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Abstract
Purpose The structure of fiber tracts in DT-MRI data presents
a challenging problem for visualization and analysis. We
derive visualization of such traces from a local coherence
measure and achieve much improved visual segmentation.
Methods We introduce a coherence measure defined for fiber
tracts. This quantitative assessment is based on infinitesimal
deviations of neighboring tracts and allows identification and
segmentation of coherent fiber regions. We use a hardware-
accelerated implementation to achieve interactive visualiza-
tion on slices and provide several approaches to visualize
coherence information. Furthermore, we enhance existing
techniques by combining them with coherence.
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Results We demonstrate our method on both a canine heart,
where the myocardial structure is visualized, and a human
brain, where we achieve detailed visualization of major and
minor fiber bundles in a quality similar to and exceeding fiber
clustering approaches.
Conclusions Our approach allows detailed and fast visual-
ization of important anatomical structures in DT-MRI
data sets.

Keywords Diffusion tensor imaging · Tractography ·
Coherent structures

Introduction

The abstract mathematical concept of tensors remains a
challenging field of study in scientific visualization. Visual
representation of a tensor can be achieved by reducing its
multidimensional information to simple, understandable
geometric primitives in three-dimensional space. While these
so-called tensor glyphs are powerful in conveying local prop-
erties of a tensor-valued data set [9], global insight into its
structure independent of the field of application, is most
effectively achieved through line primitives, which consti-
tute the most prominent tool to visualize tensor data in a con-
tinuous way. Tensor lines and hyperstreamlines [20], which
represent curves that are everywhere tangent to a tensor eigen-
vector field, have proven to be a suitable means to globally
visualize tensor fields in a number of application domains
including material sciences and medical visualization. In dif-
fusion tensor imaging (DTI) [1] in particular, it is known that
eigenvectors of reconstructed diffusion tensors align with the
underlying local fibrous tissue structure. Its analysis provides
insight into the connectivity of the brain white matter. The
ability of DTI to acquire this information in vivo makes it a
valuable tool to neuroscientists and neurosurgeons.
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While single tensor lines can represent only a small subset
of a considered data set, displaying large numbers of these
lines suffers from visibility and occlusion problems, which
significantly limits the effectiveness of visualization of this
approach. Therefore, various methods have been proposed
to reduce visual occlusion either by placing a certain num-
ber of line representatives or by displaying boundary sur-
faces of tensor line bundles that exhibit a similar behavior.
Their construction usually involves complex optimization or
clustering algorithms (e.g., [4,18]), which remain compu-
tationally challenging. In contrast, an effective strategy to
produce more abstract means to capture and represent tensor
data and create a high-level representation usually consists
of emphasizing regions where the behavior of lines changes.
These regions are of primary importance in the analysis of the
data. In medical imaging in particular, the seminal work by
Basser et al. [2] have demonstrated the anatomical signifi-
cance of the structures derived from tensor lines in terms of
fiber tracts. In brain white matter where the connectivity of
different brain areas is a vital field of research, regions where
the local geometry of tracks changes rapidly are structurally
meaningful since they indicate areas where at least two neu-
ral fiber bundles touch, join, or separate. Similarly, diffusion-
weighted scans of muscles support in vivo structural analysis
even of small-animal skeletal muscle. Therefore, they can be
used to analyze complex muscular structures such as those
found in the heart.

In this context, we propose a novel visualization method
that combines dense fiber integration with local analysis of
the coherence of the resulting fiber set to yield a structural
picture of DT-MRI data sets. Specifically, the algorithm we
propose effectively identifies each data set location with the
fiber tract passing through it, and quantifies a coherence mea-
sure on the fiber tracts passing through a small neighborhood.
We define this measure in terms of the deviation of fibers
over a finite distance. It follows from this construction that
regions of high cohesiveness contained in fibrous tissue cor-
responds to a set of points that exhibit a strong coherence
with their neighbors, while the boundaries that separate such
structures are associated with points where the coherence
is small. An important feature of our method is the con-
tinuous nature of the coherence measure; this characteristic
makes proper modeling of gradual transitions between dif-
fering fiber behaviors possible. This property is of particular
importance to study the subtle changes in the tissue structure,
such as, e.g., those found in the myocardium. Furthermore,
because our method quantifies fiber coherence with respect to
the geometric similarity of tensor lines over a certain length,
this length parameter is naturally contained in our approach
and provides a intuitive notion of scale in the assessment of
coherence. Note that the coherence measure presented here
is not specific to medical visualization but can be applied in
the general context of tensor field analysis.

