
A Magnification Lens for
Interactive Volume Visualization

Eric LaMar
Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory

lamar1@llnl.gov

Bernd Hamann and Kenneth I. Joy
Center for Image Processing and Integrated Computing,

Dept. of Computer Science, University of California, Davis
{hamann,joy}@cs.ucdavis.edu

Abstract

Volume visualization of large data sets suffers
from the same problem that many other visualiza-
tion modalities suffer from: either one can visual-
ize the entire data set and loose small details or
visualize a small region and loose the context. In
this paper, we present a magnification lens tech-
nique for volume visualization. While the notion of
a magnification-lens is not new, and other tech-
niques attempt to simulate the physical properties
of a magnifying lens, our contribution is in devel-
oping a magnification lens that is fast, can be im-
plemented using a fairly small software overhead,
and has a natural, intuitive appearance. The is-
sue with magnification lens is the border, or tran-
sition, region. The lens center and exterior have a
constant zoom factor, and are simple to render. It
is the border region that blends between the ex-
ternal and interior magnification, and has a non-
constant magnification. We use the “perspective-
correct textures” capability, available in most cur-
rent graphics systems, to produce a lens with a
tessellated border region that approximates linear
compression with respect to the radius of the mag-
nification lens. We discuss how a “cubic” border
can mitigate the discontinuities resulting from the
use of a linear function, without significant perfor-
mance loss. We discuss various issues concerning
development of a three-dimensional magnification
lens.

1 Introduction

To properly understand data, a person must
be able to see the details while being able to
place these details in the larger context of the
total data. Data sets are becoming so large that
rendering them to standard display devices re-
sults in severe under-sampling. For example, it
is not possible to view 20002 pixels on a 1280∗1024
pixel display: the image resolution is simply too
large. In this case, a user can use one of several
non-intuitive schemes: closely examine, by mag-
nification or perspective zoom, various regions,
zooming in and out to determine location. The
second scheme is a dual-window design, where
one (local) window shows a zoomed region and
the second (world) window shows a severely sub-
sampled version of the full data set, with a box
glyph showing the location of the zoom window.
Both of these techniques are commonly found in
paint, picture-editing, and CAD programs. The
first option is poor as features may be larger than
the zoomed region, or might not be viewed in
their entirety, and thus not be recognized by the
user. Also, to navigate to another location in the
data, the user must zoom out to determine loca-
tion and zoom back to a new location or move in
some direction in hope to find a way to the “cor-
rect” location. The second approach is poor as
it also has a similar issue with navigation - the
user must interpret translation commands in the
zoom window to the world window.

In this paper, we will discuss a magnification-

1



lens zoom technique for volume visualization
of very large data sets. We use hardware-
accelerated, texture-based volume visualization,
an extension of earlier work, see [8, 7, 6]. We
have two requirements for our magnification
lens. First, it must have a “natural” or intuitive
appearance, in the sense that, as a user moves
the lens through a data set, the magnification
and transformation of the data seems proper.
We are not interested in reproducing the prop-
erties of a physical magnifying glass - significant
other work of human interaction demonstrates
that glyphs and other artificial constructs are
sufficient, and sometimes, better than any phys-
ical or “real-world” transformation. We develop,
compare, and contrast square and circular lens
bases. We also develop, compare, and contrast
performance and visual characteristics of linear
and cubic bases for warping between magnified
and un-magnified regions of an image.

We discuss related work in Section 2. We de-
velop the basic zooming texture techniques for
two- and three-dimensional data in Section 3
and discuss issues of geometry in Section 4. Per-
formance results are covered in Section 5. Fu-
ture work is discussed as part of the conclusions
in Section 6.

2 Related Work

Sarkar and Brown [10] developed a Global
Fish-eye technique for browsing large graphs (of
vertices and edges) by allowing local magnifica-
tion of graph elements. Their magnification ba-
sis is the movement of vertices away from some
focal area.

