed method are its elegance,
its numerical stability due to the use of Bernstein-Bézier poly-
nomials with their “nice” numerical and arithmetical proper-
ties, and the fact that the proposed method uses a direct, ex-
plicit approach for approximating particle paths—instead of
using a Runge-Kutta method. The proposed method uses
adaptive time steps for generating points on a particle path,
just like a Runge-Kutta method. Therefore, the resulting parti-
cle path approximations using either approach are very much
much the same. The proposed method is merely an alternative
to more standard methods.

B. Hamann is with the Department of Computer Science, University of
California at Davis, Davis, CA 95616-8562; e-mail: hamann@cs.ucdavis.edu.

D. Wu and R.J. Moorhead Il are with the NSF Engineering Research
Center for Computational Field Simulation and the Department of Electrical
and Computer Engineering, Mississippi State University, Mississippi State,
MS 39762.

IEEECS Log Number V95017.

There must be a one-to-one map from each 4D physical,
curvilinear grid cell to a 4D computational, rectilinear cell (=
unit cube). Once the initial point X, has been transformed
from physical to computational space, all computations are
performed in computational space. A point x in a cell in
computational space is identified with a local parameter tu-
ple (&, n, & 1), where & 1, £, and 7 are the relative offsets
from the lower left corner of the cell. The relation between
physical space, computational space, and local parameter
space is illustrated for the 2D case in Fig. 1.

&
bl
'5_2
2 * . ®
i G0 0 ol s
?x =g
1 e : ¢
J
0
0 1 2

i

Fig. 1. Physical space, computational space, and local parameter space-2D
case.

1077-2626/95$04.00 © 1995 IEEE

HAMANN ET AL.: ON PARTICLE PATH GENERATION BASED ON QUADRILINEAR INTERPOLATION AND BERNSTEIN-BEZIER POLYNOMIALS 211

The local parameters of a point with respect to a cell in
computational space are used to perform quadrilinear inter-
polation over the cell and locally approximate the vector
field. Initially, vector values are provided at the grid vertices
in physical space. These values are transformed to computa-
tional space by using local estimates of the Jacobian relating
the two spaces.

Most current vector field visualization techniques require
a robust, numerically stable, and adaptive method for ap-
proximating particle paths. The method proposed in this pa-
per should be viewed as an alternative to existing methods
that satisfy exactly these requirements. Recent progress in
vector field visualization can be found in [5], [8], [9], [10],
[11], [12], [13], [19]. In particular, particle tracing algo-
rithms are described in [2], [7], [14], [16], [20]. A general
overview of current scientific visualization techniques is
provided in [4]. The technique presented here utilizes stan-
dard techniques of geometric modeling that are discussed in
[3], [6]. In particular, certain arithmetical operations for
curves in Bernstein-Bézier representation are needed which
are covered in [15]. The most common 2D- and 3D-grid
generation methods are described in detail in [17], and an
overview of the state-of-the-art in grid generation is provided
in [18].

In summary, the approach used to generate a particle path
requires these modules:

1) Generating a uniform, rectilinear grid in 4D computa-
tional space and associated vectors at each computational
grid point (i, j, k, I) from a curvilinear grid in 4D physical
space.

2) Transforming an initial point X, from 4D physical space
to 4D computational space and computing local parame-
ter tuple (&, 1, &, 7) with respect to the grid cell in com-
putational space containing the initial point.

3) Approximating the unsteady vector field in computa-
tional space using quadrilinear interpolation for each grid
cell.

4) Approximating the particle path in a local parameter
space by a Bézier curve considering position, velocity,
and acceleration at the previous point on the particle
path.

5) Computing the next point on the particle path by consid-
ering the local vector field and particle path approxi-
mates at the previous point.

6) Transforming the next point on the particle path from lo-
cal parameter space to physical space.

7) Estimating the local error in physical space and—
depending on some maximal error tolerance-repeating
the steps 5) and 6) using a smaller time step.

These steps are described in detail in the following sections.