In “Related work” section we review the previous work in
tensor visualization, with a strong focus on techniques ded-
icated to the characterization of structures in tensor fields.
“The section Tenser line coherence introduces the theoreti-
cal foundations underlying the proposed fiber measure, and
discusses details of our implementation. In the “Discussion”
section we examine a number of visualization approaches
derived from the obtained scalar coherence information and
explain how it can be used to enhance commonly used visu-
alization techniques. Specific results for the case of DTI
visualization are discussed in “Results”, and we demonstrate
the ability of our technique to characterize different types
of structural properties in various kinds of tissue. Finally,
“Discussion” section concludes on the presented material and
provides possible directions for future research.

Related work

Visualization of tensor-valued data sets using tensor lines
can be traced back to the visualization of vector fields and
flows using so-called integral curves that model the trajecto-
ries of particles moving through the field. The recently intro-
duced notions of Finite-Time Lyapunov Exponents (FTLE)
and Lagrangian Coherent Structures (LCS) [6,12] have been
applied to visualize the coherence of motion among neigh-
boring particles [5,17]). These Lagrangian visualization
approaches locally express the change of the particle tra-
jectory with the variation of the initial position, and regions
of locally high variation are identified as coherent structures
that represent the driving constituents of a flow. The tensor
visualization approach we present is based on similar con-
cepts applied to tensor lines.

The quantification of coherence of neighboring fibers in
diffusion tensor data, specifically pertaining to the human
brain, has been attempted by several authors [4,14,16]. Typ-
ically, fiber tracts that remain close to each other and have
similar behavior are clustered and classified to belong to a
common bundle. We do not compute a clustering but high-
light the Lagrangian scalar field directly, as it provides addi-
tional information.

Especially in diffusion tensor data, these coherent struc-
tures possess a meaning on the connectivity of the underlying
structure and provide valuable information for further eval-
uation of the data. These concepts have strongly influenced
our idea of detecting coherent structures in tensor fields. In
the following sections, we describe the theoretical consider-
ations underlying our approach.

Tensor line coherence

Before we describe our method, we briefly revisit the concept
of tensor lines.
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Tensor lines

Tensor lines were originally introduced by Dickenson et al.
[3] and later applied to the topological analysis of tensor
fields [7,19] and the segmentation of Diffusion-Tensor MRI
data [4]. A given field of symmetric tensors T , represented
by n × n-matrices induces a local eigen decomposition of
the form T (x) = B(x)T D(x)B(x) for every x in the domain
of definition of T . Here, B(x) represents an orthogonal basis
transform and D is the diagonal matrix of non-negative eigen-
values λi ordered by magnitude, i.e., λ1(x) ≥ · · · ≥ λn(x).
If λi �= λ j for i �= j , this ordering is strict; in this case x is
called a regular point, and degenerate otherwise.

Choosing j ∈ {1, . . . , n}, the decomposition gives rise to
a tensor line ϕx (t) as the uniquely defined curve that passes
through x and is everywhere tangential to the j th eigenvector
e j (x) corresponding to λ j (x), i.e.,

d

dt
ϕx = ±e j (x). (1)

Hence, tensor lines are integral curves that are naturally
parameterized according to arc length. In the case n = 3, the
three possible tensor line types are called major, medium,
and minor tensor lines depending on the choice of j . A vari-
ety of numerical schemes exist for approximations of tensor
lines in symmetric tensor fields, typically based on numerical
integration schemes such as the explicit Euler scheme or the
family of Runge–Kutta methods [8]. Note that the orienta-
tion of ϕx is not uniquely determined by Eq. 1. This must be
taken into account when working with such lines.