Sarkar and Brown [11] also introduced a
rubber-sheet-stretching metaphor for the local
magnification of large graphs. They defined or-
thogonal and polygonal stretching bases. The
former stretches different ranges of each axis in-
dependently, and the latter stretches the entire
domain as a function of distance and orientation
to a set of foci. The user can manipulate the
stretching through handles. The downside of the
orthogonal approach is that regions that are not
in the set of foci are affected. They solve this
problem with the polygonal basis. While more
expensive, a polygonal basis generates a more in-
tuitive magnification.

Bier et. al. [1] introduce the Magic Lens
as a transparent interaction tool to overlay a
workspace. The Magic Lens provides two lev-

els of functionality. The first aspect is that the
Magic Lens is represented in outline, as com-
pared to opaque pop-up windows or menus, as
to not cover or interfere with the workspace. Sec-
ond, visualization of attributes of the data can be
added or removed. This is important with dense
or multivariate data, as it is generally not pos-
sible to comprehend an image with more than
a few dimensions of data shown. For example,
a magic lens could have four or six sub lenses,
each showing a different set of variables, or the
same variables with different representations.
The user can switch different views around by re-
positioning the larger lens such that the smaller
lens covers the region in question. While their
work does not discuss “in-context” magnifica-
tion, it is the basis of many other works devel-
oping magnification techniques.

Ware and Lewis [13] discussed the “DragMag
Image Magnifier,” a two-window approach to view
large (125002 pixel) images. The first window
shows the global view, while the second shows
a magnified view. The second window appears
as a movable glyph in the global view, and the
user can navigate through either window. The
user cannot modify the location of relative sizes
of the two windows and must mentally fuse the
local and global views.

Keahey [3] provides a good summary of the is-
sues and techniques of the “Detail-in-Context”
problem. He discusses the uses of glyphs, Level-
of-Detail control of glyphs, embedded objects and
non-linear magnification of a montage of two-
dimensional images.

Rauschenbach [9] developed a demand-driven
transmission and magnification approach for
large color images. He incorporates wavelet de-
composition, transmission, and reconstruction.
A simple orthogonal stretching method is used.

Keahey introduces volume warping in [4] as
a method for easing the examination of a med-
ical database with 11-dimensional records. He
defines a non-linear magnification using multi-
ple foci in a three-dimensional volume, allowing
the examination of clusters of records while pro-
viding the larger context. This technique has
the downside in the sense that the data is very
sparse and glyphs, in the form of regular, volu-
metric grid lines, must be added to the rendering
to show the location and size of the foci.

Kurzion and Yagel [5] use volume (3D) tex-
tures and adaptively tesselated proxy geometries
to warp and cut open volumetric objects. While

2



they can produce interesting deformations, the
best use of their technique is for a natural
“cutting-open-and-peeling” of an object. None of
the images contains a large local stretch (thus,
magnification) of the volume and they do not dis-
cuss the issues of homogeneous-space textures.
We can only assume that there will be significant
artifacts in the imagery of highly warp or magni-
fied regions.

Our technique differs from earlier techniques
in that we are developing a magnifying lens in the
context of large, rectilinear data set volume visu-
alization. We use hardware-texture based vol-
ume visualization. We are not as interested in
developing mathematical formulas for the defor-
mation of space by a magnification locus, as we
are in providing a “natural”, intuitive magnifica-
tion lens that can render imagery very quickly
on conventional graphics hardware. We pay
particular attention to the correct generation of
homogeneous-space textures and how this af-
fects the resulting imagery.

3 Textures

3.1 Zooming with Textures

Figure 1. Zooming with textures. Axis G
shows geometric space and axis T shows tex-
ture space.

Figure 1 illustrates the concept of zooming
with textures. Zooming is accomplished by mod-
ifying the texture coordinates. The mandrill im-
age is interpreted as a texture defined over a unit
domain. In figures 1(a), 1(b), and 1(c), two dif-
ferent domains are shown: the lower-left axis
shows the geometric space G, and the upper-
right axis shows the texture space T. Figure 1(a)
shows the mandrill drawn in geometric and tex-
ture space. Figure 1(b) shows a small region and
its corresponding geometric and texture coordi-
nates. Figure 1(c) shows this region zoomed by

a factor of four by using the geometry from 1(a)
and modifying the texture coordinates.