II. TRANSFORMATIONS RELATING PHYSICAL
AND LOCAL PARAMETER SPACE

The computation of particle paths is extremely simplified
when dealing with uniform computational space instead of

curvilinear physical space. One needs to transform points
and vectors from computational space to physical space and
vice versa. Points on a particle path are computed in compu-
tational space and transformed to physical space. A point in
a unit grid cell in computational space has local parameter
values with respect to this cell and a quadrilinear interpolant.
These parameter values are denoted by &, 7, {, and 7 (“local
parameter space”).

First, all vectors given at grid points in physical space are
transformed to computational space using local estimates of
the Jacobian

Xg Xy X Xg

y{ yn Yg Yz
Z§ 2y Zg 2z
t}; t t t

L (2.1

:;% x(g’ n’ g’ T) A % x(é’ T” g’ T)

£16167) ... HHEMGT)

relating physical and computational space.

Central differences are used to obtain an estimate J of the
(transpose of the) Jacobian at each grid point X, This esti-
mate is given by

Xivljkd ~ XicLjkl o0 Fiwljdd oo T icljkd
J=— : 2.2)
2

Xi g+l ~ Xijki-1 Lijdd+l — Bijri-1

Each vector V;jx = (Uijin Vijes Wijkr) (physical space) is
mapped to the vector
2
Vit = Wijrn Vijkl Wi i) = Vgt J
(computational space).

REMARK 2.1. It should be noted that this central difference
scheme is only one of many ways to compute the terms in
the Jacobian. If possible, the method used should be consis-
tent with that used in the flow solver algorithm so that the
velocities are correctly recovered. It is even better to save
the contravariant velocities directly from the flow solver in
order to not have to transform the velocity field. Another
approach, which is more consistent with the quadrilinear
interpolation function used here, is to use the partial deriva-
tives of (2.3) (see below) to obtain analytical expressions
for the terms in the Jacobian. A good scheme for the ap-
proximation of velocities is absolutely essential since the
accelerations are derived from them.

Next, the initial point X = (xo, Yo, 20, to) in physical space
must be transformed to local parameter space. The grid point
closest to X, must be identified. The grid cells are stored in
an octree, which speeds up the search process. The leaf node
of this octree that corresponds to the region containing X, is
identified, and only the cells associated with this node are
considered for the identification of the grid point closest to
Xo. All cells sharing this closest grid point as a common
vertex (neighboring cells) are candidates that can contain the
initial point. An iterative procedure is used to find out which

212 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 3, SEPTEMBER 1995

of the neighboring cells contains the point. This procedure
assumes that each cell can be expressed by a one-to-one
quadrilinear map from (local) parameter space to physical
space. Thus, a point X in a cell in 4D physical space is given
by the map

X n,8,7) = (x(¢,n,6,7), y&1,6,7), 2(&,10,6,7),
t&€n.6.7))

L (2.3)
=22, > 2 Xi;.:B ©)B (M) Bi(<)BI (),
i=0 j=0k=01=0
&6 1,€[0,1],

where X is a vertex of the 4D grid cell containing X, and
B}(x) is the Bernstein-Bézier polynomial (1 — x)'” x". If a
grid cell contains the initial point X,, a (local) parameter
tuple (§, n, ¢, 1), & n, £, 7€ [0, 1], can be computed. Oth-
erwise, one of the (local) parameters will not be in the inter-
val [0, 1].

Assuming that the point X, lies within a particular cell, the
associated local “parameter cube” for this cell is evaluated at

X =(, %, 4. 3) vielding the point Y,. The difference vector
Dy = X, — Y is computed and transformed into (local) parame-
ter space yielding the vector dy =DoJ ', where J is (the

¥
”
‘ X,
: F ;
cefeeciennas [I -m=3
: %o
j :
E:_l
i 2

Fig. 2. Transforming from physical space to (local) parameter space and vice
versa.

transpose of) a local approximate of the Jacobian at x, ob-
tained by performing quadrilinear interpolation of the esti-
mates of the Jacobians at the grid vertices. A new parameter
value Xx; = X, + d, is computed, and the corresponding point in
physical space is determined.