Coherence measure

The central idea of our approach is a local coherence measure
that describes the similarity of tensor lines passing through a
small neighborhood U around a regular point x . We may
assume in the following that all the tensor lines passing
through U can be consistently oriented. For t > 0, we denote
by Dϕt

x the derivative of ϕx (t) with respect to x . Essentially,
Dϕt

x describes the variation of ϕx (t) as x varies slightly.
Intuitively, the spectral matrix norm

||Dϕt
x ||2 :=

√
λmax

(
Dϕt

x
T Dϕt

x

)

pertaining to the maximal eigenvalue of Dϕt
x can be inter-

preted as the maximum distance after a time t that any ϕy can
move away from ϕx if x and y are initially arbitrarily close.

Fixing T > 0, we now define the local tensor line coher-
ence measure C by virtue of

CT (x) := max−T ≤t≤T
||Dϕt

x ||2. (2)

Essentially, CT (x) measures the maximum distance that a
tensor line ϕy passing through any y arbitrarily close to x

can move away from ϕx over its parameter interval [−T, T ].
If this maximum distance (and hence CT ) is small, neighbor-
ing tensor lines stay closely together. On the other hand, a
large CT indicates significant divergence along the path.

Numerical approximation

In the interest of simplified notation, we limit our description
here to a two-dimensional regularly spaced setting. However,
equivalent constructions are possible in any spatial dimen-
sion and on most types of discrete domains.

Let T > 0 and assume a discrete domain with points
xi, j := (i · h, j · h) with h > 0 and i, j ∈ {0, . . . , N }.
Furthermore, let M > 0 an integer defining a time discreti-
zation tm := k/M

T with m ∈ {−M, . . . , M}. Using numerical
integration, we define the discrete tensor line points

pm
i, j := φxi, j (t

m)

as the discrete representation of the tensor lines passing
through the grid points xi, j . We find the discrete approxima-
tion

C̃T (xi, j ) = max
m=−M,...,M

||Dφtm

xi, j
||2 (3)

of CT (Eq. 2), where Dφtm

x is numerically approximated from
the pm

i, j , e.g., using finite differences. Note that the discrete
tensor lines passing through the grid points participating in
the derivative approximation must be oriented consistently.
We now examine the visualization of DTI data sets using the
above coherence measure.

Visualization

The point-wise coherence measure defined in the previous
section, applied to the entire domain of a data set, gives rise
to a scalar field. Hence, typical scalar fields visualization
methods are applicable. For a fast, exploratory inspection of
such fields, pseudo-colored sweeping planes have proven to
be a valuable, interactive tool. We have considered different
types of color coding: Fig. 1 (left) depicts an anteroposterior
slice through a brain data set where the coherence measure is
represented as a grayscale color map. The visualization can
be further augmented by superimposing an anisotropy-scaled
rgb color map that is prevalent in DTI visualization [11]. The
typical anatomical structures can be identified while addi-
tional information is provided by the coherence visualiza-
tion (middle image). Fiber endpoint information can be used
as an alternative color coding that enhances the structural
view on the data. By mapping the direction between the end-
points using (δx,δy,δz)

|(δx,δy,δz)| to (r, g, b) color components, gen-
erally, similar colors are assigned to areas that have similar
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Fig. 1 GPU-based visualization of slices. The coherence map (left) is
drawn as an overlay to a color map in the middle and right picture.
Black lines mark low coherence while the white areas contain coherent
structures, which are colored by their direction in the middle and right
pictures. In the middle picture, the medical fractional anisotropy-rgb

color map is used to show the direction and fractional anisotropy at
the seed point. In the right picture, the areas of similar behavior are
enforced using an endpoint-based directional color map to provide a
segmentation-like color coding. The selected slice, its orientation, and
the color coding can be changed interactively

