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Symmetry Restoration by Stretching
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Abstract

We consider restoring the bilateral symmetry of an com-
puter model of an object which has been deformed
by compression. This problem arises in paleontology,
where symmetric bones are typically deformed in the
process of fossilization. Our input is a user-selected set
of point-pairs on the deformed object, which are as-
sumed to be mirror-images on the original symmetric
object, with some added noise. We carefully consider
the formulation of the problem, and give a closed-form
solution.

1 Introduction

Much of what we know about evolution comes from the
study of fossils. From the shapes of the bones of extinct
animals we form hypotheses about how they moved,
what they ate, how they are related to each other, and
so on. Yet these shapes are usually deformed by the ge-
ological processes which occur during fossilization, for
example the skull in Figure 1. For some fossils, for ex-
ample skulls and vertebrae, we can assume that the orig-
inal shape was roughly bilaterally symmetric. We can
use this assumption to reverse the deformation, or at
least limit the family of possible reconstructions. This
process is sometimes called retrodeformation.

Usually the input for retrodeformation is a set of
point-pairs, chosen by the paleontologist on the de-
formed specimen. We assume the point-pairs are stored
in a 3 × 2n matrix P with the assumption that point
p2i was the mirror image of p2i+1, on the original ob-
ject, before it was deformed by geological forces. The
point-pairs are chosen using the expert’s experience of
the biological shape. We use this approach, although
we note that developing automatic methods for finding
point-pairs or other useful descriptions of the input data
is another, quite interesting, research question (see [5]).

We consider the problem of finding a deformation
which restores bilateral symmetry to the point-pairs. To
get a reasonable mathematical formulation, we need to
consider a limited set of transformations. We consider
single axis stretches. A single axis stretch is produced
by choosing a direction vector and scaling only in that
direction; it is represented by a symmetric matrix A
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Figure 1: A deformed dinosaur skull in the Carnegie
Museum of Science.

for which two of its eigenvalues are one and the third
is greater than one. Single-axis stretches are important,
since the simplest hypothesis for how a fossil is deformed
is that it is compressed in a single direction. We want
to find a single-axis stretch A such that AP is as nearly
symmetric as possible.

Problem 1 Let P be a set of point-pairs. Find the
single-axis stretch A, a translation vector t, and a plane
of reflection, such that the mean-squared error

E =
n∑

i=1

||A(p2i + t)− Reflv,c(A(p2i+1 + t)||2 (1)

is minimized. Here Reflv,c is the affine transformation
reflecting space across the plane with normal v passing
through point c.

The choice of mean-squared error is natural, and con-
sistent with usual practice in paleontology.
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But there is a problem with this formulation: there is
not a unique solution in the absence of noise. Instead,
there is a one-dimensional set of single-axis stretches
that produce different perfectly symmetric shapes. As
an analogy, think of fitting a plane to set of points that
lie on a line; there is no unique solution. If noise is
added, there is a unique solution, but it provides infor-
mation only about the noise, not about the unknown
plane that contains the points. Similarly, when P is
noisy the unique minimum error solution selects one
of the possible symmetrizing single-axis stretches, but
based on the noise rather than on any information about
the original shape. Instead of returning a single solu-
tion, our computation returns a description of the entire
set of possible symmetrizing single-axis stretches. We
also consider choosing, as a canonical solution, the one
requiring minimum deformation. If there are other cri-
teria - comparison with other fossils, for instance - these
could be used instead to select a solution.
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v

Figure 2: Two ideas for retrodeformation. On the left,
a perfectly symmetric set of point-pairs, deformed by
compression along a single axis. Center, it seems intu-
itively clear that stretching in direction v is the most
efficient way to make w and y perpendicular. Right,
making the entire point set isotropic also makes it sym-
metric.

Our results: In this paper we tie together two ideas
for restoring symmetry, illustrated in Figure 2. The
first is a procedure for retrodeformation suggested by
the physical anthropolgist Christoph Zollikofer [12] (Ap-
pendix E): given a vector w estimating the average di-
rection of the vectors p2i − p2i+1, and an estimate y
of the projection of that vector on the sagittal plane
of reflection, stretch in the direction v bisecting ∠w, y
until they become perpendicular. This method is pre-
sented without a proof of optimality. We connect it
with a “well known” idea in the area of symmetry de-
tection: if you transform P to an isotropic matrix P̃
(that is, the principal components of P̃ are all vectors
of length one), then it becomes as symmetric as possi-
ble. We prove that the least-squares best-fit plane T to
the mid-points of the segments p̃2i, p̃2i+1 is the plane of
symmetry that minimizes the error E above for P̃ . This

nice property remains true for all linear transformations
which maintain symmetry across T (the symmetry pre-
serving transformations). including the symmetrizing
single-axis stretches. To produce a cannonical solution
within this set of symmetrizing single-axis stretches, we
choose the vectors w and y using T , and we prove that
applying Zollikofer’s formula we produce the symmetriz-
ing single-axis stretch which minimizes the deformation
of P . Related work: In paleontology, this problem
has been approached in different ways. An article by
Motatni [7] gave a closed-form minimum-error solution
in two dimensions, using a somewhat different set-up.
A similar method has recently been used to study trilo-
bites [1]. Our work is more closely related to that of
Zollikofer [12].