This procedure (Newton-Raphson method) is repeated until
the Euclidean distance between the points X, and Y; is suffi-
ciently small and the (local) parameter tuple associated with of
Y; lies in the unit cube. The procedure is also stopped when a
parameter tuple has “moved” outside the unit cube (see [13]).
Special care must be taken at the boundaries of the grid.

Obviously, the map from local parameter space to physical
space must be one-to-one for this procedure to work (no de-
generate cells allowed). Fig. 2 illustrates this procedure for the
2D case.

III. LOCAL APPROXIMATION OF THE
UNSTEADY VECTOR FIELD

From here on, all computations can be performed in uni-
form computational space. The unsteady vector field is ap-
proximated in (local) 4D parameter space using quadrilinear
interpolation for each cell. The variables &, 1, ¢, and 7 denote
the local parameters of a point in a cell in computational space.
Assuming that both spatial dimensions and time dimension are
spaced uniformly, the vector field v = (u, v, w) is approxi-
mated by

vié,n ¢, 1)= (w6 1),v&n ¢ 1), wE N6 1))
1 1 1

1
ks ZZZZVI,,-,;(,,B} ©)B; (M B (s)B/ (1), (3.1)

i=0 j=0k=01=0
& n,¢6,1€[0,1],

where v, is the vector at a vertex of a 4D grid cell in compd—
tational space. Fig. 3 shows trilinear interpolation for the 3D
steady case.

Higher-order approximates of the vector field could be used
as well, e.g., tensor product cubic interpolation (see [3] and [6]
for higher-order schemes). Unfortunately, this increases the
number of coefficients of the approximate drastically.

IV. LOCAL APPROXIMATION OF THE PARTICLE PATH

In order to reduce the particle path generation problem to
a trivariate approximation problem, linear interpolationis
performed in the time dimension first. For each point x; =
(&, m1, €, T7) in computational space, linear interpolation is
performed in the time dimension for 7= 7; yielding a particu-
lar “time slice,” a 3D cube and vector values at its eight ver-
tices. The vectors at the vertices of a 4D cube are linearly
interpolated yielding the vectors at the vertices of the 3D
cube for 7= 1.

The particle path in physical space will be approximated by a
point sequence Xo, X, X, This is done by first computing a
point sequence Xy, X, X,, ... in computational space and then
mapping each point X; to physical space. In the following, all
computations are performed in computational space using local
parameters &, 7, and . Denoting the last point computed by x/,

HAMANN ET AL.: ON PARTICLE PATH GENERATION BASED ON QUADRILINEAR INTERPOLATION AND BERNSTEIN-BEZIER POLYNOMIALS 213

\4" ~
i3 | | | 4

Fig. 3. Trilinear interpolation of 3D steady vector field in computational
space.

its position and the velocity and acceleration at this point are
used to compute a local quadratic particle path approximate.
Only the first three (i.e., spatial) coordinates are considered
for the local path approximate. Since the velocity v; at X;is
obtained by quadrilinear interpolation (3.1), the acceleration
a; at x; is independent of the time dimension of the 4D cell.
Thus, the acceleration at x; = (&, 1y, §;) for 7= 7;is given by

a, :3(51,771"51)

V(é s T)l(fhvahTI)

1 1
> D (Viks = Vijwo) BI(E) Bip) Bi(sy),

j=0 k=0
519 nly QI»E[O» 1]1

where Vi, 1, J, k, [€ {0, 1}, are the vectors at the vertices of
the 4D cell containing X;.

For reasons that will become obvious in Section V, the
quadratic curve defined by x;, v;,, and a; is represented as a
Bézier curve, i.e.,

4.1)

I
M- QJI%

Tl
o

2
c(r)=, b; B}(x), 7€[0,T],

i=0

(4.2)

where T is the time step used to compute the next point X,

and B (T)= ()(T 1)2 ‘7. The Bézier control points are

defined by the conditions ¢(0) =x,,¢(0)=v,, and ¢(0)=a,.
They are given by

by =x;,
(4.3)

T
bl =X j +EV,,

and
5

b2=X,,+TV, +—2—a,,

b; = (e, B, 1) (see [3)).

where a Bézier control point is given by

= b,
c(t)

‘Lﬂ
&
Fig. 4. Local approximation of particle path using quadratic Bézier curve.

