
A General Approach for Similarity-based Linear Projections
Using a Genetic Algorithm

James A. Mouradian, Bernd Hamann and René Rosenbaum

Institute for Data Analysis and Visualization (IDAV), Department of Computer Science,
University of California, Davis, Davis, CA 95616-8562, U.S.A.

ABSTRACT

A widely applicable approach to visualizing properties of high-dimensional data is to view the data as a linear
projection into two- or three-dimensional space. However, developing an appropriate linear projection is often
difficult. Information can be lost during the projection process, and many linear projection methods only apply
to a narrow range of qualities the data may exhibit. We propose a general-purpose genetic algorithm to develop
linear projections of high-dimensional data sets which preserve a specified quality of the data set as much as
possible. The obtained results show that the algorithm converges quickly and reliably for a variety of different
data sets.

Keywords: High-dimensional data, linear projections, genetic algorithms, data visualization

1. INTRODUCTION

Many application domains produce data of far more than three dimensions. Due to the limitations of human
cognition, visually representing such data is an ongoing challenge. Many different approaches have already been
developed, but most are designed for low-dimensional data and are of limited use for data of higher dimensionality.
A reasonable approach to deal with truly high-dimensional data are projections. The development of effective and
intuitively understandable projections of high-dimensional data, however, remains a visualization challenge. The
general strategy of projections is to transform data from high-dimensional space into a two- or three-dimensional
display space. Due to the fact that this significantly reduces the number of dimensions of the data, information
loss is the main problem associated with this technique. Projection methods are well-studied and have proven
useful in a variety of application domains. They are usually designed to preserve pre-defined aspects of the data,
such as variance of a high-dimensional point cloud data set to keep information loss small. These aspects can
be quickly calculated by incrementally constraining the search space, leading to low complexity in finding an
appropriate solution. A typical example is the well-known principle component analysis (PCA). However, such
projection methods are highly specialized. More general features about the data, such as similarity in the relative
point distances, are lost. Projections preserving such features cannot be simply determined as their computation
is usually NP-hard.

In this paper, we propose a general-purpose projection method for the determination of an appropriate
projection for nearly arbitrary similarity metrics using a genetic algorithm (GA). The algorithm probabilistically
produces linear projections which attempt to accurately preserve the chosen metric of a given data set. By
evaluating potential projection matrices for the data, the algorithm repeatedly refines estimates of what an
optimal similarity-preserving projection might be. The algorithm terminates when it reaches a stability threshold,
at which point candidate projection matrices do not appear to better preserve the similarity in question than
their predecessors. The algorithm is not dependent on a specific similarity and can be applied to a broad variety
of metrics. The results obtained for artificial and real-world data sets demonstrate that this approach is fast
and reliable. It is able to produce projections that preserve the desired characteristics of the data, including
similarities which require high complexity to assess.

Further author information: (Send correspondence to James Mouradian)
James Mouradian: E-mail: jamouradian@ucdavis.edu
Bernd Hamann: E-mail: hamann@cs.ucdavis.edu
René Rosenbaum: E-mail: rosenbaum@ieee.org

In Section 2, we briefly survey research related to our method, and delineate our method from existing
strategies. Section 3 is concerned with the introduction of the main strategy of our method and potential
similarity metrics. The results obtained from applying the proposed strategy to a variety of different data sets
are shown in Section 4. Section 5 is dedicated to show options for an appropriate parameterization of the
algorithm. We conclude in Section 6 that by the use of our approach, projections preserving general features of
a high-dimensional data set can be determined quickly and with high accuracy.

2. RELATED RESEARCH

One way to visualize high-dimensional point cloud data is to project the data from the high-dimensional space
into low-dimensional space, usually two- or three-dimensional display space. Such a dimension reduction can
be viewed as a data smoothing, simplification, or compression operation, since information is lost and existing
structure in the data may not be preserved. Thus, projections must be carefully chosen.

