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ABSTRACT

Lung pleura is a reference structure for the identification of
histological characteristics for the recognition of a patholog-
ical interstitial lung disease (ILD) pattern. When a pattern is
found, it is important to know whether it is close to the pleura
to determine its specific type and severity. This manual pro-
cess is tedious and laborious for the pathologist. Automat-
ing this task is important for a complete computed-system-
assisted ILD diagnostic process. We introduce “RadPleura”
a framework for pleura classification of histopathological im-
ages using a radiomics-based approach. Our framework per-
forms image pre-processing, region-of-interest segmentation,
and extraction of a radiomic-signature suited for ILD classi-
fication. To evaluate a radiomic-signature, we classify it into
pleura and non-pleura, using two classifiers, a Support Vector
Machine (SVM) and Gradient-boosted Decision Tree (GBD).
Our experiments are promising, producing F-scores of 92%
(SVM) and 91% (GBD). We also created a dataset of lung
histopathology images with respective ground truth for pleura
classification. To the best of our knowledge, this study is the
first published attempt to explore and develop a radiomic sig-
nature for pleura classification. The methods have been inte-
grated into the RadPleura framework developed.

Index Terms— Interstitial lung disease, Lung pleura,
Histopathology, Radiomics, Machine learning

1. INTRODUCTION

Interstitial Lung Disease (ILD) belongs to a large group of
different diseases related to architecture distortion and forms
of pulmonary fibrosis [1]. The determination of histopatho-
logical patterns via Surgical Lung Biopsy (SLB) is crucial to
reveal diagnostic clues. When specific patterns are found, it
is important to measure their distance to the pleura. Thus, one
routine task performed by pathologists is to identify the pleura
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and determine its distance to the findings, as these measure-
ments could indicate the disease stage and also help to clas-
sify it in a specific ILD etiology [2, 3]. We note that, differ-
ently from other medical imaging methods e.g., CT or MRI,
there are no standard views (axial or coronal) for an SLB,
which could support image analysis. Currently, there does
not exist a single software tool or a method that aids special-
ists when analyzing an SLB for ILD diagnosis. Specialists
must use many tools, for different parts of the analysis, such
as ImageJ, QuPath, Cell Profiler, among others, that provide
medical image processing algorithms, mainly for image pre-
processing[4, 5, 6]. However, none of them aids when con-
cerned with finding the lung pleura. Due to the lack of related
work, we cannot provide a comparison against them.

Identifying the pleura serves as a reference to understand
what is altered in the interstitium. The pleura is the unique
region of the sampled tissue that does not move, i.e., it is al-
ways a boundary. Thus, the pleura region is the only guide
for specialists. Fig. 1 shows an example of an SLB segment,
showing pleural and non-pleural boundaries.

Fig. 1: Lung pleura in the green square and non-pleura in the blue
square. Pleura boundaries are smoother and more regular than non-
pleural boundaries.

To classify boundary regions as pleura or non-pleura, we
introduce RadPleura, a radiomics-based approach using tex-



ture extractors for measuring the roughness heterogeneity of
the pleura. The Radiomics approach was designed to maxi-
mize the extraction of high-dimensional features that include
first-, second-, and higher-order statistics, from medical im-
ages. Radiomics was a method applied to find signatures in
radiological data to understand tumor phenotypes [7]. Our
goal was to establish a “radiomic signature” that captures the
pleura heterogeneity in histopathology images. We included
several Gray-Level Matrix (GLM) texture descriptors as well
as those from Local Binary Patterns (LBPs). These measure-
ments are well-known for accurately capturing roughness in
surfaces [8] and texture in histology images [9]. We use these
features to train two classifiers, a Support Vector Machine
(SVM) and a Gradient-boosted Decision tree (GBD) to eval-
uate the classification properties of the radiomic signature. In
addition, we developed a method for Region-of-Interest (ROI)
segmentation, which includes a pre-processing step for noise
elimination and background segmentation. We segment the
ROI, defined as the external thick boundaries of each com-
ponent in the sample, i.e., boundaries that separate the image
background and the tissue. The main contributions of this
work are listed below, summarizing the novelty of our pro-
posed method:

• A fast and efficient ROI extraction for pleura detection
• A radiomic signature for pleura classification
• A dataset, with accurate ground truth, for lung pleura clas-

sification
• A web-based tool to aid in ILD diagnosis, includes our

framework for pleura classification

2. FRAMEWORK

A summary of our framework for lung pleura classification is
shown in Fig. 2.

2.1. Pre-processing

Histopathological images present problems, such as color ir-
regularities due to staining procedures, irregular illumination,
and many artifacts such as hand-made annotations, ink stains,
and collage-like, straight lines due to the tile-staking process
used in digitization. Fig. 2.1, shows examples of such prob-
lems.