More research in computer science and morphomet-
rics has focused on detecting symmetry; see prior work
by the first author [2] and references therein, [9], [10],
[11], and, in morphometrics [4] and [3]. A notable ex-
ception is [6], where detected approximate symmetries
were grouped and aligned to restore the symmetry of
bent objects (ie, straightening out a snake).

2 Isotropy and symmetry preserving transformations

We assume throughout that P is not co-planar and,
without loss of generality, that the center of mass of
P is at the origin.

We say a set of points P is isotropic if its 3×3 covari-
ance matrix PP t = I (all of its principle components
are one). We say a set P of point-pairs is symmetric if
there exists a plane T through the origin with normal
v such that P is symmetric across T . We say P is per-
fectly symmetrizable if there exists any matrix A such
that AP is symmetric. We build on the following key
idea.

Observation 1 If P is perfectly symmetrizable and
isotropic, then P is symmetric.

This observation follows from the work of [8]. We use
this idea as follows: we first apply a linear transfor-
mation, to produce an isotropic set P̃ , and then we
find an optimal plane of symmetry. The transformation
M−1/2 taking P to P̃ will most likely not be a single-
axis stretch, but finding the optimal plane of symmetry
is a good first step. Details of the definition of M−1/2

can be found in Appendix A.
Still assuming that P̃ is symmetric, we consider the

optimal plane of symmetry T of P̃ and the transforma-
tions that preserve symmetry across it. Let R be any
rotation matrix which takes T into the plane x = 0.
The symmetry of P̃ is preserved by the multiplication
SFRP̃ where S is any rotation and F is any matrix of
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the form

F =




a 0 0
0 b c
0 d e



 (2)

This gives us a set of transformations V = SFR, such
that any V P̃ is symmetric. We call these the symme-
try preserving transformations of P̃ . The set of sym-
metry preserving transformations is seven dimensional;
although there are five degrees of freedom in choosing
F and three degrees of freedom in choosing S, the fact
that rotating one choice of F about the x-axis produces
some other choice of F reduces the dimensionality to
seven.

3 Cross-covariance

We define the 3× 3 cross-covariance matrix CQ of a set
of point pairs Q as:

CQ =
∑

i

q2iq
t
2i+1 + q2i+1q

t
2i

This matrix expresses the covariance of the points on
one side with respect to the points on the other. Since
CQ is symmetric, it can be decomposed into C = RtΛR,
with smallest eigenvalue λ1.

Lemma 2 Let Q be any set of point-pairs, not neces-
sarily symmetric or isotropic. Let u be the eigenvector
with minimum eigenvalue of the cross-correspondence
matrix CU of Q. The plane TQ through the origin with
normal u is the least-squares best-fit plane to the set of
midpoints m̃i = (q2i + q2i+1)/2 of Q.

Proof. We consider the sum of the squared distances of
all of the midpoints m̃i to the plane through the origin
with normal u:

∑
i〈(q2i + q2i+1)/2, u〉2 =

1/4 (ut (
∑

i(q2i + q2i+1)(q2i + q2i+1)t)u) =
1/4(ut(QQt)u + utCu) = 1/4(1 + utCQu)

Since CQ is symmetric, the error is minimized when u
is the eigenvector of CQ corresponding to the smallest
eigenvalue λ1. "

Notice that when Q is symmetric, TQ passes through
the midpoints and is exactly the plane of symmetry of
Q.

Here is a useful property of the cross-covariance ma-
trix of a symmetric set of point pairs.

Lemma 3 Let P be any symmetric set of point-pairs.
The cross-covariance matrix C has exactly one negative
eigenvalue.

Intuitively, this eigenvalue corresponds to the reflection;
the proof is found in Appendix B. A general P , not nec-
essarily symmetric, might not have exactly one negative
eigenvalue, in which case it would not much resemble a
set of symmetric point-pairs. We say that P is approxi-
mately symmetrizable if C does indeed have exactly one
negative eigenvalue.

4 Noise and optimality

Even when the input P is not perfectly symmetrizable,
we can use the cross-covariance matrix of P̃ to find an
approximate plane of symmetry T . We let R be the
rotation in the decomposition CP̃ = RtΛR of the cross-
covariance matrix of P̃ . Then we define T = RtT0,
where T0 is the plane x = 0. By Lemma 2, T is the
least-squares best fit to the midpoints of P̃ .