3.2 Warped Surface Textures

(a) 3d TCs (b) 4d TCs

Figure 2. Comparing zoom operations in the
top trapezoid: Image (a) shows a zoom oper-
ation with texture coordinates (TCs) specified
in affine space. Image (b) shows a zoom oper-
ation with TCs projected into homogeneous
space.

If one wants to increase the scale of a texture,
simulating a “zoom-in” operation applied locally,
the simplest technique is to move the texture co-
ordinates toward the center of interest. However,
if different vertices of a polygon have different
zoom factors, a straight modification of texture
coordinates to affect a zoom does not work: the
hardware is only capable of a linear transforma-
tion and the zoom is not linear. Image 2(a) shows
the result - this result is clearly not desired.
Graphics hardware can only perform linear in-
terpolation of geometric, color, and texture val-
ues across a polygon. The authors are not aware
of any graphics hardware or graphics specifica-
tion that allows anything other than linear in-
terpolation. This is due to the fact that linear
forward differencing is used during rasterization
to calculate values incrementally, from pixel to
pixel, across a polygon. Hence, the directional
derivative is constant.

Our solution is based on the use of “hardware-
implemented, perspective correct textures.” This
technique, implemented in hardware, projects
texture coordinates (TCs) from affine space into
homogeneous space, iterates homogeneous tex-
ture coordinates during polygon rasterization,
and projects the TCs back into affine space for
final texture lookup.1 We note that this tech-

1The OpenGL specification defines a texture coordinate by

3



nique is a special case of projective textures and
homogeneous texture coordinates, see [12] for a
complete discussion. The center of the images in
Figure 2 is magnified by a factor of four, so the
texture coordinates associated with the vertices
of the center square of the lens are projected into
homogeneous space with weight 4. This leads to
image 2(b): we have a zoom effect, though with a
non-linear compression through the lens border.
One last step is necessary to achieve the effect
we want.

3.3 Multiple Segments

Affine Homogeneous
Lower-Left (0, 0, 0, 1) (0, 0, 0, 1)
Lower-Right (1, 0, 0, 1) (1, 0, 0, 1)
Upper-Left (.375, 1, 0, 1) (1.5, 4, 0, 4)
Upper-Right (.625, 1, 0, 1) (2.5, 4, 0, 4)

Table 1. The affine-space texture coordi-
nates of the warp trapezoid of Figure 3 pro-
jected into homogeneous space with a weight
(zoom) of four.

The last step is to tessellate a polygon into a
series of smaller polygons where the new vertices’
geometric and texture coordinates linearly inter-
polate the original polygon’s vertex’s geometric
and texture coordinates. Image set 3(a) shows
the original, un-stretched, images with the re-
gion to be warped delimited by a red trapezoid
and the green arrows showing the direction and
degree of the stretch. Each image is stretched
at the top by a factor of four, with respect to the
bottom edge, which corresponds to Q = 4. Table
1 shows the texture coordinates of the vertices of
the trapezoid in affine and homogeneous space.

Figure 3 shows one, two, four, eight, and 16
segments for two data sets: a synthetic checker
board, and a mandrill image. Column (2) is a
synthetic image. We selected it as it demon-
strates well the effects of different numbers of
segments. Column (4) is the mandrill image and
was selected to show how the algorithm affects a

four scalars, or (S, T,R,Q). Thus, affine space corresponds
to (S, T,R, 1), and to “project” this value into homogeneous
space by a “weight” Q results in (S ×Q,T ×Q,R×Q,Q). Ho-
mogeneous space is equivalent to (S, T,R,Q), and the projec-

tion to affine space is
(
S
Q
, T
Q
, R
Q
, 1
)
. When using textures of

lower dimension, the higher-order affine coordinates are ig-
nored.

known image. Column (1) shows the number of
segments used, and column (3) shows the seg-
ment boundaries. For simplicity, we refer to the
pairs of checker-board and mandrill images in
rows 3(a) to 3(f) as “image set” (a) to (f). Each
segment is the width of the original polygon and
evenly tessellates the original polygon from top
to bottom.