To eliminate these problems, we apply a CIELab-based
method to segment the tissue pixels (foreground) from all
other elements, including noise and artifacts present in the
images, and, at the same time to correct intensity-related is-
sues. An important color-based feature of tissue, stained with
Hematoxylin and Eosin, is the pink-scale intensity [10]. We
can filter tissue pixels by selecting the pixels within the pink
region in the CIELab color space, i.e., the pixels should be
greater than zero for channel a and less than zero for channel
b. Some noise may remain, nevertheless, most of the noise
effects are filtered out, sufficiently for our application. All
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Fig. 2: RadPleura: (2.1) we first reduce noise and artifacts, im-
prove contrast, and convert to gray-scale (2.2). Then, we identify the
connected components (2.3), from which we segment the ROIs, i.e.,
thick boundaries (2.4). For feature extraction and classification, we
divide the pre-processed image into isotropic tiles (2.5). We extract
features from the ROIs (2.6). Finally, we classify feature vectors as
pleura or non-pleura.

non-tissue pixels are replaced by a “white” pixel. After filter-
ing out the non-desired pixels, we convert the CIELab image
to a single RGB gray-scale image. Fig. 2.2 shows the gener-
ated output of this process.

2.2. Region-of-Interest Extraction

The Lung pleura is always located on the tissue boundary that
we define as the ROI; it is a thick boundary, “a belt,” of the tis-
sue. Therefore, we detect only “external” boundaries, by first
creating a binary version of the filtered image. This becomes



a simple task since all background pixels have been set to the
same white color. We consider the image background as a
single connected component so that we can confidently con-
sider all non-background components to be part of the tissue
region, even “holes” within the tissue. To segment the back-
ground as a single component, we apply a threshold-based
region-growing algorithm (8-connected). We apply a padding
process by one white pixel so that it connects possibly isolated
background regions. This process is shown in Fig. 2.{2,3,4}.
Next, we apply an algorithm to extract thick boundaries based
on binary erosion, produces a small version of each compo-
nent preserving the original shapes. Subsequently, by over-
lapping the original size components with the smaller ones
after erosion, the non-overlapping region between them pro-
duces the expected thick boundary, shown in Fig. 2 4. We
use this thick boundary as a binary mask to define the ROI.
Feature extraction and pleura classification process can now
be done.

2.3. Feature Extraction

To extract radiomic features we divide the image into isotropic
non-overlapping tiles and extract feature vectors from the
ROI segment in each tile. The LBP and GLM features are
well-known “hand-crafted” texture descriptors with desirable
properties, that, according to the concept of radiomics and
when represented via a single 175-dimensional feature vec-
tor, should capture high-quality tissue information. We focus
on texture descriptors since the lung pleura does not have a
defined shape.

2.4. Classification and Feature Selection

We classify the feature vectors into two classes, pleura and
non-pleura, using two classifiers, i.e., an SVM and a GBD.
The goal of evaluating these classifiers is to evaluate their per-
formance and better understand the radiomic signature of lung
pleura for further improvements. Additionally, this is an im-
portant experiment since no related tool/system exists to build
on or compare with.

On the other hand, features can be redundant, irrelevant,
and/or linearly dependent. To select relevant features we ap-
ply a Sequential Floating Forward Search (SFFS) [11]. SFFS
is a heuristic greedy algorithm commonly used for histology
analysis [12] that adds features sequentially to increment the
classification score.

3. EXPERIMENTS AND RESULTS

We have evaluated our method with histopathology images of
human lungs SLB of subjects with a confirmed ILD. We have
tested the radiomic signature with two classifiers, SVM and
GBD. We have assessed each classifier with a) LBP; b) GLM;
and c) LBP with GLM.

3.1. Histopathology Dataset

We created a dataset of 318 SLBs from subjects with con-
firmed ILD (from the Department of Pathology and Forensic
Medicine, University of Sao Paulo, Ribeirao Preto, Brazil).
The SLBs were digitized using a microscope power stan-
dardization of 20x. We used an Olympus BX61 VS. micro-
scope with pixel resolutions of (110, 019 × 100, 196) and
(128, 018 × 56, 878), and physical isotropic pixel size of
(0.172µm × 0.172µm). Each scanned slice was verified by
three specialists.

To reduce sample size we re-scaled the dataset, from 20x
to 1x. We generated images of about 3k×3k pixel resolution,
which is still large. However, at this lower resolution, we
can apply our method in a practically acceptable time; about
20 seconds are needed on average for processing one image.
We performed our experiments on a Linux workstation (Intel
Core i7-2600 CPU 3.40GHz x 4 with 16GB memory).

The Ground Truth (GT) was manually created by physi-
cians specialized in pulmonary pathology. The process of
labeling consisted of painting the lung pleura using a brush
tool1. This is a highly delicate task that must be done care-
fully, since many non-tissue (background) pixels can be
wrongly labeled, even by an experienced specialist. There-
fore, to improve the labeling, we only considered as lung
pleura the painted tissue pixels and deleted painted back-
ground pixels. To perform this task, we “un-painted” the
pixels outside the ROI using the method described in Section
2.2, producing the final GT image data. Our dataset along
with the GT is freely available and can be downloaded, to
encourage more research in lung pleura classification and
computer-based histopathology analysis supporting ILD di-
agnosis. For more information, the corresponding author can
be contacted.