Research has been conducted in a variety of fields to address this problem. Solutions can be classified into
two main approaches: linear and non-linear projections.

Linear projections, also often referred to as geometric transformations, apply a static transformation
matrix to all the data points. For projections into two-dimensional space, a projection plane is positioned in the
data space. Several methods have been studied, such as principal1 and independent component analysis,2 linear
discriminant analysis and the related Fisher’s linear discriminant, or multidimensional scaling,3 among others.4

Even methods resulting in more than one projection have been proposed.5 The methods are well-understood,
robust and easy to implement.

An appropriate position and orientation of the projection plane depends on the respective objectives of the
visualization and the projection approach. The low complexity of the mentioned strategies stems from incre-
mentally narrowing the search space by excluding dimensions or parts of the data that are of less interest for the
respective visualization goal. A typical example is the widely applied PCA and its numerous extensions6, 7 which
project correlated dimensions into less correlated dimensions based on the variance in individual dimensions.
Dimension reduction is achieved by eliminating the components with low variance. Variance, as well as the new
space, are determined by the eigenvectors of the covariance matrix, which can be quickly calculated.

Although many linear projection methods are appropriate when the visualization goals are known in advance,
the produced projections are often too specific to provide a global, unbiased overview of the data. Less specific
views are often useful in exploratory visualization where data properties may be unknown, especially before
data analysis. The calculation of projections which preserve arbitrary features or provide general overviews
of the data, however, can be extremely complex and time-consuming. The approach introduced in this paper
determines such projections in a very short amount of time. Due to its modularity, it can also be used as a part
of a larger framework, such as.8 In order to cope with obscurity of projected data and to provide a solution for
multiple view systems,9 the introduced method supports many different similarity metrics.

Non-linear projections, such as Sammons plots,10 self-organizing maps (SOM),11 and non-linear multidi-
mensional scaling (MDS),12 are not limited by a static transformation matrix and thus are more flexible for data
presentation. However, such projections might unrecognizably deform the geometry of the original data and thus
are not guaranteed to reliably show its genuine properties. The Sammons plot attempts to preserve the distance
between data points in both the original and projection spaces, and therefore has a similar objective to parts of
the introduced method. However, its calculation is difficult and time-consuming, and its individual data point
projections are difficult to interpret because they are non-linear. Due to our focus on linear projections, we do
not present a comparison with non-linear projection methods.

Genetic algorithms (GA), typically viewed as a part of evolutionary computation, are mostly used to handle
and provide stochastic solutions for NP-hard problems (e.g.,13). Their eligibility for dimension reduction has
already been shown for applications spreading from data base research14 and pattern classification,15 to domain-
specific problems in the sciences.16 Recent research also indicates that they can be applied to visualization, such
as the calculation of SOMs17 and the support of specific data features, such as clusters,18 as well as training
projection algorithms.19 To our knowledge, no research has been published toward using GAs to deal with the
complexity in calculating of projections for nearly arbitrary similarity metrics as proposed in this paper.

(a) Two projections of a three-dimensional cube stored
in four-dimensional space

(b) Two projections of a fourteen-dimensional data set

Figure 1. Comparing linear projections: In both sub-figure (a) and sub-figure (b), a high-dimensional data set is
projected into three-dimensional space in two ways. In each pair, the left image is a linear projection with basis vectors
distributed as equiangularly as possible in attempt to preserve qualities of the data space itself, while the right image is a
data-dependent projection which attempts to preserve the pairwise distances between data points. In the data-dependent
projections, the cube in sub-figure (a) is not distorted, and three clusters become apparent in sub-figure (b).

3. DETERMINING APPROPRIATE PROJECTIONS USING A GENETIC
ALGORITHM

We introduce a fast, general-purpose GA in order to linearly project n-dimensional data into an m-dimensional
projection space (m ! n) while best preserving a single measurable quality of the data. After introducing the
main strategy of our approach, we provide different potential similarity metrics that can serve to assess projection
quality.

