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Abstract

We describe the algorithms and data structures used for optimizing linear spline approximations of bivariate functions.
Our method creates a random initial triangulation of a given data set and then employs a simulated annealing algorithm
to improve this initial approximation. In every iteration step, the current approximation is changed in a random but local
way, and the distance measure between it and the data is re-calculated. Depending on the difference between the old and
new distance measures, an iteration step is either accepted or rejected. We discuss the basic operations and data
structures of our optimization technique. We present a variant of the half-edge data structure and associated algo-
rithms. © 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In several applications one is concerned with the rep-
resentation of complex geometries or complex physical
phenomena at multiple levels of resolution. In the con-
text of computer graphics and scientific visualization,
so-called multiresolution methods are crucial for the anal-
ysis of very large numerical data sets [1-5]. Examples
include high-resolution terrain data (digital elevation
maps) and high-resolution, three-dimensional imaging
data (e.g., magnetic resonance imaging data).

In [6,7] we introduced an approach for the construc-
tion of multiresolution approximations of very large scat-
tered data sets using an iterative optimization algorithm
based on simulated annealing [8-11]. In this paper, we
discuss the optimization procedure in more detail, con-
centrating on the following special case:

(1) We only consider scattered data sets resulting from
bivariate scalar- or vector-valued functions sampled
at sites which are randomly distributed over the
functions’ domains, and
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(2) we only discuss optimizing a single approximation
level, where the number of vertices to be used for the
optimization is fixed.

An example for this special case is the approximation of
a color image, interpreted as a bivariate vector-valued
function, by a triangulation consisting of a predefined
number of vertices, see Section 6.

1.1. Finding optimal approximations

Our approach to finding an optimal or near-optimal
linear spline approximation for a given, fixed number of
vertices N, is based on an iterative optimization algo-
rithm. First, we create an initial configuration, then we
improve this configuration by changing its vertex place-
ment and its triangulation in every step. We judge a con-
figuration’s quality by its L? distance from the scattered
data set. Since this optimization problem is high dimen-
sional and generally involves local minima in abundance,
the algorithm of simulated annealing is well suited to
construct “good” linear spline approximations [8,11].

Simulated annealing is an iterative method that applies
random changes to the current configuration and accepts
a step depending on the resulting change of the error
measure and a value called “temperature”. This
value determines the probability of accepting a step that
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increased the error measure: The higher the temperature,
the higher the probability of accepting a bad step. The
so-called “annealing schedule” determines how fast the
temperature is decreased during the iteration.

In the case of bivariate scattered data sets the quality
of a configuration depends on both vortex placement and
triangulation. There are two different ways how we can
proceed:

(1) One canignore the optimization of the triangulation
by enforcing a fixed triangulation type throughout
the iteration process; an obvious candidate is the
Delaunay triangulation [12].

(2) One can attempt to optimize both parts of the con-
figuration in parallel. For example, before each step
one could randomly decide to either move a vertex
or rotate a common edge of two adjacent triangles,
which are forming a convex quadrilateral.

2. The optimization algorithm

We now describe the individual steps of our algorithm.
Algorithm 1 is a high-level description. The subsequent
sections describe the important steps in more detail.

Algorithm 1: Optimizing linear spline approximations
using simulated annealing.

Create initial configuration (vertex placement and
triangulation);
Determine initial temperature and create annealing
schedule;
while iteration is not finished {

Change current configuration;

Calculate change in error measure;

Undo iteration if rejected by simulated annealing;}
return current configuration;

2.1. Creating an initial configuration

Our approximations are defined over the original sites’
convex hull. To achieve this, our algorithm has to calcu-
late the convex hull of all sites contained in the data set
first; then it has to include all those vertices whose sites
are located on the convex hull’s boundary into the initial
configuration. Afterwards, further vertices are randomly
selected from the data set and inserted into the configura-
tion. Thus, an initial configuration is created by tri-
angulating a convex polygon (the data set’s convex hull),
and then inserting vertices into an existing triangulation
at arbitrary sites. We also want all initial configurations
to be Delaunay triangulations; to ensure this, we have to
restore the Delaunay property after each vertex insertion
using the algorithm described by Guibas et al. [13].