Fig. 2 Slice through a diffusion-weighted MRI scan of a canine heart
data set: even though the data are noisy and the resolution low, gray-
scale coherence map visualization (left) and coherence map colored by
directional information clearly show the main structures of the data. The
muscle fibers are organized in layers that differ in their fiber direction.
Whereas the transition is gradual within a linear interpolated voxel, our
approach provides sub-voxel accuracy of the barrier. Whereas previous
methods [15] have already been able to extract this behavior, our method
does not rely on abrupt changes within a voxel but uses global informa-
tion of line behavior. Therefore, it is superior to previously presented
approaches that cannot extract results on a sub-voxel scale

behavior (right image). Figure 2 illustrates some of these
visualization approaches on a DTI data set of a canine heart.

Regarding the three-dimensional context of a data set, the
main structural components of the coherence field can be
visualized using isosurfaces or volume rendering. Since low
coherence values correspond to diverging fiber bundles, cor-
responding isosurfaces or volume renderings emphasizing
such regions illustrate boundaries between coherent regions.
Conversely, areas of similar behavior that are representative
of the major line structures may be visualized by selecting
regions of high coherence values.

Furthermore, we propose to enhance typical tensor line
visualization through coherence information. Here, we make

use of the coherency measure as a transparency mask for the
rendered lines. This reduces in a stronger depiction of coher-
ent structures while reducing the visual impact of regions
of incoherent fiber behavior (cf. Fig. 3). The use of illumi-
nated lines [13] emphasizes the three-dimensional structure
of the data and improves the perception of the topological
relationships among lines, especially when interaction with
the data is desired and possible. Furthermore, adding volu-
metric coherence information as discussed above provides
spatial context to the fiber visualization.

In the next section, we focus on implementation aspects
of coherence-based DTI visualization.

Implementation and performance

The computation of the coherence measure for a given DTI
data set is built on the observation of a large number of fiber
traces traversing the domain of definition. Even for small
data sets, a regular sampling of the data set domain can
result in the computation of a large number of fiber traces.
The resulting computational effort is significant. This prob-
lem is further aggravated by the observation that important
structures in tensor fields often have sub-voxel resolution
being a consequence of interpolation. To resolve these struc-
tures and gain a proper interpretation of the data set, we have
found it beneficial to evaluate coherency information with
resolution exceeding that of the underlying data set. This
super-sampling further increases the computational effort of
our method.

We have addressed this problem in the following way: we
make use of graphics processing units (GPUs) to accelerate
the necessary computations. Tensor line integration is a mas-
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Fig. 3 Seeding and
transparency mapping of tensor
lines depending on coherence
(right) versus an unfiltered
version of the same line set
(left). The right image only
shows the most dominant and
coherent fiber bundles

sively parallel process; there is no interdependency between
lines emanating from different points and hence maps ideally
to the increased computational parallelism and bandwidth
available from modern GPUs. Our GPU implementation of
the coherence measure is based on central finite differences.
For each point at which the coherence measure must be eval-
uated, the six neighboring fiber traces corresponding to the
finite difference stencil are computed and oriented consis-
tently. Here, all fiber traces are advanced one step simulta-
neously, and after each step, Dφtm

is evaluated and C̃T is
updated according to Eq. 3. This incremental algorithm per-
mits us to approximate the coherence measure during the
integration and obviates the need to store the fiber traces.

Practically, it is not always possible to advance fibers to the
maximum length over which the coherence measure is to be
evaluated. Fiber traces cannot continue over domain bound-
aries or part degenerate points in the data set. Furthermore, it
is a common practice to terminate fiber integration if the frac-
tional anisotropy—an indirect indicator of the presence of
white matter—falls below a specified threshold (cf., e.g., [9]).
In all these cases, we evaluate the coherence measure only
over the interval on which all fibers of the derivative stencil
exist.