3.1 The Main Strategy

Our proposed strategy to find an appropriate projection is to incrementally refine the accuracy of an approximated
projection using a GA. Projections which most accurately preserve the selected quality of the data are used as
input to generate new projections in attempt to converge toward a global optimum. We measure quality using
the projected data points, as the data points and not the data space itself should be meaningfully projected to
better gain insight about the data (see Figure 1).

Many different similarity metrics can be used (see Section 3.3), and the data can be projected from and into
an arbitrary number of dimensions. For simplicity of example, but without loss of generality to the algorithm,
we try to preserve pairwise Euclidean distances between data points in high-dimensional space, and project the
data into three-dimensional space for the remainder of this section.

Figure 2. Genetic algorithm flowchart: Initialize generates a large number of individual solution estimates (individu-
als). Incremental refinement is achieved by Selecting the best individuals, performing Crossover of the selected individuals
to produce new ones, and Mutating these new individuals to explore the search space. An appropriate projection is con-
sidered to be found when the refinement process no longer yields significant improvement.

A potential solution, or individual, is a set of n three-dimensional basis vectors, where n is the number of
dimensions in the data set. We specify individuals in spherical coordinates using the three attributes, (R, θ, φ).

3.2 The Individual Steps

The outline of the algorithm and the individual stages are illustrated in Figure 2.

Initialize The initialization step of the algorithm randomly generates the initial population or genera-
tion of individuals to uniformly sample the search space of solutions, and makes any initial computations that
future stages of the algorithm may rely on. The individuals in the presented approach are sets of n three-
dimensional basis vectors, each consisting of a randomly chosen R, Θ, and Φ. In order to have a reference value
against which to compare prospective projections, the relative distances of all point pairs in high-dimensional
space are computed and stored. Let these quantities make up the n-dimensional quality Qn−space.

Select The selection stage of the algorithm determines which individuals are the best, or most fit, of
the current population, in order to guide the production of future generations of individuals in attempt to
converge toward the global optimum. In the presented approach, for each candidate projection, the relative
distances of all point pairs in the projected three-dimensional space, Q3−space, are calculated. Individuals who
have a high fitness, or whose Q3−space values closely resemble Qn−space, are chosen as the selection used to
generate individuals for the next iteration of the algorithm.

Crossover During the crossover step, the most fit individuals of the current generation are combined
with one another repeatedly to form the generation for the next iteration of the algorithm. Combining indi-
viduals based on fitness alone without consideration for their other properties permits early exploration of the
solution space rather than early exploitation of a few possible solutions. In our approach, largely different pro-
jection matrices which evaluate to similar fitness values can be combined, resulting in radically new projection
matrices which have not been considered. This reduces the probability of the algorithm “getting stuck” in local
optima. We propose to pseudorandomly pick pairs of parents from the selection to each generate two offspring
according to one of the two schemes illustrated in Figure 3. Any number of crossover methods are possible, but
strategies taking into account the specifics of linear projections have potential to yield to better results.

Mutate After each individual is generated during the crossover step, it undergoes random mutation, where
attributes of each individual are randomly altered. Favorable mutations increase the fitness of individuals over
each iteration, probabilistically leading to an overall near-optimum projection. The combination of selection and
mutation is largely responsible for the algorithm’s convergence toward a global optimum.

Mutation can be performed by randomly flipping individuals’ bits, or by randomly adjusting realized at-
tributes of individuals. For our application, mutating individuals by flipping random bits could be detrimental
to the algorithm’s performance. This is due to the fact that our individuals consist of a series of a very small
range of values: 0 < R ≤ 1, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. Randomly flipping bits in floating-point numbers
is likely to generate values which are out of these narrow bounds, and additional computation steps would be
required to either normalize or discard and regenerate meaningless values. Moreover, by having the ability to

Figure 3. Crossover is the process by which new individuals are created. A pair of individuals, i.e., sets of basis vectors
(left), can be split into contiguous halves and recombined (middle), or alternating halves and recombined (right) to form
two new offspring.

reduce the magnitude of mutations over time, we allow individuals to remain optimal during later stages of the
algorithm, rather than spontaneously leaping toward sub-optimal configurations.

