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Abstract 
 

We introduce a new approach to automatically extract an idealized logical 
structure from a parallel execution trace. We use this structure to define 
intuitive metrics such as the lateness of a process involved in a parallel 
execution. By analyzing and illustrating traces in terms of logical steps, we 
leverage a developer’s understanding of the happened-before relations in 
a parallel program. This technique can uncover dependency chains, 
elucidate communication patterns, and highlight sources and propagation 
of delays, all of which may be obscured in a traditional trace visualization.  

Extracting Logical Structure 
 

The logical structure of a program is the ordering of events implied by that 
program. We describe the logical structure by assigning a logical step to 
each event.  
 
Structure extraction occurs in two phases:  
1.  Partitioning related communication 
2.  Step assignment 

Step Assignment 
 

Partitioning 
 

Temporal Metrics 
 

Case Study 
 

Partitions represent non-overlapping application phases. If not predefined, 
we derive them from the trace: 
 
Matching sends and receives and communication handled by the same 
MPI call must be related and thus in the same partition. When merged, 
this can create cycles in ordering: 

Partition Ordering Message
Related Communication

Partition Ordering Merged Partitions

Communication partitions forming a cycle do not permit a partial order, so 
we infer these partitions are related and merge them.  

In addition to merging due to ordering 
constraints, we can optionally merge due 
to behavioral assumptions. For example, 
in bulk synchronous codes we expect 
each process to be active at some 
distance in the partition graph. 

Partition Ordering Leap Under Consideration Partitions to Merge
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Each partition is independently assigned steps based on two principles: 
1.  Happened-before relationships must be maintained 
2.  Send events have greater impact on structure 
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First we determine groups of 
simultaneous sends (gray) using 
receives only for ordering. 

Then we assign the least step 
possible to each event. 

Consider this trace segment from an 8-
process run of the pF3D stencil 
communication benchmark [1]. 

Finally we insert aggregated non-communication events between the 
sends and receives and determine global steps using partition ordering. 

Having determined a logical structure, we can calculate how late an event 
was relative to its peers. We define lateness as excess completion time 
over the earliest related event at a step. 
 
We visualize a portion of an MG [2] trace using traditional methods as 
represented by Vampir [3] (left) and logical structure and lateness (right). 
In the latter the communication pattern and delay propagation is clear. 
 

We classify four situations contributing to event lateness: 
 

Created in event. 
 

Propagated in process. 
 

Propagated by message. 
 

Created in message. 
 

Using this classification, we can narrow our focus to events where 
lateness originates by subtracting out propagated lateness. This 
differential lateness allows us to pinpoint sources of delays automatically. 
 

We analyze a massively parallel algorithm to compute merge trees. The 
algorithm relies on a global gather-scatter approach where each level 
requires messages sent both up and down a k-ary gather tree: 
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Below are the Vampir (left) and logical structure (right) visualizations of a 
16 process, 4-ary merge tree calculation. In the logical structure view, 
lateness reflects data-dependent load imbalance. Logical steps highlight 
the gather tree structure, revealing that the gather processes send back to 
the leaves before sending up to the root, missing an opportunity for more 
aggressive pipelining. 
 
 

The 1024-process, 8-ary tree below shows similar issues. The recurring 
“panhandle” shape highlights waiting due to sending down before up. 
 
 