The time step T is chosen adaptively depending on the degree of
curvature of the particle path (see Section VI). Fig. 4 illustrates the
quadratic Bézier curve approximating the particle path at x;..

REMARK 4.1. Bernstein-Bézier polynomials are used for the
representation of the local particle path approximate due to
the existence of explicit formulas for products and integrals
for these polynomials. This fact allows a more elegant com-
putation for the next particle position (Section V). The
method presented here is an alternative to the conventional
Runge-Kutta methods using monomial basis functions. The
method discussed here and standard Runge-Kutta methods
allow the use of adaptive step sizes. Thus, one can generate
equally good approximations of particle paths.

V. COMPUTATION OF THE NEXT PARTICLE POSITION

In general, the next position Xy, in computational space is
given by

X1 =X +J v(c(f))dr
0

(5.1)

where 7 = 0 is associated with the previous point x; (local time
parameter). In coordinate form, this expression is equivalent to
the three equations

(§1+1, Nr+1» €l+1) = (élr N Cl)
[4 T (52)
+ ju(c(%))d%, J'v(c(%)) d7, j w(e(?))d7
0 0 0

Therefore, the discussion is reduced to the computation of
&, in the following paragraphs.
Using trilinear interpolation of the vectors

Vijk = Mijao Vijgo Wija)s 1, J, k€ {0, 1},

known at the vertices of the current cell, and inserting the local
quadratic path approximate ¢(7) given in (4.2) into (5.2) yields

214

1

§l+l @ 61

:

!'N
~—
~—

~
Il
(=1

e
e
+
N O C——my N O'——."l
kN
b

M_.
M-

Il
e
nd
+
T
(=]

\.w—-
i
M-

1
1
2 Ui jk Bi

k=0

BB (%) Bk(z Y1B; ("-'))

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 3, SEPTEMBER 1995

=g+ (uo,o.o)J. d7 + (w00 - uo,o,oj &) dt
0

0
5

T

2 2
0B} (7), Y, BB} (7). Y, y,Bf(%)] d7
1=0 =0

2
[Z 0‘1312(?))

+(ug,0 — uo.o,o)j n(@)dt+ (”(),O.l = uo,o,o)J ¢(7)d7

0

0

+ (19,00 = 1,00 ~ 0,10 +”1.1.0)J. &@)n(7) d7

0

T
+ (10,00 = 1,00 — 0,01 + 10,)J- &)@ d7
0

T

+ (40,00 — %o.1.0 — U001 + uO,l.l)J. n(7) ¢(7) dT

0

i+ (—uo,o,o 0,0 Tig,10 oo,

— 10 = t01 ~ b1+t)| EF) 1E) 6(7) dF.

Three integral types of products of Bernstein-Bézier poly-
nomials appear in (5.3). These integral types are given by

T T 2 T ¥ ;
| &@ai=| [2 a,-Bf(?)Jd?=—2 g, (54)
0 0 \i=0 3%

and

T s
[&®n@az = | [
0 0

O'—:‘]

é(r)n(f)g(r)dr =

¢

|

0

TL3

J(,-B.?m (
0 \i=

i &

l DI A

i=0 j=0k=0

TZ 22

]

MM

i

=0

Il
(=]

2
>, @i,

J

0

2 y
3 mB?(?)J {2 B ,-B}(?)J d7
Jj=0

(2)5)
(l * J.)

——B},(®)|d

aB;
i e : (i+j)

B} (%) 2 anm
B0 ,.
(1 6+k }

=72 2 oiBiYe

i=0 j=0j=0

(EGXE)

(l+?+k)'

£ 15:5)

(5.6)

These integral expressions can be verified by using the
equation

b

jB{‘(x)dx:-b“—“, x €[a, b, (5.7)
netl

for Bernstein-Bézier polynomials defined over the general

interval [a, b] (see [3]) and
m\(n
e .

(gb " (x) 21;3" } i pt

(see [15]).