Our proposed mutation method is as follows: Randomly select an attribute A from R, θ, φ from each basis
vector according to a probability of mutation Pmut. The attribute A with maximal magnitude Amax is adjusted
by a random value Randm, bounded by a maximum magnitude, Mutmax, as follows:

Anext ← Aprevious + Randm, −(Mutmax × Amax) ≤ Randm ≤ +(Mutmax × Amax).

We decrease the Pmut and Mutmax geometrically every few iterations to allow the algorithm to refine its adjust-
ments to individuals over time.

Halt After generating sufficiently fit individuals, the algorithm terminates, and reports its most fit in-
dividual. For threshold problems, the algorithm terminates when an individual reaches a threshold fitness; for
problems with known optima, the algorithm can terminate within some tolerance of a known optimum. However,
the problem we concern ourselves with is neither a threshold problem, nor a problem where the fitness value of
a global optimum projection can always be known in advance. As such, we set the algorithm to terminate when
its progress in developing fit projections has reached the point of diminishing returns, or when further iterations
of the algorithm do not appear to significantly further increase the fitness of individuals.

We define our termination condition as follows: Let I be the number of recent iterations to consider, J be
the total number of iterations, Fk be the average increase of the fitness of the fittest individual in the last k
iterations, and C be a non-negative constant less than one. The algorithm terminates when FI ≤ CFJ .

3.3 Potential Similarity Metrics

The proposed method is modular and widely independent of the metric used to determine the quality of the
projection. Thus, it has a broad range of possible application domains. The only requirement for a potential
quality metric is that it must be comparable in order to judge whether a configuration provides better quality
than another. A certain quality metric can be introduced by adapting only the “select” stage of the algorithm.

Examples for similarity metrics that can be employed by our methods include common approaches, such as the
Euclidian distance,20, 21 the dot product between the points’ high-dimensional position vectors,22 Mahalanobis,23

Minkowski,21 and Manhattan distance21 as well as novel approaches, such as the one proposed by.24 A good
source for the selection of an meaningful metric for data exploration is given by.25

Our method supports global as well as detail metrics. Global metrics lead to a single, “global” quantitative
value that is used for comparison, e.g., the accumulated relative distances between pairs of points in our space.
For instance, a global Euclidean distance metric could be described as

∑

1 − (di,j

∆i,j
)2 for each pair of points i

and j, where di,j is the distance between the points in three-dimensional space, and ∆i,j is the distance between
the points in n-dimensional space. An optimal projection minimizes this sum. A global dot product metric
might minimize

∑

1 − (ψi•ψj

xi•xj
)2 where ψk is a point’s position vector in n-dimensional space, and xk is a point’s

position vector in three-dimensional space.

Detail metrics consider individual point-to-point similarities. They result in multiple quantitative values that
can be used for comparison, such as by the maximal dissimilarity or by the percentage of points with strong
similarities. For instance, a detail Euclidean distance metric might be the standard deviation of the quantities
∆i,j

di,j
, where di,j is the distance between the points in three-dimensional space and ∆i,j is the distance between

the points in n-dimensional space. An optimum projection minimizes this standard deviation. Such a projection
may incur a greater accumulated sum measured using a global metric, but the distance between each individual
pair of points is projected more proportionately to other pairs of points in the projection.

4. RESULTS

We experimented with and tested our introduced method with a variety of data sets, parameters, and termination
conditions. As GAs are highly dependent on the used parameters, meaningful values we obtained from our
experiments are summarized below. We present visual results we obtained from “proof-of-concept” data sets
showing the plausibility of the method and real-world data sets underpinning its usefulness for a broad variety
of potential application domains.

We implemented and tested three similarity metrics: the global and detail Euclidean distance metrics and
the global dot product metric discussed in Section 3.3.