Our implementation is straightforward since we do not
expend effort to reuse fiber traces among neighboring eval-
uation locations. We have found that the storage and band-
width requirements of a more elaborate implementation that
computes each fiber trace exactly once are excessive in the
face of the super-sampling discussed above. Hence, in our
experiments, such an implementation did not perform faster
than the naive implementation presented here.

To document the performance that can be achieved using
the presented approach and examine its suitability for inter-
active visualization, we have measured timings obtained on
two data sets. All the timings were obtained on commodity
PC (2.0GHz Intel Core 2 Duo with 2 GB RAM, GeForce
8800GTX, 768 MB video RAM) and are shown in Table 1.
The measured computation times include all fiber integra-

Table 1 Evaluation timings of our coherency measure implementation
for two DT-MRI data sets

C̃T resolution Data set Time Data set Time

512 × 512 Human brain 10 ms Dog heart

1,024 × 1,024 (93×116×93) 20 ms (64×52×41)

5123 10 s 2.4 s

tions and evaluation of the coherence field for different
resolutions of the coherence map on both slices and vol-
umes. A further discussion of the data sets is given in the
next section (9).

For the slice-based visualization mode (cf. Fig. 1), a sweep
is performed through the data set of color-coded slices using
an advection approach [21] at interactive frame rates up to
10242 pixel resolution as is shown from Table 1. For inspect-
ing single slices and changing the color parameters, the lines
are not recomputed and, therefore, the frame rates for the
visualization step is much higher. All other changes that do
not affect the line integration but the coherence calculation
are performed at the same frame rate.

Results

We have applied our method to two DT-MRI data sets—a
diffusion-weighted magnetic resonance scan of a canine
heart, and a diffusion tensor image set of the human brain.

Canine heart

The MRI scan of the canine heart has been sampled over a
regular grid with resolution 64×52×41 and with anisotropic
cells of size 1.4×1.4×2.0 mm3. It was acquired with the spe-
cific intent to analyze the heart’s muscular structure that is
visible in the DTI images as the major tensor eigenvectors
are aligned to the underlying fiber structure.
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Two slice visualizations with and without additional col-
oring are shown in Fig. 2. As the data contain a hard mask,
boundary artifacts are observed in the upper part of the pic-
tures. Nevertheless, the main apparent structures in these
images are two trisector-like points, one at the upper connec-
tion between atrium and the ventricle, and the other near the
bottom. The separating wall contains one major line separat-
ing the fibers going around the atrium from those following
the left ventricle. More interesting is the wedge-like point
near the bottom: it splits the fibers coming from the atrium
in two parts. The outer layer passes (as seen in the red color
coding) from left to right, while the inner layer of fibers (blue)
is oriented orthogonally to the slice.

Human brain

We applied our algorithm to a DTI data set describing a
human brain. It was generated from a healthy volunteer using
a 3-Tesla Siemens Trio MRI scanner. A total of 60 diffusion
weighted images were acquired using three times averag-
ing and 21 baseline images. The data were converted to a
second-order tensor representation using linear least-squares
fit [1]. The complete measurement took about 20 min with
an in-slice resolution of 128×128 voxel and 72 slices on a
1.7×1.7×1.7 mm3 grid. In contrast to the dog heart, the noise
in the white matter part is low, but the fiber structure is more
complex.

Figure 1 shows three different visualizations of fiber
coherence on a central slice of the brain, using purely the
coherence measure (left), coloring by anisotropy (middle),
and coloring by endpoint difference. The coherence measure
was evaluated using a sampling resolution of 1,0242. Domi-
nant structures such as the corpus callosum and the pyramidal
tract are clearly identified, and a detailed visual segmenta-
tion of the fiber tracts is observed even in regions that have
almost uniquely local directional information. Both forceps
major and minor are segmented in different areas depend-
ing on the fiber’s global behavior. In the right image, the
distinction between the tapetum (purple), posterior corona
radiata (green) and superior longitudinal fasciculus (blue) is
visible, similar to Fig. 10 in Kindlmann et al. [10] with the
difference that the coherence visualization produced by our
scheme exhibits significantly reduced noise and identifies
cleaner boundaries.