The point x,, is then transformed into physical space, and a
one-step method is used to decide whether the time step T
should be changed adaptively (see Section VI). Since the com-
putational space is uniformly spaced, the cell containing the
point X, is immediately known from the point’s coordinates.

REMARK 5.1. Formulas (5.4), (5.5), and (5.6) are not veri-
fied here since this is done in [15], a technical report. This
report lists and verifies various properties of sums, products,
and quotients of Bernstein-Bézier polynomials.

PRI

i=0 j=0

(x)(5.8)

VI. CHOOSING THE TIME STEP T

The next point X, (in physical space) might locally deviate
from the particle path more than some maximal tolerance. The
local deviation is measured in the following way: First, the
point X 141 is computed using X; as previous point and 772 as

time step. Second, the point % 1+2 18 computed using X 141 @S
previous point and 7/2 as time step. If the Euclidean distance d
between X, and X 1+2 18 too large, i.e, larger than a specified
maximal error tolerance, one replaces 7 by 7/2 and computes a
new X,;. This process is iterated until the Euclidean distance
d between the point pair X;,; and X 1+2 18 smaller than the
specified maximal tolerance. Fig. S illustrates the one-step
method for ordinary differential equations (see [1]).

The initial time step T used for the computation of a next
point X, in computational space is 7 = 1/(2lv/ll), where Il II
indicates the Euclidean norm. It could also be defined in terms
of a local curvature measure at x; and the Jacobian. If the next
point Xy, in physical space does not lie in the same cell as X,
it is ensured that it lies in a cell that shares at least one vertex
with the cell containing X.

Fig. 5. One-step method for adaptively choosing time step.

HAMANN ET AL.: ON PARTICLE PATH GENERATION BASED ON QUADRILINEAR INTERPOLATION AND BERNSTEIN-BEZIER POLYNOMIALS

215
o =R o
| N \\\
\ \ N \ N : _
>, P >
Fig. 6. Particle paths in constant 3D vector field Fig. 7. Particle paths in steady 3D vector field (uni- Fig. 8. Particle paths in unsteady 3D vector field
(uniform, rectilinear grid, resolution 5 X 5 X 5 X 5; e i lution 10 X 10 X 10 X 10: (uniform, rectilinear grid, resolution 25 x 25 X 25
Yooy =@, 1,1),x y z€ [0, 1]). o, Scelineet Sid, tcietin * X 25V(x, y, z 1) = (cos(8m), sin(8pt), 0.25), x, y,
Vi y 2= (Vi-x,4/0,0) x, v, ze [0, 1)) zte[0,1]).

Fig. 9. Particle paths in steady 3D vector field—flow around aircraft wing (curvilinear grid, resolution 129 X 33 x 33).

Fig. 10. Particle paths in unsteady 3D vector field—flow in Pacific Ocean (curvilinear grid, resolution 989 X 657 X 6 x 5).

216 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 1, NO. 3, SEPTEMBER 1995

VII. EXAMPLES

The method presented has been tested for analytically de-
fined vector fields (for test purposes) and for steady/unsteady
vector fields resulting from simulations of real-world configu-
rations. The following examples are based on grids that do not
change over time, i.e., the connectivity among grid vertices
and the coordinates of grid vertices remain unchanged. In each
figure, coordinate axes are placed closest to the vertex with
index triple [0, 0, 0]. Several particle paths are shown in each
vector field. The initial positions are marked by “bullets.”

In Figs. 6, 7, and 8, the vector fields are defined analytically
over the unit cube. Fig. 9 shows particle paths in the steady
flow field around an aircraft wing. The wing is highlighted.
For this particular example, the resulting particle paths have
been “verified” by comparing them with the ones resulting
from a standard fourth-order Runge-Kutta method, using the
same initial positions, adaptive time steps, and an extremely
small error tolerance. Fig. 10 shows particle paths in a portion
of an unsteady flow field The shaded surface represents the
bathymetry in the ocean.

