Visualizing the Five-dimensional Torus Network of
the IBM Blue Gene/Q

Collin M. McCarthyT, Katherine E. Isaacs’, Abhinav Bhatele*, Peer-Timo Bremer*, Bernd Hamann®

TDepartment of Computer Science, University of California, Davis, California 95616 USA
*Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
Email: T{cmccarthy, keisaacs, bhamann} @ucdavis.edu, *{bhatele, ptbremer} @IInl.gov

[A]
B «b»
5] [le= .
o W) [
= = [1 LT ?

@ / E /I,Q
ﬁﬁ e E =~
Overview
a dd *o— dilfld 2 a— 1 Ab— di||lbra— di||d” a— bl

=go o=
o ) oo ] = EEEEE EHEEEE < EESES
EneEs | EesE (5 sEE =Es =EE
"b— clilb M o— ¢l b~ di "b— dd||[d b ol
=l

l a. Minimaps FE v- WalnlalE -~ D0EEH -~ BOBEHE |- OhEEE
E doldEEds BloeEn Bhlaegda

oo

=<

=+
[ble]

Detail

c. 4D Slices

>
NS—Iy + - i
TS /,‘[» ‘
i ‘!7“ ‘ »

3

|
x

Fig. 1: Visualization of IBM Blue Gene/Q Five-dimensional torus interconnection network using four linked views.

Abstract—Understanding the interactions between a parallel
application and the interconnection network over which it ex-
changes data is critical to optimizing performance in modern
supercomputers. However, recent supercomputing architectures
use networks that do not have natural low-dimensional repre-
sentations, making them difficult to comprehend or visualize. In
particular, high-dimensional torus networks are common and are
used in four of the top ten supercomputers and eight of the top
ten on the Graph500 list. We present a new visualization of five-
dimensional torus networks. We use four connected views depict-
ing the network at different levels of detail, allowing analysts to
observe general large-scale traffic patterns while simultaneously
viewing individual links or outliers in any specific section of the
network. We demonstrate this approach by analyzing network
traffic for a pF3D simulation running on the IBM Blue Gene/Q
architecture, and show how it is both intuitive and effective for
understanding and optimizing parallel application behavior.

I. INTRODUCTION

Massively parallel applications require many processes
running in a carefully orchestrated and efficient way to achieve
maximum performance. In particular, processes running on dif-
ferent nodes in the network typically exchange large amounts
of data which often causes performance bottlenecks. This is
explained by a number of factors such as the algorithm that

dictates the frequency and overall need for communication,
the mapping of processes onto physical nodes, the MPI calls
and their implementation, and the underlying routing algo-
rithms. The combined effects are difficult to predict making
optimization challenging. Analysts can record the number of
packets sent over each link during execution under different
conditions, and then analyze the traffic to gain more insight
into the observed performance. Visualization tools can aid
in understanding this data by providing topological context
to the variability of network usage. This context can reveal
spatial patterns, such as correlated usage among directions
of the torus, or local behavior arising from imbalanced
communication needs, which are rarely available in purely
statistics-based approaches. Existing visualizations have de-
picted interconnection networks with natural two-dimensional
(2D) or three-dimensional (3D) embeddings such as trees and
low-dimensional meshes and tori. However, newer network
topologies such as higher-dimensional tori do not have this
property, so visualizations have not been available thus far. To
help bridge this gap, we present a visualization of the five-
dimensional (5D) torus network of the IBM Blue Gene/Q.

Each node in the BG/Q has 16 cores capable of up to four
hyperthreads, for a maximum of 64 processes per node, and



each node has ten pairs of incoming and outgoing links, two
in each torus direction A, B, C, D and E. The E-direction is
constrained to be no more than two nodes wide, meaning each
node has double the bandwidth with its neighbor in the E-
direction. While our visualization tool is general in the sense
that it can be applied to any 5D torus or mesh, we utilize
the fact that the E-direction is a maximum of two nodes wide
to simplify and reduce the number of views when looking
at slices of the network traffic data. We have implemented
our visualization as a module in Boxfish [1] that provides
filtering capabilities on our metrics and enables linking with
other Boxfish modules.

II. VISUALIZATON APPROACH

Our visualization (Fig. 1) is composed of four views
ranging in level of detail from a highly aggregated overview
to a focused slice showing all elements. The minimaps view
provides an overview of possible torus projections. The hy-
perplanes view shows the full set of overviews for a chosen
projection. The 4D slices view displays individual link data
in up to five dimensions. The 3D slice view shows all nodes
and links in a single 3D subtorus. Views can be resized or
collapsed, allowing users to focus on a view of interest while
maintaining context from the other views. Metrics of interest,
e.g., number of packets, are encoded using color.

