
 Extracting Logical Structure and Identifying Stragglers in Parallel Execution Traces

 Katherine E. Isaacs1 Todd Gamblin2 Abhinav Bhatele2 Peer-Timo Bremer2 Martin Schulz2 Bernd Hamann1

 1Institute for Data Analysis and Visualization, Department of Computer Science, University of California, Davis 2Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-POST-649674
This research is supported by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

Abstract

We introduce a new approach to automatically extract an idealized logical
structure from a parallel execution trace. We use this structure to define
intuitive metrics such as the lateness of a process involved in a parallel
execution. By analyzing and illustrating traces in terms of logical steps, we
leverage a developer’s understanding of the happened-before relations in
a parallel program. This technique can uncover dependency chains,
elucidate communication patterns, and highlight sources and propagation
of delays, all of which may be obscured in a traditional trace visualization.

Extracting Logical Structure

The logical structure of a program is the ordering of events implied by that
program. We describe the logical structure by assigning a logical step to
each event.

Structure extraction occurs in two phases:
1.  Partitioning related communication
2.  Step assignment

Step Assignment

Partitioning

Temporal Metrics

Case Study

Partitions represent non-overlapping application phases. If not predefined,
we derive them from the trace:

Matching sends and receives and communication handled by the same
MPI call must be related and thus in the same partition. When merged,
this can create cycles in ordering:

Partition Ordering Message
Related Communication

Partition Ordering Merged Partitions

Communication partitions forming a cycle do not permit a partial order, so
we infer these partitions are related and merge them.

In addition to merging due to ordering
constraints, we can optionally merge due
to behavioral assumptions. For example,
in bulk synchronous codes we expect
each process to be active at some
distance in the partition graph.

Partition Ordering Leap Under Consideration Partitions to Merge

Pr
oc

es
se

s
Pr

oc
es

se
s

Each partition is independently assigned steps based on two principles:
1.  Happened-before relationships must be maintained
2.  Send events have greater impact on structure

179,200,000 179,300,000 179,400,000 179,500,000 179,600,000 179,700,000 179,800,000 179,900,000179,100,000179,000,000

MPI_Send MPI_Recv

MPI_Send MPI_Recv MPI_Send MPI_Recv

MPI_Send MPI_Recv

MPI_Send MPI_Recv MPI_Recv MPI_Recv

MPI_Recv MPI_Send

MPI_Recv MPI_Send MPI_Send MPI_Recv

MPI_Recv MPI_Send

MPI_Recv MPI_Send MPI_Recv MPI_Recv

MPI_Recv

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

First we determine groups of
simultaneous sends (gray) using
receives only for ordering.

Then we assign the least step
possible to each event.

Consider this trace segment from an 8-
process run of the pF3D stencil
communication benchmark [1].

Finally we insert aggregated non-communication events between the
sends and receives and determine global steps using partition ordering.

Having determined a logical structure, we can calculate how late an event
was relative to its peers. We define lateness as excess completion time
over the earliest related event at a step.

We visualize a portion of an MG [2] trace using traditional methods as
represented by Vampir [3] (left) and logical structure and lateness (right).
In the latter the communication pattern and delay propagation is clear.

We classify four situations contributing to event lateness:

Created in event.

Propagated in process.

Propagated by message.

Created in message.

Using this classification, we can narrow our focus to events where
lateness originates by subtracting out propagated lateness. This
differential lateness allows us to pinpoint sources of delays automatically.

We analyze a massively parallel algorithm to compute merge trees. The
algorithm relies on a global gather-scatter approach where each level
requires messages sent both up and down a k-ary gather tree:

References
 1.  C. H. Still et al. Filamentation nd forward brillouin scatter of entire smoothed and aberrated laser beams.

Physics of Plasmas, 7(5):2023, 2000.
2.  D. H. Bailey et al. The nas parallel benchmarks. Int. J. Supercomput. Appl., 5(3):63–73, 1991.
3.  W. E. Nagel et al. VAMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69-80, 1996.

180ms

0ms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

1
22
43
64
85
106
127
148
169
190
211
232
253
274
295
316
337
358
379
400
421
442
463
484
505
526
547
568
589
610
631
652
673
694
715
736
757
778
799
820
841
862
883
904
925
946
967
988
1009

Lateness
0s 12s

Below are the Vampir (left) and logical structure (right) visualizations of a
16 process, 4-ary merge tree calculation. In the logical structure view,
lateness reflects data-dependent load imbalance. Logical steps highlight
the gather tree structure, revealing that the gather processes send back to
the leaves before sending up to the root, missing an opportunity for more
aggressive pipelining.

The 1024-process, 8-ary tree below shows similar issues. The recurring
“panhandle” shape highlights waiting due to sending down before up.