REMARK 7.1. In addition, a fourth-order Runge-Kutta algo-
rithm has been applied to the examples shown in Figs. 6, 7,
8, 9, and 10 using the same initial positions and the same
maximal error tolerance. The resulting particle paths consist
of nearly the same number of points. A general statement
regarding the closeness of the particle paths generated by
the new method and the ones generated by the fourth-order
Runge-Kutta method cannot be made; the complexity of the
flow field and the chosen maximal error tolerance have a
major effect. Since the proposed method uses both an adap-
tive step size and a maximal error tolerance, an arbitrary ac-
curacy of the particle path approximation can be achieved.

REMARK 7.2. The current implementation of the proposed
method is slightly slower than most Runge-Kutta implemen-
tations applied to the examples shown in Figs. 6, 7, 8, 9, and
10. It is reasonable to assume that one can improve the effi-
ciency of the current implementation of the proposed method
by a factor of two to three by refining the spatial data struc-
tures and the search algorithms for the 3D/4D grids.

VIIL. CONCLUSIONS

The particle path generation technique presented can be
generalized to higher—order local approximations of both the
vector field and the particle path. It is planned to extend the
approach by using local cubic approximates of the vector field
and considering a higher-order local path approximate. The
use of Bernstein-Bézier polynomials for the local path ap-
proximation yields expressions that can be integrated exactly
and easily.

The technique can be used to create stream lines, streak
lines, and time lines (see [13]) for unsteady vector fields de-
fined on curvilinear, structured grids.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
under contract ASC-9210439 (Research Initiation Award) and
contract EEC-8907070 (NSF Engineering Research Center for
Computational Field Simulation) to Mississippi State University.
Special thanks go to the members of the Scientific Visualization
Thrust at the NSF Engineering Research Center for Computa-
tional Field Simulation at Mississippi State University.

REFERENCES

(11 W.Boehm and H. Prautzsch, Numerical Methods. Wellesley, Mass.: AK
Peters, Ltd., 1994,

[2] D. Darmofal and R. Haimes, “Visualization of 3-D vector fields: Varia-
tions on a stream,” AIAA paper 92-0074, Proc. 30th Aerospace Sci-
ences Meeting and Exhibit, Reno, Nev., 1992.

[3] G. Farin, Curves and Surfaces for Computer Aided Geometric Design.
3rd ed., San Diego, Calif.: Academic Press, 1993.

[4] H. Hagen, H., Miiller, and G.M. Nielson, Focus on Scientific Visualiza-
tion. New York: Springer-Verlag, 1993.

[S] A.J.S. Hin and F.H. Post, “Visualization of turbulent flow with parti-
cles,” G.M. Nielson and D. Bergeron, eds., Visualization '93, Los
Alamitos, Calif.: IEEE CS Press, pp. 46-51, 1993.

[6] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric
Design. Wellesley, Mass.: AK Peters, Ltd., 1993.

[7] J.P.M. Hultquist, “Interactive numerical flow visualization using
stream surfaces,” PhD dissertation, Univ. of North Carolina, Chapel
Hill, N.C., 1995.

[8] J.P.M. Hultquist, “Constructing stream surfaces in steady 3D vector
fields,” A.E. Kaufman and G.M. Nielson, eds., Visualization '92, Los
Alamitos, Calif.: I[EEE CS Press, pp. 171-178, 1992.

[9] D.N. Kenwright and G.D. Mallinson, “A 3-D streamline tracking algo-
rithm using dual stream functions,” A E. Kaufman and G.M. Nielson, eds.,
Visualization *92, Los Alamitos, Calif.: IEEE CS Press, pp. 6268, 1992.

[10] D.A. Lane, “Visualization of time-dependent flow fields,” G.M. Nielson
and D. Bergeron, eds., Visualization *93, Los Alamitos, Calif.: IEEE CS
Press, pp. 32-38, 1993.

[11] W.C. de Leeuw and J.J. van Wijk, “A probe for local flow field visuali-
zation,” G.M. Nielson and D. Bergeron, eds., Visualization '93, Los
Alamitos, Calif.: IEEE CS Press, pp. 39-45, 1993.

[12] K.L. Ma and P.J. Smith, “Cloud tracing in convection—diffusion sys-
tems,” G.M. Nielson and D. Bergeron, eds., Visualization '93, Los
Alamitos, Calif.: IEEE CS Press, pp. 253-259, 1993.