Thus, a data structure has to support the following primi-
tive operations:

(1) create a Delaunay triangulation of a convex poly-
gon;

(2) in a triangulation, find the triangle containing an
arbitrary point;

(3) inserta new vertex into the triangulation by splitting
the triangle containing that point into three parts;

(4) restore the Delaunay property after a vertex inser-
tion by rotating those edges in the triangulation
violating it.

2.2. Creating an annealing schedule

A reasonable heuristic to define the initial temperature
is to apply some steps of the iteration scheme and to
define the initial temperature in a way that the annealing
algorithm initially accepts an “expected bad” step with
a probability of one-half. Next, we lower the temperature
in steps, leaving it constant for a fixed number of iter-
ations and scaling it by a fixed factor afterwards.

2.3. Changing the current configuration

The simulated annealing algorithm’s core is its iter-
ation step. In principle, one can use many methods to
change the current configuration, but we have found out
that the “split” approach, described by Algorithm 2,
works very well.

Algorithm 2: Changing the current configuration.

if (accept With Probability (move Probability)) { /* move
a vertex */
Choose an interior vertex v;
Estimate v’s contribution vE to the error measure;
if (vVE < localMovementFactor - E)
Move v globally;
else
Move v locally;
if (move Probability = = 1)/* Vertex movements
only? */
Restore Delaunay property;}
else {/* rotate an edge */
Choose a rotatable edge ¢;
Rotate edge ¢; }

The constant moveProbability is used to control the be-
havior of the optimization process. If this constant’s
value is one, the algorithm moves a vertex in every step,
and after each vertex movement the current triangulation
is updated to satisfy the Delaunay property. In the other
case the algorithm can either move a vertex or swap an
edge, thereby optimizing both vertex placement and tri-
angulation simultaneously.
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2.3.1. Estimating the error contribution of a vertex

To estimate how much the removal of an interior
vertex v would increase the overall L? error measure, see
Section 2.4, we use the following approach: we construct
an approximating least-squares plane H for all vertices
surrounding v. Then we calculate h as v’s ordinate-direc-
tion distance from H and A as the area of s platelet, see

Fig. 1. We define the error contribution as ./ A4h?/3, to
ensure that the ratio of the vertex error contribution and
the used L? error measure is scale-invariant.

In order to calculate H, we need a basic operation that
enumerates all vertices surrounding a given interior ver-
tex of a triangulation.

2.3.2. Moving a vertex globally

If v’s error contribution is smaller than a constant
localMovementFactor times the current error measure E,
we assume that v is currently located in a “flat” region of
the function and should be moved away from this region.
We move v globally to a randomly chosen new site not
already being part of the current configuration. By doing
this we assure that vertices get driven away from nearly
flat regions of a function in early stages of the iteration.
"~ Fig. 2 shows the steps which have to be performed to

f(x,y)

Fig. 1. Estimating how much a vertex contributes to the error
measure.

move a vertex globally. According to that figure, global
vertex movements can be broken down into the following
primitive operations:

(1) remove a vertex from a triangulation;

(2) insert a vertex into a triangulation at the site of an
arbitrary vertex from the original data set;

(3) restore the Delaunay property locally at the vertex
old and new site by rotating those edges in the
triangulation violating it.

2.3.3. Moving a vertex locally

When the vertex’ error contribution is larger than
localMovementFactor - E, we assume it is currently located
in an “important,” high-curvature region of the target
function, and we attempt to find a better site for this
vertex by moving it locally to a new, unoccupied site in its
platelet. To move a vertex locally, we “slide” the vertex
on the line from its old to its new site, dragging the edges
connecting it to all surrounding vertices along. Whenever
a surrounding simplex becomes degenerate during the
vertex motion, we rotate one edge of the affected simplex
before moving the vertex any further, see Fig. 3. Local
vertex movements cannot be decomposed into simpler
operations and thus have to be supported directly by the
data structure.

Fig. 3. Moving a vertex locally: (1) initial state; (2) rotating edge
e to prevent triangle T from becoming degenerate; (3) resulting
state.

