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A Local Approach for Computing
Smooth B-Spline Surfaces for
Arbitrary Quadrilateral Base
Meshes
We present a method for approximating surface data of arbitrary topology by a model of
smoothly connected B-spline surfaces. Most of the existing solutions for this problem use
constructions with limited degrees-of-freedom or they address smoothness between surfaces
in a post-processing step, often leading to undesirable surface behavior in proximity of the
boundaries. Our contribution is the design of a local method for the approximation process.
We compute a smooth B-spline surface approximation without imposing restrictions on the
topology of a quadrilateral base mesh defining the individual B-spline surfaces, the used B-
spline knot vectors, or the number of B-spline control points. Exact tangent plane continuity
can generally not be achieved for a set of B-spline surfaces for an arbitrary underlying
quadrilateral base mesh. Our method generates a set of B-spline surfaces that lead to a
nearly tangent plane continuous surface approximation and is watertight, i.e., continuous.
The presented examples demonstrate that we can generate B-spline approximations with
differences of normal vectors along shared boundary curves of less than one degree. Our
approach can also be adapted to locally utilize other approximation methods leading to
higher orders of continuity. [DOI: 10.1115/1.4051121]
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1 Introduction
Approximating large quantities of data points by a relatively

small number of parametric surfaces is an approach commonly
used to reduce data size, re-sample objects, or create a model for
simulations, analysis, or reverse engineering [1]. A widely used
type of surface for this purpose is the tensor product B-spline
surface [2]. B-splines are common in various fields, e.g., mechani-
cal and aerospace engineering, computer-aided design, and com-
puter graphics. A single B-spline surface is usually not sufficient
to represent a complex object. Therefore, it is necessary to design
a model consisting of multiple B-spline surfaces. While it is
simple to construct a watertight (C0-continuous) B-spline surface
approximation for a set of given data points, achieving higher
orders of continuity is still a challenging task. To obtain smooth
and visually pleasing models, it is desirable to generate B-spline
approximations of at least G1-continuity, i.e., approximations that
have continuous tangent planes everywhere.
This problem has been studied quite intensively, and a wealth of

literature is available on the topic. Most existing solutions produce
very good results but introduce constraints, e.g., to the order of the
B-splines or the type of knot vector [3], which defines the parame-
terization of the surface. When the approximation problem must be
tackled in a general setting, several established methods have prob-
lems, e.g., in case of large or incomplete data. A closely related task
is the conversion of a purely quadrilateral base mesh into B-splines.
Several local methods exist for constructing G1-continuously con-
nected B-spline surfaces. Control points are defined as linear com-
binations of the surrounding quad-vertices [4–6]. When using these
vertices as variables in a least-squares approximation approach, this
scheme can also be used for data approximation. However, to con-
struct the linear system of a least-squares approach, all control

points of the B-spline surfaces must be present in the equation,
i.e., locality of the original construction can no longer be utilized.
We propose a local algorithmic framework for the computation

of smooth B-spline models to approximate discrete data. Our
approach is suitable for B-splines of any order and with arbitrary
knot vectors. This allows us to construct a model with low complex-
ity surfaces defined by a small number of control points. The com-
putation of a single surface only requires the data in a small
neighborhood to be available. Due to the locality of the approach,
it is easy to handle large amounts of data and to parallelly
compute individual parts of the result. Most of the existing
methods can be localized as well with our method. We demonstrate
its viability by using a computationally more expensive approach
for approximate G1-continuity. Additional to that, we offer sugges-
tions on visualizations and error metrics to evaluate and compare
the quality of a B-spline approximation.
The entire process of computing a smooth B-spline model for

complex structures consists of several steps. For the sake of com-
pleteness, we describe the whole pipeline, although this work
focuses on the B-spline approximation step. Data can come from
many sources and the first step is to obtain a triangulated surface
mesh representing the object of interest. This mesh then gets subdi-
vided into a collection of quadrilateral cells that are parameterized
over a rectangular region. The cells of this so called quad-mesh
and their parameterization are the starting point for the actual
B-spline approximation.
The main idea of our method is to construct smooth approxima-

tions of subsets of the data. We compute initial control points where
continuity constraints cause dependencies between neighboring sur-
faces. That way, we do not need to solve a global system. First, we
construct optimal B-splines around each corner in the quad-mesh
and keep the control points necessary for smooth transitions
around that corner. With those control points fixed, we then do a
spline approximation around each boundary of the quad-mesh,
storing only the control points relevant for smooth transitions
along that edge. These steps are equivalent to defining a curve
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network with tangent information. All that is left then is to approx-
imate the interior of each cell in an optimal way. The main advan-
tage of our method is that it only requires data in local
neighborhoods, which leads to several small systems of equations
that need to be solved instead of one large global system.
We apply this method to represent isosurfaces of binary volume

images in the form of B-spline surfaces. To do so, our first step is to
apply an isosurface extraction method like Marching Cubes to these
images to obtain our initial triangulated mesh. To compensate for
the discrete nature of the data, we also apply a Laplacian smoothing
to the resulting triangulation.
In Sec. 1.1, we briefly review relevant existing approaches.

Section 2 presents the pipeline and describes the key ideas of our
method as well as quality measurements for the resulting models.
The computed results are presented in Sec. 3. In Sec. 4, we then
discuss the advantages as well as the drawbacks of our method.
Finally, we provide our conclusions in Sec. 5.