A. 2D Projection of a 3D Torus

Three of our four views use the 2D projection of the 3D
torus (Fig. 2) and minimap overview of Landge et al. [2].

Fig. 2: Correspondence between (a) the 3D visualization of a 3D
torus, (b) the 2D projection, and (c) the minimap projection.

The 2D projection regards the mesh-representation of the
3D torus as a series of nested cylinders, as shown by the dashed
lines (Fig. 2a). Each cylinder is projected into two dimen-
sions as a series of closely nested rectangles by representing
links going into the torus as diagonal links in the projection
(Fig. 2b). These maintain nesting with the other cylinders.
This representation does not suffer from occlusion but removes
approximately half of the links from the view and shortens
the diagonal links. The minimaps remove the diagonal links
of the 2D projection and aggregate the nested rectangles of a
cylinder into a single rectangle (Fig. 2c). Using this projection
we are able to take advantage of our users’ familiarity with an
existing visualization, and provide a simple but effective way
of aggregating a multi-dimensional subspace.

B. Slicing and Projecting the 5D Torus

We obtain a 3D slice of the 5D torus by taking all nodes
with the same coordinate in two of the dimensions, one of

which we always choose to be E as it is only two nodes
wide. Performing this operation for all combinations of the two
dimensions partitions the 5D torus into 3D subtori, to which
we can apply the 2D projection discussed in Section II-A. For
example, Fig. 3b shows minimaps for each 3D torus obtained
from slicing in the B- and E-directions. The two highlighted
minimaps are shown in full in the corresponding 4D slice
view (Fig. 3c). All the minimaps in the hyperplanes view are
aggregated into a single minimap in Fig. 3a.

i 2 =
v (5 &

Fig. 3: The selected minimap assigns three of the torus directions
A-D to the diagonal (1), horizontal (2), and vertical (3) directions of
the 2D projection. The remaining direction is shown as multiples (4)
in each view and drawn explicitly in the 4D slice (c). Each view has
a consistent, specific handling of the E-direction (5).

The minimap view contains twelve summary minimaps of
different projections (Fig. la). By selecting one of these, the
user chooses which projection is used in all other views — in
other words, which three of the A-, B-, C-, and D-directions
are mapped to the diagonal, horizontal and vertical directions
of the 2D projection. Selecting minimap {D,A,C} in Fig. 3a
sets D to the diagonal, A to the horizontal, and C to the vertical
links in the hyperplanes and 4D slices views (Fig. 3bc). The
remaining direction, B, extends into the third dimension in
both views. Each view takes advantage of the two-node long
E-direction, allowing us to view the 5D torus as two 4D torus
halves (Fig. 1c).

We provide two ways of representing the E direction. 4D
slices from both E=0 and E=1 can be viewed side-by-side, as
in Fig. 3c, or with an inset view where the two 4D torus halves
are nested slightly offset from one another at a +/- 65 degree
angle (Fig. 4). This approach makes horizontal, vertical, and
diagonal links appear as double-wide links, while allowing us
to show E links explicitly.

To further reduce occlusion in the 4D slice view, the user
can select which 3D tori are represented via the labels in the
hyperplanes view (Fig. 3b) or the glyphs in the minimaps view
(Section II-C). Selection of which subtorus is shown in the 3D
slice view is done similarly.

Each of the four main views serve a unique purpose.
The minimaps view aggregates all 3D tori of the specified
three dimensions, giving the user a comprehensive overview.
The hyperplanes view shows all of the 3D tori as separate
minimaps, arranged to evoke the extra dimensions and visually



i G
A N Yy

Fig. 4: Link drawing options of the 4D slice inset view: (a) All
directions, (b) fourth and fifth dimension, (c) fifth dimension only.

differentiate them from the minimaps view. This view allows
the user to easily select which 3D tori to view in more detail
in the 4D slices view, and provides a better context for what
is being shown in the remaining views. The 4D slices view
shows individual links, and allows the user to analyze links
that connect the adjacent 3D tori of the dimension set. Finally,
the 3D slice view, while showing the smallest subset of the
total network, allows for exploration of all links within the
selected 3D torus. This last view is the most widely understood
amongst our user base and also shows the nodes between the
links which can be colored with a (possibly different) metric.