With one segment, see image 3(b), we obtain
the normal perspective image. With two and
four segments, see images 3(c) and 3(d), the exis-
tence of the segments is still quite obvious. With
eight and 16 segments, see images 3(e) and 3(f),
the segments disappear, and we obtain a fairly
smooth image. Typically, the lens border will be
significantly smaller than these images. How-
ever, it is useful to illustrate the effects of the
number of segments on the image.

3.4 Border Transitions

Figure 4. Border examples: warping the nor-
mal (top) region into the zoomed (bottom) re-
gion. Image (b) is simple; (c) is linear; and (d)
is cubic.

We define a magnifying lens to have three
parts, see Figure 4(a), from top to bottom: nor-
mal, warp, and zoom. Concerning images 4(b) to
4(d), the normal and zoom regions are the same.
What is different in the images is the warp re-
gion.

Image 4(b) shows a single segment. The im-
age is highly compressed near the normal-warp
border. In this region, small details can get lost,
making it difficult to navigate to them. Also, the
discontinuity across the normal-warp border is,
visually, very strong.

4



(a
)
In

it
ia

l/
O

u
tl

in
e

(d
)
4

S
eg

m
en

ts

(b
)
1

S
eg

m
en

t

(e
)
8

S
eg

m
en

ts

(c
)
2

S
eg

m
en

ts

(f
)
1
6

S
eg

m
en

ts

(1) (1)

Figure 3. Multiple Segments. The top border is stretched by a factor of four. The double-headed
arrows show segment boundaries.

Image 4(c) uses the multiple-segment tech-
nique with eight segments. The compression is
constant across the warp region. We have found,
however, that the sharp edges at the normal-
warp and warp-zoom borders can become quite
distracting when the magnification lens is moved
interactively. These sharp edges appear because
the function across the regions is piece wise lin-
ear and, thus, only C0-continuous.

Image 4(d) shows our solution to this problem:
We generate the texture and geometric coordi-
nates using a cubic Bezier curve, see [2], that
is defined to interpolate value and gradient at
the normal and zoom boundaries. This image
is composed of 16 segments. The compression is
no longer uniform: The transition from the bor-
der region to the fixed-magnification regions to
either side is much smoother. This lens seems
ideal for artifact-free zooming of an image. This
technique requires more geometry than the lin-

ear technique (image 4(c)) which can become an
issue for platforms where the CPU is the bottle-
neck.

4 Geometry

Figure 5 shows annotated square and circular
geometry examples. Letters A-C denote separate
transformation regions. Region A is the magni-
fied center of the lens (zoom); the texture coor-
dinates are simply modified as discussed in Sec-
tion 3.1; region B shows non-magnified, outer
region (normal); and region C shows the warp-
magnified region that blends (warp) region (A) to
region (B).

Image 5(a) shows the square geometry, and
image 5(b) shows the circular geometry. For
simplicity, this image shows only eight angular
segments: all other images use 32 angular seg-
ments. The square geometry has the advantage

5



(a) Square lens

(b) Circular lens

Figure 5. Local geometric transformations:
Letters A-C denote separate transformations:
A: Magnified, center region of the lens;
B: Non-magnified, outer region; C: Warp-
magnified region that blends the inner, mag-
nified, region (A) to the outer, non-magnified,
region (B).

that there is much less geometry, both to gen-
erate and to clip. However, the clipping is only
simple if the geometry is aligned with the base
data, e.g., a rectilinear data set. The significant
disadvantage of this lens geometry is its unnat-
ural appearance: the squareness, particularly at
the corners, is a distracting artifact and can in-
fluence the interpretation of an image. The cir-
cular geometry allows us to approximate a circle
(when tessellated to 32 angular segments). While
this produces significantly more geometry, which
must also be clipped, the overall visual quality
seems much better and much more natural. One
no longer sees the lens - one just sees the mag-
nification.

4.1 Bounded Lens

Figure 6 shows that the circular tessellation
for the lens does not need to be global: one
can enclose the lens geometry inside a bounding
square.

Figure 6. Circular geometry need not be
global: a lens geometry can be “embedded”
into a larger polygon (here, a square) or “sten-
cil.”