1.1 Related Work. The construction of smooth B-spline
models to approximate or interpolate discrete data is a topic that
has been well researched over the past decades. While B-splines
are fairly easy to understand and use, computing a G1-continuous
model of B-spline surfaces is not a trivial task.
Peters and Fan [3] discuss the complexity of constructing smooth

piecewise polynomial surfaces and derive essential conditions that
need to be met in order to construct a G1-connected model of
B-splines. A central point is that a G1-continuous B-spline model
of arbitrary topology with bi-cubic B-spline surfaces requires at
least two internal double knots per edge. Therefore, for a knot
vector with only single interior knots, it is not guaranteed that
there always exists an exact G1-continuous B-spline model.
However, a variety of methods exist to solve specialized

instances. Some accept certain restrictions on the data or
B-splines, others aim only for approximate G1-continuity.
Eck and Hoppe [7] provide a good overview of the overall pipe-

line to approximate point clouds with B-splines. They first obtain an
initial surface mesh that gets partitioned into a coarse quadrilateral
mesh. Then, based on an approach by Peters [8] for each cell of the
quad-mesh, they calculate the control points of 4 × 4 G1-continuous
bi-cubic and bi-quadratic Bézier patches, which can together be
expressed as a single bi-cubic B-spline surface per cell with multi-
ple interior knots.
Milroy et al. [9] present a stitching approach by defining

G1-errors as difference between normal vectors on a fixed
number of points along boundary curves and then minimizing this
term. This approach yields good results but is sensitive to the size
of the model due to the complexity of the nonlinear constraints.
Lai and Ueng [10] show that even G2-continuity can be achieved

fairly easily when simplifying the continuity constraints to colinear-
ity of derivatives along surface boundaries. Since this leads to sin-
gularities when multiple surfaces meet in one point, the method is
best suited for constructing pairs or stripes of surfaces.
According to Shi et al. [11], a construction of a G1-continuous

B-spline model with single interior knots requires at least bi-quintic
splines. For those, they provide explicit formulas for the computa-
tion of the control points. To deal with irregular corner points, they
project all outgoing tangents onto the plane defined by an averaging
normal vector.
Lin et al. [12] approximate data with bi-quintic Bézier surfaces.

They compute a global curve network and generate normal informa-
tion along those curves. Then, they compute each surface individu-
ally such that it interpolates the boundary curves and the normal
vectors along those curves to obtain G1-continuity.
Further work by Lin et al. [13] extends this approach to B-spline

surfaces. Their algorithm first defines a network of boundary
curves. Subsequently, each surface is established as a bi-cubically
blended Coons surface interpolating positions and normal vectors
along boundaries. Final B-spline surfaces are created via a
warping step that adjusts inner control points to optimally

approximate the given data while still preserving G1-continuous
transitions. The authors discuss improvements of the data process-
ing pipeline to increase overall stability and quality of the
quad-meshes.
Yoo [14] presents an approach that utilizes a global implicit

surface to generate a quad-mesh in addition to sample points that
are then interpolated by one B-spline per quad. Smoothness
between individual B-splines is obtained by also interpolating the
normal vectors of the implicit surface along the surface boundaries.
Zhao et al. [15] introduce a numerical approach for point cloud

approximation. First, they approximate the data using a set of
B-spline surfaces with no continuity constraints, even allowing dif-
ferent knot vectors. Then, the control points are adjusted by numer-
ical methods to also obtain approximately C0 and G1-continuous
transitions.
Closely related to the task of approximating data is the interpola-

tion problem, where the vertices of a given (quad-)mesh are to be
interpolated by a number of smooth surface patches. These
approaches need to deal with the same continuity constraints and
can be modified to also allow data approximation.
Hahmann et al. [4] describe a localized method to interpolate

quad-meshes by using 2 × 2 bi-cubic Bézier patches per quad.
Their algorithm consists of three steps, calculating control points
around corners and edges first to ensure G1-continuity there,
before defining the interior control points. However, this method
cannot be applied to arbitrary meshes, which is then addressed by
a more general approach by Bonneau and Hahmann [5] using a
similar idea of a localized construction to obtain 2 × 2 bi-quartic
Bézier patches per quad.
Yoshihara et al. [16] show how to make use of an interpolation

method for data approximation. They approximate the data with a
Catmull-Clark subdivision surface. The control structure is then
projected onto its limit surface to obtain a dense quad-mesh. Ver-
tices of that mesh are then interpolated using an approach by Fan
and Peters [17], which compute a model of 3 × 3 bi-cubic Bézier
patches per quad.
Fan and Peters also present an improved version of that algorithm

[6] where they construct either a single bi-cubic Bézier patch or a
B-spline surface with at most two inner double knots per quad,
depending on the valence of the surrounding vertices. This con-
struction even provides C2-continuity along regular edges, i.e.,
edges that connect vertices with valence 4.
A more formal approach to the problem of constructing smooth

splines has been proposed by Mourrain et al. [18]. They provide
a detailed analysis and in-depth theoretical background on the
dimensionality and bases of the space of smoothly connected
splines. While they look at general splines defined over arbitrary
topologies, Blidia et al. [19] provide a similarly thorough investiga-
tion of spline spaces on quad meshes with four-split elements.
Most of the above-mentioned methods can be used to generate

very good, smooth B-spline surfaces with certain restrictions, e.g.,
the spline order is often fixed and by using Bézier patches they
already define the knot vector and number of control points. Our
approach aims to provide a more general solution for data approx-
imation and we impose no restrictions on the topology of the quad-
mesh, the order of the B-splines or the used knot vectors.