Fig. 2. Moving a vertex globally. (1) initial state; (2) removing the vertex; (3) filling the resulting hole; (4) inserting the vertex at its new
site; (5) restoring the Delaunay property (only if we ignore the triangulation during optimization).
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Fig.4. Rotatingan edge e: (1) initial state; (2) resulting state. The
dotted circles denote the circumcircles of the two triangles before
and after rotating edge e.

2.3.4. Rotating an edge

The simplest possible way to change the triangulation
in an iteration step is to randomly pick an edge, which is
shared by two triangles forming a convex quadrilateral,
and then to rotate this edge to form the other possible
triangulation of that quadrilateral, see Fig. 4.

2.4. Calculating the error measure

To calculate the L? distance between a configuration
C and the scattered data set S being approximated, we
use Algorithm 3. This algorithm can be used for vector-
valued data sets without change, as long as one uses the
Euclidean metric.

Algorithm 3: Calculating the error measure.

error = 0.0;
area = 0.0;
numDataVertices = (;
for all triangles ¢ in C do {
for all data vertices s in S located in t do {
Interpolate value tv of t at site of s;
error + = (tv — s)%;
area + = area of triangle t; }
numDataVertices + = number of data vertices located
in t; }

return \/ (area- error)/numDataVertices;

Algorithm 3 requires the following primitive opera-
tions:

(1) enumerate all triangles in a configuration;
(2) enumerate scattered data located in a triangle con-
tained in a configuration.

3. The half-edge data structure

It turns out that a variation of the half-edge data
structure allows for easy and efficient implementation of
all primitive operations needed for our linear spline op-
timization technique. Using this representation, a tri-

Fig. 5. Representation of a triangulation as a half-edge mesh.
\ /I
/\) &

Fig. 6. Implicit representation of vertices and faces: (1) vertex
loop, (2) face loop.

angulation is described by a set of half-edges, where each
edge in the triangulation is “divided” into two directed
edges having opposite directions, see Fig. 5. Each half-
edge structure is defined by

(1) the half-edge’s line equation;

(2) a pointer otherHalf to the other half-edge construc-
ted from the original edge:;

(3) a pointer vertexNext to the next half-edge around the
start vertex in counterclockwise direction;

(4) a pointer triangleNext to the next half-edge around
the triangle the half-edge belongs to, also in counter-
clockwise direction.

The fourth element is redundant, but it transforms the
sets of half-edges around vertices and triangles to
double-linked lists, thus simplifying certain manipula-
tions. In this basic data structure neither vertices nor
triangles are stored explicitly; both are implicitly repre-
sented as loops in the half-edge graph. see Fig. 6.

For our purposes, we enhance the basic structure by
explicitly listing vertices and triangles. By adding vertices
to the representation, the primitive operations of finding
random vertices and moving vertices are more easily
implemented. Each vertex structure is defined by

(1) the vertex’ site;
(2) a pointer firstEdge to one outgoing half-edge.

By adding triangles and associating data vertices with the
triangles containing them we ensure efficient re-calcu-
lation of the error measure after local configuration cha-
nges. Each triangle structure is defined by



0. Kreylos, B. Hamann | Computers & Graphics 24 (2000) 353-361 357

(1) a single-linked list of scattered data vertices whose
sites are contained in the triangle;

(2) a pointer firstEdge to one of the half-edges delimit-
ing the triangle.

To link vertices and triangles to the half-edge mesh, we
have to add the following pointers to each half-edge
structure:

(1) a pointer startVertex to the vertex the half-edge is
starting at;

(2) a pointer triangle to the triangle the half-edge is
delimiting.

4. Basic algorithms and estimated costs

In this section, we estimate the run time of the most
important operations, expressed for optimization prob-
lems containing n vertices in the triangulation and
N original data vertices.

4.1. Finding the triangle containing a given point

This problem, which arises in creating the initial
configuration and in global movements, 1s solved by
a breadth-first search applied to the graph of triangles,
where the start point of the search is set to be the last
triangle that was reported. The number of triangles in
a triangulation with n vertices is O(n); this ensures O(n)-
behaviour per point for randomly arranged points and
allows for speed-ups to up to O(1) per point when points
are inserted neighbour by neighbour. The latter is the
common case when processing bitmaps or other gridded
data.