We now show that T is also the optimal plane of sym-
metry, not only for P̃ but for any symmetry-preserving
transformation of P̃ . For convenience, we will first con-
sider only symmetry-preserving transformations of the
form V = FR, that is, the ones that transform P so
that T goes to x = 0.

Lemma 4 Let P be an approximately symmetrizable
set of point-pairs. Then T is the plane minimizing the
symmetry error of (Equation 1) for the transformed set
V P̃ , where V = FR.

The proof can be found in the Appendix.

Theorem 5 Let P be a set of approximate symmetriz-
able point-pairs. Then ST is the plane minimizing the
symmetry error of (Equation 1) for the transformed set
V P̃ , where V = SFR is any symmety preserving trans-
formation of P̃ . Also, ST is the least-squares best-fit
plane to the midpoints of the transformed points of V P̃ .

This theorem follows from Lemmas 4 and 2.

5 Single-axis stretches

Single-axis stretches have the form:

A = (α− 1)uut + I

where u is the unit vector in the direction of stretching,
and the stretching factor is α, which we define to be
greater than one. The entire set of single-axis stretches
is three-dimensional, but not all single-axis stretches are
symmetrizing transformations (A = V M−1/2). Con-
sider the three eigenvectors v1, v2, v3 of C, the cross-
covariance matrix of P̃ . Let w1, w2, w3 be the pre-
images of these vectors with respect to M−1/2; eg.
u1 = M−1/2w1. The single-axis stretches which are also
symmetrizing transformations are exactly those which
make Aw1 perpendicular to the plane ST spanned by
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Aw2, Aw3. This introduces two additional constraints,
so that the dimension of the set of symmetrizing single-
axis stretches is only one.

6 Optimal single-axis stretch

Single-axis stretches are symmetric matrices, so the
condition 〈Aw1, Aw2〉 = 0 can be rewritten as
wt

1A
tAw2 = 〈A2w1, w2〉 = 0, and we rewrite the con-

dition 〈Aw1, Aw3〉 = 0 similarly. Observe that A2 =
(α2 − 1)vvt + I, that is, we stretch twice in the same
direction. Our condition that Aw1 should be perpen-
dicular to both Aw2, Aw3 means that A2w1 should be
some multiple of w2×w3. We construct a 2D coordinate
system for the plane through w1 and w2 × w3:

X =
w2 × w3

||w2 × w3|| Y =
w1 − 〈w1, X〉X

||w1 − 〈w1, X〉X||
Here X is the normal of the plane spanned by w2, w3

and Y is the projection of w1 onto that plane. Let θ be
the (known) angle such that

w1 = cos(θ)X + sin(θ)Y

Any single-axis stretch which aligns w1 and X does so
by stretching along a vector v that lies in the plane con-
taining them. (We prove this formally in the Appendix).
Vector v must also lie in this plane, so we can write v
as:

v = cos(φ)X + sin(φ)Y
So we have the situation in Figure 3. We can re-write

Y

X

w1

v

θ
φ

−Y

Figure 3: Both the vector v along which stretching oc-
curs and w1 lie in the same plane. X is the normal to
the plane spanned by w2, w3 and Y is the projection of
w1 onto that plane. Intuitively, the optimal choice for v
is the vector half-way between w1 and −Y , and indeed
this is what the proof indicates.

A2w1 = (α2 − 1)〈v, w1〉v + w1

= (α2 − 1)[cos φ cos θ + sinφ sin θ][cos φX + sinφY ]
+(cos θX + sin θY )

=
[
(α2 − 1)[cos2 φ cos θ + cos φ sinφ sin θ + cos θ]

]
X

+
[
(α2 − 1)[cos φ sinφ cos θ + sin2 φ sin θ + sin θ]

]
Y

Since A2w1 should be perpendicular to Y , this implies
that

0 = (α2−1)[cos(φ) sin(φ) cos(θ)+sin2(φ) sin(θ)]+sin(θ)

Solving for α2, we get

α2 = 1− sin(θ)
cos(φ) cos(θ) sin(φ) + sin2(φ) sin(θ)

= 1− 2 sin(θ)
sin(2φ− θ) + sin(θ)

There are two solutions for α > 1 for any φ in the
range

0 > φ > θ − π/2

and α goes to infinity on the boundaries of this region.
The minimum value of α in this region occurs when
sin(2φ− θ) is maximized, that is at

φ =
θ − π/2

2

At this point the angle φ−π/2 = θ−φ = θ/2+π/4 = β,
and

α2 =
1 + sin(θ)
1− sin(θ)

=
2 sin2(θ/2 + π/4)
2 cos2(θ/2 + π/4)

= tan2(β)

as observed by Zollikofer.