2 Method
In the following, we assume that our input is given in the form of

a dense surface mesh. We only consider the vertices of that mesh for
the actual B-spline approximation, but the topological information
given by the mesh structure is relevant for the first steps in the pro-
cessing pipeline. While it is not a requirement for our method, we
use triangular meshes here.

2.1 Overall Pipeline. The goal is to create a set of B-spline
surfaces that represent our input mesh. This process consists of
several steps and there are several ways to perform each of them.
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Here, our initial surface is defined by a set of triangles. First, we
compute a partition of this mesh into quadrilateral cells, called a
quad-mesh, where each data point (i.e., vertices) of the initial
mesh gets assigned to a cell in the quad-mesh as well as to an
initial parameter value (u, v)∈ [0, 1]2. Then, we can apply our
method to compute a model of smoothly connected B-spline sur-
faces. Figure 1 illustrates that pipeline.

2.2 Quad-Mesh Generation. Regular tensor product B-spline
surfaces are defined over a rectangular parameter domain and a
single surface can only represent limited topologies. In order to
represent complex objects with B-spline surfaces, it is common
practice to subdivide these objects into rectangular regions
[7,9,11,12,14–16]. This can be done manually by using software
to draw boundary curves directly onto the surface, but it becomes
impractical for big or too complex objects of interest.
To provide a pipeline in a way that requires as little user interac-

tion as possible, we use a simple approach based on Ref. [20] where
a surface Voronoi tessellation gets computed on the mesh and then
refined such that each cell has the topology of a disk. These
arbitrary-sided Voronoi cells then get rearranged into four-sided
quadrilateral cells, called quad-cells or quads. We then assign
parameter values (ui, vi) to each data point pi within a cell via har-
monic maps. Such and other advanced implementations of mesh
parameterization methods are included in the freely available
package CGAL [21].
Note that the shape of the quad-mesh clearly has an impact on

the quality of the resulting B-splines as we briefly demonstrate in
Sec. 4.2. Depending on the application, an experienced human
user could probably design a better quad-mesh than most automatic
algorithms. Finding a good quadrilateral partitioning for arbitrary
shapes is still a challenging task. However, recently developed
algorithms, e.g., Quadriflow [22], offer a lot of versatility in
solving it.

2.3 B-Spline Approximation. We consider B-splines of
general order k and, for simplicity, assume that the parameter
domain of each surface is the unit square [0, 1]2. To avoid complicated
continuity constraints for surface transitions later, we restrict ourselves
to quadratic grids of nc×nc control points and require that the knot
vectors τ = (0, . . . , 0, τ1, . . . , τnc−k−1, 1, . . . , 1) ∈ [0, 1]nc+k+1 are
equal for all surfaces in all directions. While the inner knots can
be chosen arbitrarily, we require k+ 1 multiple knots at the begin-
ning and end of τ to get the endpoint interpolation property. We
define a B-spline tensor product surface by the following mapping:

S : [0, 1]2 → R3

S(u, v) =
∑nc
i=1

∑nc
j=1

Ni(u)Nj(v)bi,j

with control points bi,j ∈ R3 and Ni(u) :=Ni,k,τ(u) being the
ith B-spline basis functions of order k assigned to knot vector τ.
By denoting the matrix of control points as a vector
b = (b1,1, . . . , bnc,nc )

T , we can later express many terms as simple
matrix-vector products. More information about B-splines in
general can be found in the literature [2,23].

In order to construct a B-spline surface that closely approximates
a set of given data points pi, i= 1,…, it is common practice to apply
a least squares method with respect to Euclidean distance [2]. The
goal is to minimize the sum of the squared errors

ELS =
∑
i

d2i (1)

with the error di of point pi being the shortest distance between that
point and the B-spline surface S

di = min
u,v∈[0,1]

‖S(u, v) − pi‖ (2)

Calculating the error ELS is a nonlinear problem. In practice, it is
simpler to approximate it iteratively [7,24]. First, we parameterize
our data points, i.e., assign each point pi some parameter values
ui, vi. We can define the error of the approximation by

di ≈ ‖S(ui, vi) − pi‖ (3)

Using this approximation, the only unknowns in Eq. (1) are the
B-spline control points. The system is quadratic with respect to
all the unknowns and an optimal solution can be easily computed.
Once a surface S has been computed, we can find better parameter

values (u, v) for each data point by projecting them perpendicularly
onto the surface [24], improving the approximation of Eq. (2). We
can then alternate between surface construction and parameter opti-
mization until the resulting changes are sufficiently small.
To obtain smooth surfaces, we add an energy term to our minimi-

zation problem. A commonly used approach for this purpose is
based on the thin-plate-energy [7,25], describing the bending
energy of a thin plate as

ETP =
∫1
0

∫1
0

∂2

∂u2
S(u, v)

∥∥∥∥
∥∥∥∥
2

+ 2
∂2

∂u∂v
S(u, v)

∥∥∥∥
∥∥∥∥
2

+
∂2

∂v2
S(u, v)

∥∥∥∥
∥∥∥∥
2

dudv

For B-splines, it can be re-written as

ETP = bTx Mbx + bTy Mby + bTz Mbz

with bx, by, bz being the individual x, y, z components of the
B-spline control point vector and M being a matrix that only
depends on the number of control points, knot vector, and order
of the B-spline. If we intend to construct several surfaces where
these characteristics are equal, we will have to compute M only
once.
A smooth B-spline surface can be computed by minimizing