4.2 Clipping

If the lens or border is at the edge of an im-
age tile, then the lens must be clipped in im-
age/texture space, not the window. For the fol-
lowing discussion, we define the thicker lines in
images 5(a) and 5(b) to be the tile boundaries
of an image broken into 2x2 tiles. When using
the square lens basis (Figure 5) that is aligned
to the tile boundaries, clipping is very simple.
However, when using a square lens basis that is
not aligned with the tile boundaries, or when us-
ing the circular lens basis (image 5(b)), clipping
becomes much more complicated and expen-
sive. Examining the tile boundaries in image 5(b)
shows that the tile boundaries that become con-
cave. On the other hand, using the bounding-
polygon technique discussed in the last section
can significantly simplify the clipping operation
by testing the bounding polygon for intersection
with tile boundaries.

4.3 3D Geometry

Figure 7 shows how the geometry is generated
for a volume. To render a volume, one renders
a stack of textured polygons from back to front,
where the viewing direction would ideally be per-
pendicular to the planes. For this image, we
show the stack from the side to better illustrate
its structure.

Adding a magnification lens is fairly simple.
We use this terminology: the volume lens has
normal, warp, and zoom regions. The normal,
warp, and zoom regions in a plane are those re-
gions of the plane that intersect the correspond-
ing regions of the volume lens. The dashed lines

6



Figure 7. Stacking a square-lens geometry in
3D space.

in Figure 7 show the volume boundaries. The
lens is located in the front-top-left corner of the
volume. For simplicity, we show a square lens
with 16 planes intersecting the volume. When
planes do not intersect the warp or zoom regions
of the lens (i.e., the normal regions), we use a
single polygon. These are shown as solid green
lines. When planes that intersect the warp re-
gion, we blend the volume’s warp and zoom re-
gions into the plane’s warp and zoom regions.
These are shown as solid blue lines. When
planes that intersect the zoom region, we again
blend the volume’s warp and zoom regions into
the plane’s warp and zoom regions. These are
shown as solid red lines.

Planes are not warped “out of the plane.” This
approach is simpler, and any warping in the view
direction would be removed by orthographic pro-
jection. This aspect may be important for per-
spective projections, but we have not found this
to be a an issue.

5 Results

5.1 Comparisons of Geometry and Texture Basis
in 2D

Figure 8 shows examples generated with the
square and circular lenses. This figure contrasts
the simple, linear and cubic approaches. Ta-
ble 2 summarizes the rendering performance, in
frames per a second, for 2D imagery and tex-
tures. The window size is 5002 pixels, with a total

Images/Second
Onyx/ P3/ Onyx/ P3/

Basis IR GeForce IR GeForce
Baseline 456 1067

Square Circular
Simple 425 1035 380 900
Linear 390 1012 357 908
Cubic 374 987 332 907

Table 2. Rendering performance in images-
per-second for 2D imagery.

lens size of 2502 pixels, the interior lens size is ap-
proximately 1862 pixels, with a border size of 32
pixels. The square geometries have four angu-
lar segments, one for each face, and four linear
or eight cubic radial (perpendicular to angular)
segments. The circular method uses 32 angular
segments, and four linear or eight cubic radial
segments.

We used an SGI Onyx2 with four 195MHz
MIPS R10K processors (only one used) and an In-
finite Reality (IR) graphics subsystem; the second
system that we used was a PC with an 866MHz
Intel Pentium 3 processor with a GeForce2 GTS
graphics card.

The texture was loaded into texture memory
once, and then the textured geometry was ren-
dered 100 times, and the average time computed.
We have measured just the intra-frame rates,
that is, the elapsed time for rendering all tex-
tured geometry.

The row titled “Baseline” refers to an un-
zoomed image, rendered with two triangles, to
provide a maximum rendering rate. It is impor-
tant to notice that the speeds are much closer to
each other for the GeForce than for the IR - which
is probably due to processor speed: The genera-
tion of the base geometry is strictly a function of
the base processor, and the MIPS R10K/195MHz
processor is much slower than the PIII/866MHz
processor.