C. Representing Variance in Aggregated Views

Each projection in the minimaps view is aggregated in two
dimensions. This aggregation can mask potentially interesting
distributions, as shown in Fig. 5 where the selected minimap
appears to have constant traffic but displays variations in the
hyperplanes and 4D slice views. As the minimaps are used
to gain the initial overview and navigate the 5D torus, it is
essential to be able to identify variance within them quickly.

Fig. 5: The selected minimap looks constant (green) but the corre-
sponding hyperplanes show variance in the B-direction and the 4D
slice view shows variance in the A-direction.

Under each of the minimaps we draw a glyph for each of
the 3D subtori aggregated by the minimap (Fig. 6b). These
glyphs are similar to a box-and-whisker plot, showing the
mean, standard deviation, and total spread of the mapped
metric values. By clicking on the glyph the user can turn on or
off that hyperplane in the 4D slice view, which also updates
which links are aggregated in the minimap so only selected
planes are used in the minimap construction. To provide even
more detail, we optionally depict the variance in each segment
of the minimap using circles (Fig 6a).

III. CASE STUDY

One of the greatest benefits of a topology-specific visu-
alization tool is the ability to clearly map performance data
onto physical links, and to make visible which dimensions
or specific links are being underutilized or overburdened.
Here, we use our visualization to analyze performance data

[ES] s

Global
Spread —

MR - R

= OoEEEED

Fig. 6: (a) Glyph showing the distribution of metric values for one
of the hyperplanes aggregated by a minimap. (b) Low (left) and high
(right) inter-plane variance depicted by hyperplane glyphs.

Plane
Spread

gathered from a recent study on task mapping on the IBM
Blue Gene/Q [3]. We look at mappings of pF3D [4], a laser-
plasma interaction code developed at LLNL.

In topology-aware task mapping [5], processes are placed
on hardware nodes based on the specific network topology to
reduce the overall communication time. The aim is to minimize
network congestion, a difficult task considering that messages
shared between processes must often traverse multiple hops
to reach their destination. For larger-diameter torus networks
this is even more difficult, as communication between distant
nodes places an additional burden on the shared links in-
between. Nevertheless, an intelligent task mapping can provide
significant speedups in communication time.

A significant portion of pF3D’s communication time is
spent performing ‘Alltoall’ operations which take place in the
X- and Y-directions of the 3D Cartesian domain of the physical
simulation. These are performed by sub-communicators, sub-
sets of the processes that communicate together, over which
MPI collective calls such as MPI_Alltoall take place.
In the X direction, the Alltoall is carried out by a sub-
communicator of 32 processes with fixed Y and Z domain co-
ordinates. Similarly, the Y sub-communicator is 16 processes
with fixed X and Z domain coordinates. The task mapping
aims to optimize these orthogonal sub-communicators simul-
taneously.

The first mapping we examine is the default for BG/Q,
ABCDET, where T stands for thread, with processes are filled
along T, then E, and so on. We use two threads per core and all
16 cores per node. This method assigns the maximum amount
of processes to a single node before moving on to the next one,
resulting in X sub-communicators being completely contained
on a node. The second mapping is a tiling generated using
Rubik [6], whereby each Z-plane of pF3D is mapped to a torus
tile of size ABCDET = (4, 4, 4, 4, 2, 1), meaning each process
in the plane is on a different node. Though this mapping does
not take advantage of shared memory for the X Alltoalls as
the Default does, it may make better use of bandwidth across
the network, which was shown to be beneficial on previous
architectures [6].

Fig. 7 shows time spent in MPI calls (left) and packets in
the network (right) for both mappings in a 4,096 node (131,072
process) run. This data demonstrates that the Tile mapping far
surpasses the Default mapping, reducing the total MPI time by
64% and the maximum number of packets by 66%. To explore
why we observe this behavior, we employ visualization.