λLSELS+ λTPETP with λLS+ λTP= 1.
In practice, a single surface is usually not enough to represent

complex objects. In order to use several surfaces, we need to intro-
duce constraints to ensure continuity along the boundaries.
A watertight (i.e., C0-continuous) model can be easily obtained

by ensuring that the control points of two B-spline surfaces along
a shared boundary curve are equal. If we store the control points
of all surfaces in one vector, we can simply write the constraints
for the entire surface model as Gb= 0, with G being a sparse
matrix where each row contains a constraint of the form bi− bj= 0.
To generate a smooth model of B-spline surfaces, we also aim for

G1-continuous transitions, i.e., tangent plane continuity. Formulat-
ing these constraints analytically along the boundaries between all
surfaces leads to a large system of nonlinear equations which is
not trivial to solve. Since our proposed method reduces the size
of the problem by only looking at local neighborhoods, we
choose to use pointwise nonlinear G1-constraints here. Note that
our method can also be applied with simplified and faster con-
straints used in the approaches discussed in Sec. 1.1.
Without loss of generality, assume that two surfaces Sa and Sb

meet at Sa(1, t)= Sb(0, t), t∈ [0, 1]. Similar to Ref. [9], we define

Fig. 1 B-spline approximation pipeline. Original points are trian-
gulated to represent a surface’s geometry and topology. The tri-
angle mesh is partitioned into a quad-mesh. Finally, we compute
a B-spline surface for each quad-mesh cell.
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the G1-error along the shared boundary curve as

ra,b(t) =
na(1, t)
na(1, t)‖ ‖ −

nb(0, t)
nb(0, t)‖ ‖

∥∥∥∥
∥∥∥∥ (4)

where na and nb are the normal vectors of the two surfaces. Figure 2
provides an illustration of the G1-error at a point on the shared
boundary between two surfaces.
Since the B-spline basis functions and their derivatives are piece-

wise polynomial functions, we can expect the G1-error to be low
between two points with ra,b(t1)= ra,b(t2)= 0 as long as |t1− t2| is
sufficiently small. We are not aiming for a perfect G1-continuous
construction here, so we only set G1-constraints for discrete
points along the surface boundaries, i.e., for each pair of surfaces
that need to be joined G1-continuously, we add nG1 constraints to
our system of equations in the form of ra,b(ti)= 0. By choosing ti =
i/(nG1−1) independently of the knot vector, we ensure that these
constraints are enforced evenly along surface boundaries.
However, doing this for the global system with many B-spline sur-
faces at once would be computationally impractical. We address
this issue in Sec. 2.4.
Let Γ be the set of all index tuples (a, b) of surfaces that are sup-

posed to be joined with G1-continuity. The minimization problem
to be solved can be described as follows:

Minimize λLSELS + λTPETP

s.t. Gb = 0

ra,b(ti) = 0 ∀(a, b) ∈ Γ, i = 1, . . . , nG1

(5)

For implementation purposes, the G1-constraints can be reformu-
lated as (ra,b(ti))

2= 0, which simply removes the outer square root
introduced by taking the norm in Eq. (4).
As stated in Ref. [3], a perfect G1-continuous construction may

not always be possible in a general setting. Also, nonlinear con-
straints can be hard to handle for some numerical solvers. To com-
pensate, it is also possible to add a weight to the G1-constraints and
move them to the objective function, leading to the following for-
mulation:

Minimize λLSELS + λTPETP + λG1

∑
(a,b)∈Γ

∑nG1
i=1

ra,b(ti)

s.t. Gb = 0

(6)

To handle non-linearity introduced by the G1-constraints, we use
an implementation of sequential least-squares quadratic program-
ming (SLSQP) [26], freely available in the NLopt package [27].
This algorithm deals with nonlinear constraints. However, it does
not guarantee convergence to an optimal solution. To obtain a
“good-enough” solution, we first solve the linear system obtained
when leaving out G1-constraints. Using this C0-continuous
surface model as initial solution for the nonlinear optimization
allows the algorithm to primarily focus on adjusting the tangents

along surface boundaries. If a local minimum is reached, the
result is thus still viable.

2.4 Local Multi-Step Algorithm. The first derivatives of
B-spline surfaces along their boundaries only depend on
two rows of control points, i.e., bi,j, with one index being in
{1, 2, nc− 1, nc}. Hence, inner control points can be chosen
freely without affecting G1-continuity. We call the control points
that have an influence on the derivatives along a surface boundary
G1-relevant control points for that boundary. At corner points of a
surface where two boundaries meet, both tangents in u and v direc-
tion are defined by only three control points, i.e., the control point in
that corner as well as one control point in each direction. The first
inner control points in each corner, the so-called twist points, play
a special role. They do not have an impact on the normal vector
in the corner itself but along both boundaries in a neighborhood
around the corner; therefore, they must be chosen to ensure compat-
ibility with both neighboring surfaces, see Fig. 3. As we show in
Sec. 3, using these points alone already produces good results. If
the goal is exact G1-continuity, it will also be necessary to consider
the so-called curvature points, i.e., the second control point from
each corner on the boundary, as they are also a part the
G1-compatibility constraints discussed in Ref. [3].
The main idea of our local algorithm is similar to other

approaches [4–6,11] that construct a global result by performing
various computations in subsequent phases. Instead of computing
only individual control points in a phase, our approach computes
entire surfaces that approximate small subsets of the data. Relevant
control points of these surfaces are used in the final result, while the
rest is discarded and re-computed in the next step. The individual
phases are as follows:

(1) Corner Phase
For each corner of the quad-mesh, we compute

C0-continuously connected B-spline approximations of the
incident cells while ensuring G1-continuity around that
corner. We store the G1-relevant control points around the
corner for the final result, i.e., assume that the control
points of the surrounding B-spline surfaces are aligned
such that b0,0 is associated with the corner currently being
considered. We then keep the points b0,0, b0,1, b1,0, and
b1,1 of all these surfaces.