4.2. Creating the initial configuration

To create the initial configuration one has to

(1) calculate the convex hull of the sites of all N data
vertices (O(N log N));

(2) triangulate the convex hull (O(\/ﬁ), when assuming

that O(\/ﬁ) vertices are lying on the boundary);

(3) insert n — ¢ randomly chosen data vertices into the
triangulation, where ¢ is the number of vertices lying
on the boundary of the convex hull (O(n?));

(4) associate all data vertices with the triangles contain-
ing them (O(Nn) for random data, O(N + n) for
gridded data: when scanning rows from left to right
and right to left, vertices are inserted neighbour by
neighbour):

(5) calculate the initial error measure (ON)).

Thus, the creation step requires O(N(log N + n)) opera-
tions for random data, and O(N log N + n?) operations
for the common case of gridded data.

4.3. Moving a vertex globally

To move a vertex globally one has to

(1) remove the vertex from its current position (O(1));

(2) re-associate the data vertices inside the vertex old
platelet (O(N/n));

(3) re-calculate the error measure inside the vertex old
platelet (O(N/n));

(4) locate the triangle containing the vertex new site
(O(n);

(5) split the triangle containing the vertex new site
(O());

(6) re-associate the data vertices inside the vertex new
platelet (O(N/n));

(7) re-calculate the error measure inside the vertex new
platelet (O(N/n));

(8) calculate the new overall error measure (O(n)).

We are assuming that, in the expected case, the number
of triangles per platelet is bounded by a small constant. If
we decided to uphold the Delaunay property throughout
the algorithm, we would have to restore it after removing
and inserting a vertex by rotating edges in the triangula-
tion violating the property. Knuth points out that the
expected number of edges to rotate is O(1) [13]. This
adds another O(N/n) operations to re-associate and re-
calculate the changed triangles. In summary, a global
vertex movement requires O(N/n + n) operations. We
decided not to update the overall error measure in-
crementally to minimize the impact of numerical impreci-
sion on the optimization result.

4.4, Moving a vertex locally

To move a vertex locally one has to

(1) move the vertex to its new position while updating
its platelet on the fly (O(N/n));

(2) re-associate the data vertices inside the vertex new
platelet (O(N/n));

(3) re-calculate the error measure inside the vertex new
platelet (O(N/n)):

(4) calculate the new overall error measure (O(n)).

We are assuming that local movements do not move
a vertex very far from its initial platelet. Again, to restore
the Delaunay property one has to add another O(N/n) for
edge rotations and re-calculations. In summary, a local
vertex movement requires O(N/n + n) operations.

4.5. Rotating an edge

To rotate an edge one has to
(1) rotate the edge (O(1));
(2) re-associate the data vertices inside the affected tri-
angles (O(N/n));
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Fig. 7. A ray-traced image showing the Utah Teapot and the Utah Teacup at a resolution of 640 x 480 pixels.

(3) re-calculate the error measure inside the affected
triangles (O(N/n));
(4) calculate the new overall error measure (O(n)).

In summary, an edge rotation requires O(N/n + n) opera-
tions.

4.6. Rejecting a configuration change

Whenever an iteration step is rejected by the simulated
annealing algorithm, we have to undo the configuration
change. This results in applying the same principal op-
eration again, requiring O(N/n + n) operations. Since the
probability of a change being rejected increases when the
error measure approaches a global minimum, the iter-
ation steps tend to take twice as long towards the end of
the iteration — almost all operations have to be undone.