For fully three-dimensional analysis, we use the coher-
ence field as a guide for the seeding and filtering of tensor
lines. A set of ca. 14,000 illuminated tensor lines uniformly
seeded inside the brain volume is shown in Fig. 3 (left). The
right image in the same figure shows the same set of ten-
sor lines, where the transparency of the line is derived from
the coherence of the regions that the fibers traverse such that
more coherent regions appear more opaque. This effectively
achieves a filtering of lines in noisy areas and enforces a

Fig. 4 A combination of volume rendering of tensor coherence mea-
sure and coherence-based seeding of tensor lines. Many small-scale
structures are visible, such as the region of low coherence between the
corpus callosum (fibers coming out of the picture) and the cinguli (fibers
going left–right above the corpus callosum)

visual emphasis of the global structure of the field. In addition
to the major fiber bundles, minor bundles leaving the pyra-
midal tract towards the cerebral cortex can be distinguished.
A combination of opacity-modulated fiber tracts with vol-
ume rendering of coherence information for additional con-
text is shown in Fig. 4. Whereas individual fibers that cannot
be associated with fiber bundles vanish, even fine-grained
structures at sub-voxel resolution, such as the cinguli, remain
visible.

The brain data set presents a challenge with regard to visu-
alization, as it exhibits a relatively large amount of noise
and many small-scale structures. Coherence-based visuali-
zation successfully reveals the main structures of the data
and boundaries of areas of different behavior can be clearly
identified.

Discussion

The visualization method for fiber traces in DTI data sets
presented here was inspired by two other successful visu-
alization methodologies, namely coherent structures in flow
fields and fiber clustering. They share the common idea of
describing a data set through information defined by inte-
gral lines. Our approach uses a coherence measurement as a
means to identify coherent, similarly behaving, line
structures. Therefore, the visualizations derived from fiber
coherence images are a direct representation of clustering
distance measures on lines in a neighborhood, but it super-
sedes clustering because there is no need for an explicit and
discrete grouping of lines. Therefore, floating point values
can be used to represent similarity and due to the higher effi-
ciency, it is possible to use far more lines for the calculation,
which results in a higher resolution and a detection of finer
structures compared to most clustering approaches. We have
demonstrated that those measures can be used to effectively
visualize global structures in DTI data and provide the user
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with a representation that enables a visual segmentation. Fur-
thermore, combination with isosurfaces and volume render-
ing provides coherency information in spatial context for
three-dimensional visualizations. This is an improvement
over previous clustering, segmentation and visualization
approaches that require extensive pre-computation. We have
described a robust algorithm that leverages commodity GPUs
to quickly measure coherency information on DTI data sets
and have shown that it facilitates interactive visualizations.
Furthermore, since it behaves smoothly, the coherency mea-
sure is not strongly influenced by noise such as, e.g., topo-
logical methods. In addition to the direct interpretation of the
coherence value and its similarity to clustering approaches,
it can be used as a fully automatic approach for tensor line
seeding or filtering of lines to provide appealing three-dimen-
sional visualizations that significantly reduce clutter.

Several open questions remain as avenues for future res-
earch. First, we would like to investigate the connection
between our coherence measure and topological methods.
Topological methods describe the coherence of fibers in an
asymptotic sense, while we only measure it over a finite
length interval. Second, we envision an automated extrac-
tion of boundaries between coherent fiber bundles by means
of ridge extraction in the coherence field. Finally, we note
that the scope of our work is not limited to the visualiza-
tion of tensor data from medical applications, and we have
already taken first steps towards applying it to other applica-
tion domains. Third, as our current DTI data sets are provided
by neuroscientists focusing on brain connectivity, an addi-
tional study involving neurosurgeons and radiologists has to
reveal possible applications for clinical data.
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