(2) Boundary Phase
For each boundary between any two quad-cells, we con-

struct a G1-continuous B-spline approximation of these
cells. The G1-relevant control points around the end points
of the boundary are set as the result of the last phase
(corner phase). All other control points can be chosen
freely again. We keep the G1-relevant control points along
the shared boundary for the final result.

(3) Interior Phase
For each cell of the quad-mesh, we perform a B-spline

approximation step, considering all G1-relevant control
points already known from the previous two phases. We
use the interior control points to finalize the global result.

Fig. 2 The G1-error ra,b at a point on the boundary of two
B-spline surfaces is defined as the length of the difference
vector between the unit-normal vectors ña and ñb

Fig. 3 Control points and G1-continuity. The figure shows the
control points relevant for ensuring G1-continuity of a B-spline
control mesh with 8×8 control points.
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The specific spline approximation algorithms used in the individ-
ual phases can be chosen freely. We use the objective function and
constraints from Sec. 2.3 to demonstrate the viability of this
approach. Section 1.1 provides a discussion of other viable algo-
rithms. These methods can also be used in our local framework.
To assess the quality of the resulting surface approximation,
where only approximate G1-continuity is achieved, we describe
evaluation criteria in Sec. 2.5. Our method does not restrict knot
vectors, spline order, or number of control points. However, a
minimum of 5 × 5 control points is required to avoid incompatibil-
ities during the corner phase and have available degrees-of-freedom
in the subsequent phases (Figs. 4 and 5).
We achieve approximate G1-continuity around the corners in the

first phase by numerically solving Eq. (5) or (6), using constraints of
the form ra,b(t0)= 0, with t0∈ {0, 1} being the parameter value cor-
responding to that corner for all boundaries between neighboring
surfaces Sa and Sb incident to that corner. Each control point with
index i has an impact on the interval [τi, τi+k+1). Since the twist
control points are computed during the corner phase as well, we
want to increase smoothness along the affected interval; otherwise,
it can lead to incompatibilities with the results of the next phase. We
achieve this by evenly distributing nG1 point-wise G1-constraints
along the entire interval influenced by the corner and twist points.
In addition to the G1-constraints at a corner, the surfaces are
C0-continuously connected everywhere else, i.e., the rows of
control points along shared boundaries must be identical.
When computing B-spline approximations during the boundary

phase, we again solve Eq. (5) or (6) with nG1 evenly distributed
G1-constraints along the boundary. Here, we exclude the corner
points, as they are not affected by the free control points.
A B-spline surface computed by the interior phase is the final

approximation of the corresponding quad-cell. To compute a
surface in this phase the results of the corner and boundary
phases affecting that cell are needed. Only the data of the neighbor-
ing quad-cells needs to be known at this time, see Fig. 6. This means
that the individual phases do not have to be completed for the entire

quad-mesh before starting surface computation in the final phase.
This fact makes it possible to apply this approach even when
only parts of the data can be loaded into memory.

2.5 Quality Evaluation. Depending on the application it
might suffice if the constructed B-spline model passes a visual
inspection. However, for a formal evaluation, well-defined quality
criteria are desirable.
A good error measure to evaluate a spline approximation is the

distance to the original object/surface. We define the approximation
error of each data point as the distance to the closest point on the
B-spline surface, see Eq. (2). Due to the iterative scheme described
in Sec. 2.3, we expect to find the closest surface point approxi-
mately by evaluating the B-spline at the parameter values of the
data point, i.e., by evaluating Eq. (3). To obtain the most accurate
result for evaluation purposes, we can also compute the closest
surface points by numerically solving the nonlinear Eq. (2) to
compute optimal parameter values (u, v). We measure the distances
between the B-splines and the given data points, which are the ver-
tices of the input mesh. When these data points are obtained via a
more complex pipeline, pre-processing steps can add additional
error which has to be considered separately.
To analyze the approximation error of the whole surface, we can

either use statistical measures of the individual errors or support a
qualitative analysis by plotting the error values, color-coded onto
the B-spline surfaces, see Fig. 7(a). When the goal is to smooth
out irregularities in the original data, we expect the plot to show
higher errors in these irregular regions. To understand where data
points are above or below the approximating B-splines we
compute a signed error value defined by the scalar product
between the error vector of a data point and the normal vector at
its closest point on the B-spline surface.
In order to establish a statistical measure for overall approxima-

tion quality, we compute the root mean square (RMS) error

ERMS =

����������
1
nd

∑nd
i=1

d2i

√

with nd being the total number of data points. Furthermore, we
measure the maximum error. To enable a meaningful comparison
between data sets of different sizes, we define the error as a percent-
age of the “diameter” of the data set, defined as the largest distance
between any two data points, see Refs. [7,16].
When an input mesh already exhibits undesirable geometrical

behavior, e.g., extensive variation of normal vectors of the triangles
resulting from an iso-surfacing method, like the Marching Cubes
method, these effects have an impact on statistical quality measures
and color plots. Since these effects are usually a by-product of an
earlier step in the data processing pipeline, they generally do not

Fig. 4 Phases of control point computation. The individual
images high-light the control points used in subsequent phases.