4.1 Used Parameters

After experimenting with various parameters, we found that the algorithm converged quickly with largely repro-
ducible results. Across all the data sets covered in this section we applied the following parameter values:

< Initial Population > 1000

< Selection Size > 40

< Generation Size > 200

< Pmut > begins at 0.20 and decreases geometrically by a factor of 0.9 every 15 iterations
< Mutmax > begins at 0.20 and decreases geometrically by a factor of 0.9 every 15 iterations
< I > 25

< C > 0.01

4.2 Proof of Concept

Genetic algorithms unfortunately offer no guarantee of convergence or correctness. We therefore evaluated the
algorithm using some basic test data to ensure its plausibility before applying it to real-world data sets.

Basic Spatial Accuracy In order to check for visual plausibility, we projected the corners of a three-
dimensional cube given in four-dimensional space into three-dimensional space (see Figure 1). An optimal
projection of the four-dimensional data space would equiangularly distribute the four basis vectors in three-
dimensional space, distorting the cube, while the algorithm produces a more accurate representation of the cube
using both the global and local Euclidean distance metrics.

Preserving Qualities across Similar Data Sets We also used two artificial data sets of similar struc-
ture but different dimensionality to evaluate that the algorithm would produce similar projections for both.

Figure 4. Similar projections: A 6- (left) and 14-dimensional data set (center) projected by our algorithm with the
global Euclidean distance metric in three space. As shown for the 6-dimensional data set, the revealed structure in the
data is comparable to the outcome of a high-accuracy brute-force algorithm (right). For these data sets, all three of our
metrics yielded vastly similar projections.

Figure 5. The “cars” data set projected using the global Euclidean distance metric: The projection determined by the
proposed method reveals clusters in the data, visible as striations across the main body of data points.

Each of the data sets is known to have three clusters and various linear correlations. The projections of each
data set exhibit similar structures with regard to the global topology and local structure of the individual clusters
(see Figure 4, left and center).

Consistence with Another Approach Projections obtained by the application of our approach with the
global Euclidean distance metric were also compared to a high-resolution, brute-force strategy which exhaustively
compares various projections to find a near-global-optimum solution. The visual results shown in Figure 4, left
and right, are comparable and mainly differ in orientation and the scaling. This leads to the conclusion that our
approach also found a near-optimum solution for the considered data set.

Consistence with Various Metrics Similarity metrics which resemble one another should at least sometimes
produce projections which resemble one another. We were able to demonstrate that both the global and local
Euclidean distance metrics provided similar projections across several test data sets, as well as several real-world
data sets. The global dot product metric produced comparable results, but leads to a different final projection
due to the focus on another quality within the data (see Figures 5 and 6). Performing this verification ensured
that each of the different error metrics was plausible after verifying the correctness of the global Euclidean
distance metric.

4.3 Real-world data

We applied the algorithm to the well-known cars data set,26 studied extensively by.27 It contains 398 instances
and exhibits various clusters in the ten-dimensional data space as well as in its lower-dimensional sub-spaces.
We project 391 instances of eight dimensions of the data. The introduced method clearly separates three out of
five clusters in data space (see Figure 5) using the Euclidean distance metric; other clusters are not as clearly
separated, but a grouping can still be noticed. The use of the dot product metric leads to a much better
representation, emphasizing the importance of using multiple similarity metrics (see Figure 6).

Figure 6. The “cars” data set projected using the global dot product metric: The projection determined using the
global dot product metric greatly pronounces the five distinct clusters of the data set and also highlights the outliers of
the individual clusters.