[13] F.H. Post and T. van Walsum, “Fluid flow visualization,” H. Hagen,
H. Miiller, and G.M. Nielson, eds., Focus on Scientific Visualization.
New York: Springer-Verlag, pp. 1-40, 1993.

[14] A. Sadarjoen, T. van Walsum, A. Hin, and F. Post, “Particle tracing algo-
rithms for 3-D curvilinear grids,” Proc. Fifth Eurographics Workshop on
Visualization in Scientific Computing, Rostock, Germany, 1994.

[15] T. Schreiber, “Arithmetische operationen auf bézierflichen,” Internal
Report 224/92, Fachbereich Informatik, Technische Universitit Kaiser-
slautern, Germany, 1992.

[16] S. Shirayama, “Visualization of vector fields in flow analysis,” AIAA
paper 91-0801, Proc. 29th Aerospace Sciences Meeting and Exhibit,
Reno, Nev., 1991.

[17] J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, Numerical Grid Gen-

eration. New York: North-Holland, 1985.

J.F. Thompson and N.P. Weatherill, “Aspects of numerical grid genera-

tion: Current science and art,” Proc. 11th AIAA Applied Aerodynamics

Conf., Monterey, Calif., 1993.

[19] J.J. van Wijk, “Implicit stream surfaces,” G.M. Nielson and D.
Bergeron, eds., Visualization '93, Los Alamitos, Calif.: IEEE CS Press,
pp. 245-252, 1993.

[20] P. Yeung, and S. Pope, “An algorithm for tracking fluid particles in
numerical simulations of homogeneous turbulence,” J. Computational
Physics 79, 1988.

[18

—

HAMANN ET AL.: ON PARTICLE PATH GENERATION BASED ON QUADRILINEAR INTERPOLATION AND BERNSTEIN-BEZIER POLYNOMIALS 217

Bernd Hamann is an associate professor in the De-
partment of Computer Science at the University of
California at Davis. Previously, he was an associate
professor in the Department of Computer Science and
a research faculty member at the NSF Engineering
Research Center for Computational Field Simulation
at Mississippi State University. His current research
and teaching interests are scientific visualization,
computer graphics, and computer-aided geometric
design (CAGD).

Hamann received a BS in computer science, a BS in
mathematics, and an MS in computer science from the
Technical University of Braunschweig, Germany. He received his PhD in com-
puter science from Arizona State University in 1991. Hamann was awarded a
1992 Research Initiation Award by Mississippi State University and a 1992
Research Initiation Award by the National Science Foundation. He was selected
as one of two nominees from Mississippi State University for a 1995 Presidential
Faculty Fellows (PFF) Award of the National Science Foundation and was
awarded a Hearin-Hess Distinguished Professorship in Engineering in 1995 by
the College of Engineering, Mississippi State University.

Hamann is a member of the ACM, the IEEE, and the SIAM.

Donghua Wu is a PhD student in computer engi-
neering at Mississippi State University. His current
research interests are computer graphics and scien-
tific visualization.

Wu received a BS in computer science from
Shanghai Jiao-Tong University, Shanghai, China, in
1987. He received an MS in computer science from
Mississippi State University in 1992.

Robert J. Moorhead II is an associate professor in
the Department of Electrical and Computer Engi-
neering and team leader for scientific visualization
at the NSF Engineering Research Center for Compu-
tational Field Simulation at Mississippi State Uni-
versity. From 1985 to 1988, he was a research staff
member at the IBM T.J. Watson Research Center.
His current research and teaching interests are mul-
tiresolutional visual analysis, vortex and flow visu-
alization, and visualization of time-varying phenom-
ena. Moorhead received a BS in electrical engineer-
ing in 1980 and an MS in electrical engineering in 1982, both from Geneva
College, and a PhD in electrical and computer engineering from North Caro-
lina State University in 1985. Moorhead has been author and coauthor of over
30 publications and was awarded a Hearin-Hess Distinguished Professorship
in Engineering in 1994 and 1995 by the College of Engineering, Mississippi
State University.

-