Fig. 5 Final B-spline control meshes. The figure shows the con-
tributions of control points produced by the three phases.

Fig. 6 To construct a B-spline surface that approximates the
data of one cell (green), only the data of neighboring cells is
needed (blue) (Color version online.)
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reflect the proper geometry of an original object. A good spline
approximation scheme eliminates or greatly reduces such undesir-
able irregularities, but, numerically, this smoothing effect impacts
error computation. Ultimately, a user must interpret quantitative
error values and compare results with the input.
In addition to the actual approximation error, we consider

smoothness in the form of tangent plane continuity. In a surface
model composed of B-spline surfaces with non-degenerate control
points and knot vectors, the only regions where discontinuities in
first derivatives can occur are along the boundary curves between
individual surfaces. Since an exact G1-continuous model cannot
always be constructed in a general setting [3], we must define a
meaningful measurement to evaluate smoothness along boundary
curves. Based on Eq. (4), we consider the normal vectors of two
adjacent surfaces along their shared boundary curve. We define
the G1-error as the angle between these vectors. These values are
computed along all surface boundaries. The result is then color-
coded and visualized on the surface enabling an interactive visual
assessment of the result, see Fig. 7(b).
To calculate meaningful measures that summarize theG1-error of

the entire model via a single number, we compute the average
G1-error obtained by integrating the G1-error of the entire surface
model and dividing it by the total length of all boundary curves.
Let Ca,b(t) be the shared boundary curve between B-spline surfaces
Sa and Sb. Since Ca,b(t) is usually not parameterized by arc length,
the parameter interval [0, 1] can get distorted in R3. Therefore,
simply computing a G1-error in the parameter domain by using
the integral

�1
0ra,b(t) dt does not generally yield an acceptable

result for the error along the curve. Hence, we integrate along the
curve in R3. We formally extend the definition of ra,b(t) to the 3D
setting by defining ra,b(Ca,b(t)) := ra,b(t). We can reformulate the
integral along a curve parameterized over [0, 1] using�
Ca,b

g(Ca,b) ds =
�1
0ra,b(Ca,b(t))‖Ċa,b(t)‖ dt. To normalize the result,

we divide by the length of all boundary curves

L =
∑

(a,b)∈Γ
�1
0‖Ċ(t)‖ dt. The average G1-error of the system can

be defined as

EG1 =
1
L

∑
(a,b)∈Γ

∫1
0
ra,b(t) Ċa,b(t)

∥∥ ∥∥ dt
As an upper error bound, we also compute the maximum G1-error
among all points on the surface model.

3 Results
We have applied our method to several synthetic and real-world

data sets. To evaluate the quality of the resulting B-spline models,
the approximation and G1-errors are measured as described in
Sec. 2.5. The B-spline models are defined by 6 × 6 control points
per surface, and a uniform knot vector with multiple end knots,
i.e., τ = (0, 0, 0, 0, 1

3 ,
2
3 , 1, 1, 1, 1). Our experiments have shown

that the choice of λTP= 0.05 for the smoothness term leads to
good results.
We have compared our results to models that are only

C0-continuous. These models are obtained by minimizing Eq. (5)
without G1-constraints. Since no deformations are imposed by the
G1-continuous transitions, we have reduced the weight of the
smoothness term to λTP= 0.01.
We have also compared our method to the G1-exact construction

by Fan and Peters [6]. Their approach derives the positions of
control points as linear combinations of the vertices of a given quad-
mesh. Using these vertices as variables, the global system (5) is
used to define a minimization problem, without constraints, to
find an optimal solution. Due to the restrictions imposed by exact
G1-continuity, we use the required minimal number of 8 × 8
control points per B-spline surface and define the knot vector as
τ = (0, 0, 0, 0, 1

3 ,
1
3 ,

2
3 ,

2
3 , 1, 1, 1, 1). Since the resulting surface

Fig. 7 Error visualization. Error values mapped onto the surface support a qualitative evalu-
ation of an approximation: (a) approximation error shows surface areas above or below orig-
inal data and (b) G1-error shows how much normal vectors differ on surface boundaries.

Table 1 Approximation and G1-error values for test data sets of a C0-continuous approximation method (left), our method (middle),
and a G1-continuous method (right)

C0-method Our method G1-method

Approx. error [%] G1-error [deg] Approx. error [%] G1-error [deg] Approx. error [%]

Object RMS Max Avg Max RMS Max Avg Max RMS Max

Sphere 0.004 0.025 0.522 2.305 0.006 0.032 0.006 0.048 0.048 0.359
Cube 0.092 1.330 3.795 83.955 0.154 1.883 0.009 0.112 1.050 6.176
Spring 0.013 0.110 3.132 30.640 0.015 0.127 0.007 0.108 0.219 1.191
Torus 0.006 0.046 1.271 9.482 0.008 0.055 0.005 0.059 0.074 0.418
As. Torus 0.007 0.074 2.786 11.181 0.005 0.034 0.005 0.091 0.060 0.399
Tanglecube 0.007 0.080 3.436 21.076 0.007 0.077 0.011 0.207 0.168 1.306
Stone 0.041 0.737 7.000 84.278 0.066 0.891 0.007 0.099 0.430 2.445
Fibers 0.002 0.018 5.133 31.278 0.001 0.031 0.016 0.292 0.024 0.361
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model is constructed to beG1-continuous, we measure only approx-
imation error.
Table 1 provides the values of the quality measures of our algo-