7 Conclusion

We have shown that given any approximately sym-
metrizable set P of point-pairs, transforming it to be
isomorphic and then fitting a plane to the set of mid-
points using least-squares gives us a plane T which
minimizes the symmetry error under any symmetry-
preserving transformation. Using T to define vectors
w1, w2, w3 for P , we can find the single-axis stretch
which minimizes the deformation of P .

This is only a cannonical choice of the best restora-
tion of symmetry from an infinite set of possible trans-
formations. If one had two compressed fossils of the
same object, assuming they were compressed from two
sufficiently different directions, it should be possible to
estimate the true original symmetric shape almost per-
fectly. It would be interesting to find an opportunity to
apply this idea in paleontology.
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A Making a Point Set Isotropic

For completeness, we describe how to find a matrix taking
any point set P into an isotropic set P̃ (this is in no way
novel, but if one wanted to implement our ideas it is impor-
tant to be clear about this). We assume that the center of
mass of P is the origin. If not, we pre-process it by subtract-
ing the center of mass t from each point, where

t =
1
2n

2nX

i=1

pi

We first compute the covariance matrix of P :

M =
X

i

pip
t
i

Since this is a symmetric, positive semi-definite matrix, M
can be expressed as:

M = Qt

2

4
a 0 0
0 b 0
0 0 c

3

5 Q

where Q is a rotation and the eigenvalues a, b, c are all pos-
itive, so that M−1/2 is equal to:

M−1/2 = Qt

2

4
1/
√

a 0 0
0 1/

√
b 0

0 0 1/
√

c

3

5 Q.

Then the isotropic set of point-pairs is P̃ = M−1/2P ; and in-
deed we can observe that M−1/2PP tM−1/2 = I. This trans-
formation is uniquely defined up to an orthogonal transfor-
mation (adding any rotation or reflection still produces an
isotropic point set).

B Technical Lemmas

Lemma 4 Let P be any symmetric set of point-pairs. The
cross-covariance matrix C has exactly one negative eigen-
value.

Proof. When P is symmetric, there exists a vector v such
that:

〈p2i, v〉 = −〈p2i+1, v〉

for all i. Thus, for every i, there exists a vector wi with
〈wi, v〉 = 0 and a scalar αi such that:

p2i = wi + αiv and p2i+1 = wi − αiv.

Computing the cross-covariance matrix of P we get:

C = −
X

i

α2
i vvt +

X

i

wiw
t
i .

Thus, v is an eigenvalue of C with negative eigenvalue
−

P
α2

i . Furthermore, if w is any vector perpendicular to v,
then wtCw =

P
〈wi, w〉2 which cannot be negative. Thus,

C has only one negative eigenvalue. !

Lemma 5 Let P be an approximately symmetrizable set of
point-pairs. Then T is the plane minimizing the symmetry
error of (Equation 1) for the transformed set V P̃ , where
V = FR.

Proof. We expand Equation 1 giving the reflective error as
a function of the linear transformation A and the candidate
plane of reflection’s unit normal w:

E(A, w) =
nX

i=1

||A(p2i)− Reflw(A(p2i+1)||2

=
nX

i=1

||V (p̃2i)− Reflw(V (p̃2i+1)||2

=
nX

i=1

||V (p̃2i − p̃2i+1) + 2〈V (p̃2i+1), w〉w||2

=
nX

i=1

‖V (p̃2i − p̃2i+1)‖2 + 4〈V (p̃2i+1), w〉2

+ 4〈V (p̃2i − p̃2i+1), w〉〈V (p̃2i+1), w〉

=
nX

i=1

‖V (p̃2i − p̃2i+1)‖2 + 2wtV CV tw.
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Thus, the plane minimizing the symmetry error is the plane
whose normal is the eigenvector of V CV t with smallest cor-
responding eigenvalue. We have F t(1, 0, 0) = (a, 0, 0), and
since Rt maps the vector v = (1, 0, 0) to the only eigenvector
of C with negative eigenvalue, it follows that (1, 0, 0) is an
eigenvector of V CV t with negative eigenvalue. Additionally,
V CV t has only one eigenvector with negative eigenvalue.
Thus (1, 0, 0) must be the vector minimizing the symme-
try error and T is the plane of reflection minimizing the
error. !

Lemma 6 Given two distinct lines spanned by the vectors
X and Y , any single-axis stretch that aligns the two lines
must do so by stretching along a vector contained in the plane
V = Span{X, Y }.

Proof. Let w be a unit vector and α be a scalar defining
the stretching transformation, so that:

λX − Y = (α− 1)〈Y, w〉w

for some λ. Since the left-hand side is contained in V and
since w is not, the only way for equality to hold is if 0 =
(α − 1)〈Y, w〉. But this must imply that X is just a scalar
multiply of Y , contradicting the initial assumption that the
two lines are distinct. !