3.2. Local Binary Patterns

We tested the SVM and GBD using LBP for different radii,
ranging from 6 to 20, and a tile side size of 400 pixels. Radius
values above 20 pixels are unsuitable for practical application
due to the processing time required to extract the LBP pat-
terns, about 125 seconds. The best F-score obtained using
LBP was 0.87, for a radius value of 10. According to pathol-
ogists, this score is sufficient and acceptable for practical ap-
plication.

3.3. Gray-level Texture Descriptors

We used the default parameter value settings suggested in [13]
to evaluate the texture descriptors for compatibility with other
published methods. We also evaluated the influence of tile
side size, using values of 200, 300, 400, and 500 pixels. The
F-scores for the SVM and GBD were 0.88 and 0.86, respec-
tively, for a tile size of 500 pixels.

1GNU Image Manipulation Program (GIMP)



(1) GT (2) tile=200 (3) P=0.87 NP=0.84 (4) tile=500 (5) P=0.96 NP=0.96

Fig. 3: Segmentation examples with corresponding DICE value. (1) Ground Truth (GT), pleural (P) regions in green and non-pleural (NP)
regions in red; (2) colored visualization of ROIs for tile size 200 pixels; (3) SVM classification, pleural regions in green and non-pleural in
red; (4) ROIs for tile size of 500 pixels; and (5) SVM.

3.4. LBP with GLM Features

We concatenated the LBP histograms and the GLM vectors,
to define a single vector of 175 dimensions (82 LBP and 93
GLM dimensions). We analyzed the influence of tile size on
the classification score. Table 1 shows the resulting values for
F-score, precision and recall, using an LBP radius of 10 and
isotropic tiles of side sizes 200, 300, 400, and 500 pixels, for
the SVM and GBD classifiers. One sees that the combination
of LBP and GLM features produced improved classification
scores of 0.92 (SVM) and 0.91 (GBD).

classifier tile F-score precision recall

SVM

300 0.90 0.88 0.92
400 0.91 0.89 0.92
500 0.92 0.91 0.93

GDB

300 0.89 0.87 0.91
400 0.90 0.88 0.91
500 0.91 0.90 0.92

Table 1: F-score, precision, and recall values for SVM and GDB
classifiers, using LBP and GLM features (10 k-fold).

3.5. Feature Selection

We used the Sequential Floating Forward Search (SFFS) Al-
gorithm [11] to determine the number of selected features.
The SVM algorithm was based on parameter values that pro-
duced the best results when using all features, i.e., radius
value 10 and tile size 500. We sequentially applied the SFFS
algorithm, reducing the number of features by five. The min-
imal number of selected features that ensures an F-score of at
least 0.9 is 30.

3.6. Segmentation Quality Evaluation

In addition, we evaluated the segmentation quality for each
image. We computed the DICE coefficient for pleura and non-
pleura. The average coefficient values were 0.90 and 0.88,
respectively. Fig. 3 shows two example results with the re-
spective DICE coefficients.

3.7. Web Software Tool for ILD Diagnosis

We have developed a web-based tool that includes RadPleura,
in addition to other methods like automatic cell-nuclei seg-
mentation and ILD pattern ROI segmentation, see [14, 15]. It
is available here: https://ivarvb.github.io/RadPleura/.

4. CONCLUSIONS

We have introduced a method for lung pleura classification in
histopathological images. We employ the main steps of a ma-
chine learning approach: image pre-processing, background
segmentation, ROI extraction, feature extraction, classifica-
tion, and feature selection. The radiomics approach makes
possible the extraction of many meaningful texture features
to define a high-quality image signature. We used the fea-
ture vectors to evaluate two classifiers, SVM and GBD. The
obtained F-score values of 92% demonstrate that a radiomics
signature has the potential to characterize lung pleura for clas-
sification.

Furthermore, the obtained score is sufficient for practi-
cal application, i.e., the score suffices to guide pathologists in
the analysis of biopsy samples. Our approach does not de-
mand high-end computing platforms; it is possible to imple-
ment and use it on standard computers. Less than 20 seconds
are needed for processing 500× 500 tiles.

Concerning wrongly classified tiles, most of them are tiles
with ROIs of very small size, containing limited information,
most likely causing wrong classifications. Since we divide
an image into a regular grid, some tiles may include small
boundary regions. Another reason for wrong classification is
the possibility that the sampling process (laboratory process)
can cause pleural regions to lose their structure or get dam-
aged. When these cases arise, they lead to “irregular training
examples,” and, consequently, classifiers do not learn how to
classify such regions correctly. We intend to evaluate other
classifiers, including deep-learning methods, in future work.

An important contribution of our research is the provision
of the dataset for pleura classification. There is no cure for
ILD; it is not possible to treat or heal damaged tissue. With
our research and dataset, we hope to encourage more research
to develop computer-based methods for ILD analysis.
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Bruno S Faiçal, Bernd Hamann, Alexandre T Fabro, and
Agma JM Traina, “Efficient segmentation of cell nu-
clei in histopathological images,” in 2020 IEEE 33rd
International Symposium on Computer-Based Medical
Systems (CBMS). IEEE, 2020, pp. 47–52.