rithm and the two reference methods.
We obtained the initial mesh by using the Marching Cubes algo-

rithm to extract isosurfaces from given binary 3D volume images. A
Laplacian smoothing operation was applied to the mesh to compen-
sate for discretization effects and artifacts resulting from the piece-
wise linear interpolation underlying the Marching Cubes method.
We tested our method for several synthetically generated models
with different geometry and topology and two real-world,
application-driven data sets. The first real-world data set is a
stone particle used in composite materials. It has simple topology,
and we are mainly interested in the geometry of its surface. The
second real-world data set consists of two steel fibers found in

fiber-reinforced concrete. The fibers’ surfaces are quite smooth,
and we are primarily interested in overall shape and connectivity
of objects. Both data sets were given as 3D images, generated via
scanning the objects with micro-computed tomography (Fraunhofer
ITWM). Figures 8–10 show the initial meshes, our resulting
B-spline approximations (including the subdivisions into individual
surfaces), and color plots visualizing approximation error.

4 Discussion
The results provided in Table 1 show that our method provides a

good trade-off between an accurate reconstruction of the data and
tangent plane continuity along shared boundaries. Approximation
error values compare well to those of the models with only

Fig. 8 Sphere (top), cube (middle), and spring (bottom). These examples share a simple topological situation. However, their
geometrical complexity varies. The sphere has constant curvature while the cube consists of several flat surfaces. The spring
consists of regions of strongly varying curvature. Errors are highest close to edges and regions of changing curvature.
Our method was designed to construct a smooth surface model and it consequently smoothes sharp edges: (a) triangle
mesh (753,774 vertices), (b) B-spline model (130 surfaces), (c) approximation error, (d) triangle mesh (48,600 vertices),
(e) B-splinemodel (60 surfaces), (f) approximation error, (g) trianglemesh (861,858 vertices), (h) B-splinemodel (538 surfaces),
and (i) approximation error.
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C0-continuity. Our comparison also shows that even though the
G1-continuous models consist of more control points, satisfying
the restrictions needed for exact G1-continuity severely limits the
available degrees-of-freedom when approximating a dense set of
points. As a consequence, the RMS error is about a factor of 10
higher than that of our method.
Reconstructing the cube model (Fig. 8(d )) shows how sharp

edges become smooth corners in the B-spline model. The existence
of such features in the B-spline model violates the definition of
G1-continuity. However, when the boundaries of the quad-mesh
align with edges of the object, our approach can be modified to
omit the G1-constraints in these locations and reconstruct these fea-
tures while still producing a smooth model everywhere else.

4.1 Complexity. When computing control points in a local
neighborhood around corners and boundaries of the quad-mesh,
we compute B-spline approximations for all incident quad-cells,
even though only a subset of the control points is contributing to
the final result. The benefit of this approach becomes evident
when considering the computational complexity of the algorithm.

Assume that t(n) describes the computational cost needed to
perform a G1-continuous approximation with n B-spline surfaces.
Let V, E, F be the number of corners (vertices), boundaries
(edges), and cells (faces) of the quad-mesh.
In the quad-meshes we obtained in our experimental tests, no

corner had a valence above 8. In theory that number could be
reduced even more by applying optimization algorithms to generate
a more even distribution of valence values. Let nv be the highest
valence of any corner in the quad-mesh. The largest systems that
has to be solved during the B-spline computation consists of at
most nv surfaces, i.e., the computational cost for the first phase is at
most V · t(nv).
During the boundary phase, we consider only pairs of neighbor-

ing quad-cells. Assuming we ignore potential speed-up
resulting from having already a number of fixed control points
from the first phase, the computational cost of the boundary phase
is E · t(2).
Finally, in the interior phase, we treat everyG1-relevant vertex as a

constant. We must find a solution for only (nc− 4)2 unknown control
points. To provide a more intuitive upper bound of our method, we
assume that the computational cost of the final phase is F · t(1).

Fig. 9 Torus (top), asymmetric torus (middle), and tanglecube (bottom). Even with increasing topological complexity, our
method still produces high-quality results. Errors are highest in regions where structures transition from strong to weak
surface bending: (a) triangle mesh (426,224 vertices), (b) B-spline model (180 surfaces), (c) approximation error, (d) triangle
mesh (151,954 vertices), (e) B-spline model (248 surfaces), (f) approximation error, (g) triangle mesh (383,718 vertices),
(h) B-spline model (452 surfaces), and (i) approximation error.
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This leads to a total computational cost of at most V · t(nv)+E ·
t(2)+F · t(1). Solving a global system would have a cost of t(F ).
If it were possible to define a system that scales linearly, i.e.,
t(F)=F · t(1), it would be computationally cheaper to solve the
system globally. Unfortunately, to our knowledge, such an
approach does not exist yet. Usually, t(n) is at least in
Ω(n log n) or worse. We note that the same argument also holds
for memory requirements. The total amount of memory required
to represent the systems of equations for several small systems
is by far less than the amount required for a global system.
Besides having a lower runtime and memory complexity, our

local approach can also make use of parallel computing. In practice,
this means that we could speed up the computation at the cost of

higher memory requirements, allowing the system to adapt its per-
formance to the available hardware.