5.2 Comparisons of Geometry and Texture Basis
in 3D

Figures 9 and 10 show the magnification-lens
technique applied to two volumetric data sets.
Figure 9 show the effect of square vs. circular ba-
sis and linear vs. cubic basis. Figure 10 shows
the integration of the magnification lens with a

7



(1
)
S

qu
ar

e
(2

)
C

ir
cu

la
r

(a) Simple (b) Linear (c) Cubic

Figure 8. Zoom comparisons: Square/Circular and Simple/Linear/Cubic. Square-Linear is the sim-
plest to process; Circular-Cubic produces the best quality; and Square-Cubic and Linear-Circular are
shown for completeness.

Skull
Baseline 5.9
Square, Simple 4.8
Square, Linear 4.6
Square, Cubic 4.4
Circular, Simple 4.3
Circular, Linear 3.9
Circular, Cubic 3.6

Table 3. Rendering performance in frames-
per-second for skull data set (Figure 9).

clipping plane.
Table 3 summarizes the performance for the

skull data set, shown in Figure 9. For the lenses
used in Figure 9, the linear basis uses four ra-
dial segments while cubic basis uses eight radial
segments; the circular basis use 16 angular seg-
ments. The texture was loaded to texture mem-

ory once, and then the textured geometry ren-
dered several times, and the average time com-
puted. We have measured just the intra-frame
rates, that is, the elapsed time for rendering all
textured geometry. These time are measured on
an Onyx2 with InfiniteReality graphics with one
Raster Manager. This test was not done on the
GeForce, as our algorithm uses only 3D textures,
and the GeForce2 does not support 3D textures.

6 Conclusions and Future Work

We have presented an algorithm for perform-
ing a magnification-lens technique for volume vi-
sualization. We use homogeneous texture coor-
dinates and special geometries to implement a
magnifying glass to provide a user with the abil-
ity to zoom in on small regions of a very large
data set, while providing a smooth transition
to un-zoomed regions. This technique is quite

8



(a) Original, (b) Square lens,
no lens or warping linear warping

(c) Circular lens, (d) Circular lens,
linear warping cubic warping

Figure 9. Skull data set rendered with a lens
located in the right orbit.

effective for zooming into large data sets, pro-
vided that the system used for rendering is not
generally compute-bound (in contrast to fill-rate
bound). When a clipping plane is added, we have
a very powerful technique for examining small
details of a very large data set.

We plan to apply this method to our mul-
tiresolution volume visualization system [8, 7, 6].
However, a significant hurdle is the efficient clip-
ping of the lens against individual tiles. If the
thick lines in Figures 5(a) and 5(b) delimit tile
(individual texture) boundaries, hardware-based
clipping becomes very difficult.

A software technique that clips based on tex-
ture coordinates might work, but then efficiency
becomes a concern. Second, new graphics cards
(e.g., Nvidia’s GeForce3) allow dependent texture
look-ups: One could implement the schemes
discussed here by defining an intermediate tex-
ture that performs the warping. This would
vastly reduce the amount of geometry required.
Third, blending between two images, or data
sets, through the warp region will be necessary
because the normal and zoom regions typically
use different images, one being a higher resolu-
tion version of the other. We also would have to

(a) (b)

(c) (d)

Figure 10. Clipped CT data set. Image (a)
shows the original, undistorted head; (b)
shows the head with clipping plane expos-
ing the nasal passages; (c) shows the head
with a circular-cubic lens; and (d) shows the
head with clipping plane and magnification,
exposing and enlarging the nasal passages.

extend this method to warp hierarchies that can
blend between several levels of resolution.

Acknowledgements

This document was prepared as an account
of work sponsored by an agency of the United
States Government. Neither the United States
Government nor the University of California nor
any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, complete-
ness, or usefulness of any information, appa-
ratus, product, or process disclosed, or repre-
sents that its use would not infringe privately
owned rights. Reference herein to any specific
commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the
United States Government or the University of
California. The views and opinions of authors ex-

9



pressed herein do not necessarily state or reflect
those of the United States Government or the
University of California, and shall not be used for
advertising or product endorsement purposes.