First we begin with an overview using the minimaps to
compare the two mappings. Fig. 8 shows that traffic is evenly



MPI Time vs. Node Mapping
150+

Packets vs. Node Mapping

MPI Primitive £
@ S 2e+09 Data Type
~~100- I
o Send o
-E S MaxPackets
— | Barrier T 1e+09
% 50 £ AvgPackets
AllToAll S
z
0- . . 0e+00 . ;
Default Tile Default  Tile

Node Mapping Node Mapping

Fig. 7: Performance data for pF3D simulation.

distributed and generally moderate for the Tile mapping, as
indicated by the even blue color. The Default mapping shows
high utilization (orange) in the D direction and very low
utilization in all other directions. We suspect this overuse of
the D direction leads to congestion and lower performance.

i PR EP T PRy =Y FV =il FY.Fw™) oy E e V) o) Fv e
m m
= A 1]
= U W [Dj
N LR g RN W -
Al i il i i i
T vy e ey eyl O E e e Ve Ry
==l Ao (O]
i —i 4 1Ll =1

(R R
MRS A

firelC=]
Fig. 8: pF3D link usage, (a) Default vs. (b) Tile mapping.

The reason for this imbalanced use of links in the Default
mapping becomes clear when we use the highlighting and
filtering capabilities of our visualization to focus on a single
sub-communicator. The X sub-communicators are completely
on-node, resulting in no communication, so we examine a Y
sub-communicator. Fig. 9 shows the nodes and links used by
a single sub-communicator performing a Y Alltoall. The links
utilized by this sub-communicator are solely in the D and E
directions. The A, B, and C directions are not used.

EEE

s 100004
7 100008

8 100007

10 100009

Fig. 9: Single Y sub-communicator under the Default mapping. The
4D slices show that this sub-communicator occupies adjacent D links
for both E=0 and E=1. The 3D slice shows detail in the E=0 subtorus.

Fig. 10 and 11 show X and Y sub-communicators for the
Tile mapping. As the Tile mapping has no more than one
process per sub-communicator per node, we expect 32 nodes
in the X sub-communicator and 16 in the Y. The 4D slice and
3D slice views show the X sub-communicator uses the C, D,
and E directions while the Y sub-communicator uses the A
and B directions. The egalitarian use of the torus directions
results in the even use of links seen in Fig. 8.

IV. CONCLUSION

We have presented an intuitive multi-view visualization
tool for exploring performance on 5D torus networks which

Fig. 10: Single X sub-communicator under the Tile mapping. The 4D
slices show this sub-communicator occupies adjacent C and D links
for both E=0 and E=1. The 3D slice shows detail in the E=0 subtorus.

Fig. 11: Single Y sub-communicator under the Tile mapping. The 4D
slices show this sub-communicator occupies A and B links for E=0
only. The 3D slice shows all links of this sub-communicator.

captures the topological structure of the network despite the
high dimensionality. Through a case study on task mapping of
a highly scalable production simulation, we have demonstrated
the effectiveness of this design for identifying network traffic
patterns and understanding complex task layouts.

ACKNOWLEDGMENT

The authors would like to thank Nikhil Jain for providing
guidance regarding BG/Q link counter data and Todd Gamblin
for his helpful feedback. This work was performed under
the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-66100.

REFERENCES

[1] K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer, V. Pascucci, and
B. Hamann, “Abstract: Exploring performance data with Boxfish,” in
Proc. of the 2012 SC Companion, ser. SCC ’12, 2012, pp. 1380-1381.

[2] A. G. Landge, J. A. Levine, K. E. Isaacs, A. Bhatele, T. Gamblin,
M. Schulz, S. H. Langer, P-T. Bremer, and V. Pascucci, “Visualizing
network traffic to understand the performance of massively parallel
simulations,” IEEE Trans. on Vis. and Comp. Graphics (Proc. InfoVis
’12), vol. 18, no. 12, pp. 2467-2476, 2012.

[3] A. Bhatele, N. Jain, K. E. Isaacs, R. Buch, T. Gamblin, S. H. Langer,
and L. V. Kale, “Improving application performance via task mapping on
IBM Blue Gene/Q,” in Proc. of IEEE Intl. Conf. on High Performance
Computing (to appear), ser. HiPC *14, Dec. 2014.

[4] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams, “Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5,
pp- 2023-2032, 2000.

[5] A. Bhatele, “Topology Aware Task Mapping,” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Springer Verlag, 2011.

[6] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci,
M. Schulz, and C. H. Still, “Mapping applications with collectives over
sub-communicators on torus networks,” in Proc. of the ACM/IEEE Intl.
Conf. on Supercomputing (SC12), ser. SC *12, Nov. 2012.



	Introduction
	Visualizaton Approach
	2D Projection of a 3D Torus
	Slicing and Projecting the 5D Torus
	Representing Variance in Aggregated Views

	Case Study
	Conclusion
	References