4.2 Impact and Limitations of the Quad-Mesh. We have
demonstrated the viability and robustness of our method by using
quad-meshes that do not align with geometric features. However,
the error visualizations indicate that the quality of the approxima-
tion depends on the quadrilateral partition of the data. Strong varia-
tions in curvature or multiple fine details within a single surface lead
to a higher approximation error. This behavior suggests that a par-
tition with a limited amount of surface complexity per cell is
desirable.
Figure 11 provides a comparison between an automatically gen-

erated quad-mesh and one that has been manually constructed. In
both cases, each B-spline surface is defined by 6 × 6 control
points. The manually constructed quad-mesh is designed in such
a way that individual surfaces only contain curvature situations
that can be handled easily. Even though the automatically generated
quad-mesh has a higher number of surfaces, the quality of the
B-spline approximation is still worse than the approximation
based on the manually created quad-mesh.
Manually defining quad-meshes becomes impractical for large or

complex objects. In this situation, an automatic solution is neces-
sary. However, while our approximation algorithm works locally,
established methods to compute quad-meshes work globally.
Further research is necessary to deal with cases where additional
restrictions arise, e.g., limited memory or incomplete data.

5 Conclusions and Future Work
We have presented an algorithm for surface approximation that

works locally. Given a point set and a quadrilateral base mesh, our

Fig. 10 Stone (top) and fibers (bottom). Sharp geometrical features are smoothed out. The overall approximation error is still
low, and important shape characteristics are well-preserved: (a) triangle mesh (240,468 vertices), (b) B-spline model (234 sur-
faces), (c) approximation error, (d) triangle mesh (439,464 vertices), (e) B-spline model (718 surfaces), and (f) approximation
error.

Fig. 11 Impact of quad-mesh: (a) quad-mesh created automati-
cally and (b) quad-mesh generatedmanually with cell boundaries
in principal curvature directions. (a) No. of quads: 258, RMS
error: 0.037%, Max error: 0.262%, Avg G1: 0.014deg, Max G1:
0.171deg; (b) No. of quads: 224, RMS error: 0.033%, Max error:
0.205%, Avg G1: 0.005deg, Max G1: 0.079deg.
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algorithm computes a smooth B-spline surface model that closely
approximates the input. The direct comparison shows that it offers
a good trade-off between a purely C0-continuous algorithm and an
exact G1-continuous scheme. We have demonstrated our method
using nonlinear point-wise constraints. The approximation specific
steps and continuity constraints can be exchanged by other algo-
rithms. Our main contribution is the local approach, making it possi-
ble to locally use other approximationmethods that usually could not
be applied to point data due to data size or memory limitation.
In addition, we have discussed ways to analyze the resulting

B-spline approximation quality. We can compute statistical mea-
sures and use them to trigger a re-computation with different param-
eters to improve an approximation. The colored surface quality
visualizations are effective to ensure that desired approximation
quality criteria are met.
Due to the locality of the algorithm, not all data need to be present

in memory simultaneously. For each B-spline surface to be com-
puted, the method only requires the data of the incident cells
defined by the underlying quad-mesh topology. Thus, it is possible
to merge computation results produced during different phases,
enabling the processing of data sub-sets prior to progressing to
other data parts and thereby minimizing expensive I/O operations.
Our algorithm does not rely on a specific choice of continuity

constraints. Any G1-continuous method can be used for the local
surface construction. Our method utilizes B-splines of any order,
and it could be generalized to arbitrary dimensions. Knot vectors
do not necessarily need to consist of uniformly spaced knot
values. However, for a quad-mesh of general topology, they must
be equal for all B-spline surfaces and all dimensions.
While our research was motivated by constructingG1-continuous

surfaces, our method can be adapted to higher-order continuity.
Locally, any Gk-continuous approximation approach can be
employed. For Gk-continuity we must consider k rows/columns of
Gk-relevant control points between individual processing phases.
We plan to extend the local nature of our approach to the entire

processing pipeline, including data acquisition, initial meshing, and
quad-mesh generation. Our method could then be applied to large
data sets even on computers with limited memory. Further, it
would open up the possibility to process parts of objects individu-
ally. For instance, when scanning a complex object too large to
be scanned instantaneously, we could process individual, partial
scans and still generate the desired overall approximation. In addi-
tion, non-uniform rational B-splines (NURBS), see Ref. [23],
provide additional degrees of freedom, i.e., control point weights,
making it possible to improve overall approximation quality.
Wealso aim tocombine local andglobal approaches.Currently,we

compute G1-relevant control points for all quad-cell corners and
boundaries before we generate the inner control points. In a hybrid
approach, it is possible to treat a cluster of cells together, computing
G1-relevant control points along the boundaryof the cluster and inter-
nally enforcingcontinuity constraintswith aglobalmethod.Thechal-
lenge is to establish the cluster size based on determining when the
computational cost of a global approach is still lower than that of a
local approach. For this purpose, it will be necessary to explore com-
putational complexity in much more detail, see Sec. 4.1.
Our processing pipeline can be executed in a fully automatic way.

At this point, it is not yet optimal and additional expert knowledge
can greatly improve approximation quality. As discussed in
Sec. 2.2, a user can guide the generation of a high-quality quad-mesh.
While many approaches for this purpose exist, there is still a lack of
methods that compute high-quality quad-meshes suitable specifically
for B-spline constructions. Especially for objects with edges, it is
desirable to have cell boundaries lying on existing sharp edges and
enforce tangent plane discontinuities in these locations.
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