This work was supported by the National Sci-
ence Foundation under contracts ACI 9624034
(CAREER Award), through the Large Scien-
tific and Software Data Set Visualization (LSS-
DSV) program under contract ACI 9982251, and
through the National Partnership for Advanced
Computational Infrastructure (NPACI); the Office
of Naval Research under contract N00014-97-1-
0222; the Army Research Office under contract
ARO 36598-MA-RIP; the NASA Ames Research
Center through an NRA award under contract
NAG2-1216; the Lawrence Livermore National
Laboratory under ASCI ASAP Level-2 Memoran-
dum Agreement B347878 and under Memoran-
dum Agreement B503159; the Lawrence Berke-
ley National Laboratory; the Los Alamos National
Laboratory; and the North Atlantic Treaty Or-
ganization (NATO) under contract CRG.971628.
We also acknowledge the support of ALSTOM
Schilling Robotics and SGI. We thank the mem-
bers of the Visualization and Graphics Research
Group at the Center for Image Processing and
Integrated Computing (CIPIC) at the University
of California, Davis, and the members of the
Data Analysis and Exploration thrust of the Cen-
ter for Applied Scientific Computing (CASC) at
Lawrence Livermore National Laboratory.

References

[1] Eric A. Bier, Maureen C. Stone, Ken Pier,
William Buxton, and Tony DeRose. Tool-
glass and Magic Lenses: The See-through
Interface. In SIGGRAPH ’93, volume 27,
pages 73–80, August 1993.

[2] Gerald Farin. Curves and Surfaces for Com-
puter Aided Geometric Design. fourth edi-
tion, Academic Press, Boston, 1997.

[3] T. Alan Keahey. The Generalized Detail-In-
Context Problem. In IEEE Information Visu-
alization 1998, pages 44–51. IEEE, 1998.

[4] T. Alan Keahey. Visualization of High-
dimensional clusters using Nonlinear Mag-
nification. In Visual Data Exploration and
Analysis VI - Proceedings of the SPIE, pages
228–235, 27–28 January 1999.

[5] Yair Kurzion and Roni Yagel. Interac-
tive Space Deformation with Hardware-
Assisted Rendering. IEEE CG&A, 17(5):66–
77, September/October 1997.

[6] Eric C. LaMar, Mark A. Duchaineau,
Bernd Hamann, and Kenneth I. Joy.
Multiresolution Techniques for Interactive
Texturing-based Rendering of Arbitrarily
Oriented Cutting-Planes. In Data Visual-
ization 2000, pages 105–114. EUROGRAPH-
ICS/IEEE, 29–30 May 2000.

[7] Eric C. LaMar, Bernd Hamann, and Ken-
neth I. Joy. Multiresolution Techniques for
Interactive Hardware Texturing-based Vol-
ume Visualization. In Visual Data Explo-
ration and Analysis, pages 365–374. SPIE,
January 2000.

[8] Eric C. LaMar, Kenneth I. Joy, and Bernd
Hamann. Multi-Resolution techniques for
Interactive Hardware Texturing-based Vol-
ume Visualization. In IEEE Visualization
’99, pages 355–361, 25-29 October 1999.

[9] Uwe Rauschenbach and Heidrun Schu-
mann. Demand-driven image transmission
with levels of detail and regions of inter-
est. Computers and Graphics, 23(6):857–
866, December 1999.

[10] Manojit Sarkar and Marc H. Brown. Graph-
ical Fisheye Views of Graphs. Technical
Report 84, Digital Equipment Corporation,
Systems Research Centre, 17 March 1992.

[11] Manojit Sarkar, S. Snibbe, Oren J. Tversky,
and Steven P. Reiss. Stretching the Rubber
Sheet: A Metaphor for Viewing Large Lay-
outs on Small Screens. Technical Report
CS-93-39, Dept. of CS, Brown University,
September 1993.

[12] Mark Segal, Carl Korobkin, Rolf van Widen-
felt, Jim Foran, and Paul Haeberli. Fast
Shadows and Lighting Effects Using Texture
Mapping. In ACM Siggraph ’92, volume 26,
pages 249–252, 26–31 July 1992.

[13] Colin Ware and Marlon Lewis. The DragMag
Image Magnifier. In ACM CHI ’95, volume 2,
pages 407–408, 1995.

10