5. Possible efficiency improvements

We have shown that the asymptotical run-time behav-
iour for all types of iteration steps is O(N/n + n). Our
experiments have indicated that re-associating the data
vertices and re-calculating the error measure are the most
important factors for overall run-time behaviour.! We
believe that parallelizing these operations, either on a tri-

"The O(n) part introduced by re-calculating the error norm
after every change could be eliminated by using incremental
updates; this is dangerous, however, because build-up of numer-
ical imprecision can keep the iteration from converging.

angle-by-triangle basis or on a vertex-by-vertex basis,
would result in considerable accelerations. Choosing the
former might be easier, since the error measure contribu-
tions of distinct triangles are independent of each other.
On the other hand, since the number of triangles per
platelet is usually small, the maximum speed-up factor
would be small as well. The latter way of parallelization
might be more complex and might require more inter-
processor communication, but it might allow for higher
possible speed-up factors, since the number of data
vertices per triangle is usually large.

Accelerating the point-location algorithm, for example
by a grid-cell approach, does not seem very promising,
since the triangulation changes in every iteration step
(inducing overhead to update the point-location
structure), and because only 2-10% of iteration steps are
global vertex movements.

6. Examples and results

We examine our algorithm’s run-time behaviour in
detail for one specific example. The source data sets are
two ray-traced images of the Utah Teacup and the Utah
Teapot, see Fig. 7, placed on a table texture mapped with
a wood texture containing very strong high-frequency
components. The two images have resolutions of
320x 240 and 640 x 480 pixels, respectively. We have
approximated the images at several levels of resolution,
listing the error measures and elapsed run times after
certain numbers of iterations in Table 1. Each table
entry shows the error measure after application of the
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Table 1

Error measures and elapsed run times for Utah Teapot and Utah Teacup images

Image res. (pixels) No. of vertices Number of iterations

0 50,000 100,000 150,000 300,000 500,000
320 x 240 1000 45.0536 24.8158 21.2617 18.5788 15.1631 13.6342
0.0s 43.0s 87.4s 1326 s 281.4s 4825
2000 39.3842 25.2299 23.1803 20.8313 17.7345 14.9551
00s 47.1s 90.3 s 1230 s 2609 s 436.6 s
640 x 480 1000 929234 50.5108 438778 39.3941 31.6659 28.2213
0.0s 13265 27145 4153 s 900.2 s 1557.0s
2000 81.5383 50.7222 45.4626 41.9275 35.3801 30.0904
0.0s 90.9 s LT85 267.18 s 5329s Y1 =

Fig. 9. The approximation of the 320 x 240 image, using 2000 vertices. Left: after 50,000 iterations, right: after 500,000 iterations.

indicated number of iterations in the top row and the run
time in the bottom row. Run times were measured on
an SGI Onyx 2 workstation using one MIPS R10K
processor running at 195 MHz. See Figs. 8-12 for
approximation results. When comparing the results for
approximations using 1000 vertices and 2000 vertices,
one finds out that the latter are worse; this special source
bitmap is a difficult case for the algorithm, because it
exhibits strong high-frequency components and noise in
the lower half of the image.

7. Conclusions and future work

We have provided an in-depth analysis of the data
structures, algorithms and performance of our linear
spline optimization algorithm based on simulated an-
nealing. We have provided approximate asymptotic
run-time bounds for our algorithm and discussed pos-
sible ways to increase the algorithm’s performance.

The main areas for future research are the generaliz-
ation of our algorithm to functions of three and more
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Fig. 11. The approximation of the 640 x 480 image, using 2000 vertices. Left: after 50,000 iterations, right: after 500,000 iterations.

Fig. 12. Close-ups of the approximation of the 320 x 240 image, using 1000 vertices. Left: after 50,000 iterations, right: after 500,000

iterations.

variables and the application of our method to
large-scale scientific visualization and image and video
compression. If one treats video data as time-varying
bivariate vector-valued functions and exploits the strong
frame coherence of video streams especially in tele-
conferencing, our algorithm might lead to a new real-
time video compression method. We also believe that
our algorithm will be very helpful for the construction
and visualization of hierarchies of linear spline approxi-
mations of massive numerically simulated data sets.

Since the output of our algorithm is a direct geo-
metric representation of the data sets, rapid display
of large-scale data sets would be possible. Another
interesting application might be the interactive genera-
tion of isosurfaces for different isovalues. Since
data sets are approximated using only a small number
of primitives, one would not have to generate
massive sets of polygons first (for example by
using a marching cube algorithm) and decimate them in
a second step.
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