We also tested the algorithm on a large scale data set made available by our collaborators from the Air
Quality Research Center (AQRC) at UC Davis. The data represent the size and chemical composition of air
particles assessed by mass spectrometric techniques. The data is high-dimensional (255 dimensions) and consists
of 210,000 individual particles. It was collected from two distinct sample sites, whereby data from one site
was obtained in two different sampling campaigns. Our approach, as well as some existing strategies, failed to
calculate meaningful projections due to the high number of data points. In order to reduce the data volume
we sampled the data uniformly to one thousand data points, and considering the thirteen most important of
the dimensions, selected with PCA, were able to calculate a meaningful projection in roughly twenty minutes.
The two main clusters are highly apparent, and are associated with the two sampling sites from which the data
was taken. The stretched cluster on the left reveals the inhomogeneous character of the data resulting from
the repeated sampling of only one of the sample sites. The extremely repetitive computations performed by
the algorithm make it infeasible to use the algorithm on the original data set in its entirey; however, sampling
techniques appears viable, as similar findings have also been published for this data set.28

Figure 7. Air quality data: The introduced strategy for the incremental determination of a projection leads to the
expected two clusters corresponding to the two different sample sites.

4.4 Convergence: Efficiency and Accuracy

The time complexity of each iteration of the algorithm is linear in the generation size, and dependent on the
similarity metric supplied as well as the data set provided. For instance, in the case of the Euclidean distance
metric, a naive algorithm is linear in the number of dimension: O(d) to compute the distance between two points
in d−space, and quadratic in the number of data points (O(n2)) to examine all

(

n
2

)

pairs of points in the data
set. A user can achieve increased performance by storing pre-computed data and using optimized formulae.

When compared to the brute-force approach mentioned in Section 4.2, the method we present is orders of
magnitude faster. The presented method is able to produce projections of six-dimensional, one-thousand-point
data sets in approximately eleven minutes, while the mentioned brute-force method requires approximately forty-
six hours to process a comparable volume of data. However, due to the algorithm’s quadratic complexity and
many repeated computations during incremental refining of the projection, its scalability, especially with regard
to the number of data points given, remains limited.

The parameters introduced in Section 3 and discussed in the following section influence the running time
and accuracy of the algorithm. We provide figures focusing on performance data of the algorithm as a function
of one or more highly influential parameters in order to provide a general overview of trends of the algorithm’s
behavior.

Number of Points Number of Dimensions Approximate Algorithm Run Time
100 14 30 Seconds
391 8 1 Minute
1000 6 11 Minutes
1000 13 20 Minutes

Figure 8. Run time: Approximate algorithm run times for the data sets discussed in Sections 4.2 and 4.3. Each estimate
was developed by averaging a minimum of three runs on a 2-GHz CPU with the parameters used in Section 4.1.

Figure 9. Selection and Population Sizes: Increasing selection size too greatly decreases final outcome fitness against
a population size of 20 (left). Increasing selection size too greatly decreases final outcome fitness against a population
size of 40 (center). Increasing population size significantly has an impact on the final outcome of the algorithm (right).

5. PARAMETER VARIATION

Varying the algorithm’s parameters usually have a tremendous influence on GAs. In our case, it strongly
influences convergence. In this section we present a general overview of how various parameters can influence
the algorithm in different stages. We briefly discuss the most important parameters introduced in Section 3.2,
as each has definite impact on the algorithm’s outcome.

Unless otherwise stated, the following data was collected with parameter values as stated in Section 4.1.
Each data point was taken as an average of 10 executions of the algorithm applied to a proof-of-concept data set
consisting of 100 data points in 14 dimensions.

5.1 Number of Individuals: Population and Selection

Population size and selection size must be sufficiently large for the algorithm to produce appropriate results.
When the selection size is too close to the population size, the algorithm does not converge toward near-optimum
solutions. However, when the ratio is appropriate, a relatively small selection and population can be used to find
near-optimal projections. Large initial populations do not appear to affect the algorithm’s convergence.

Figure 10. Crossover: the final outcome fitness of individuals produced by the algorithm without crossover (blue) are
quite similar to those produced by the algorithm with the interleaved crossover (orange) method (left). The algorithm
may execute many fewer iterations when using the interleaved crossover method as opposed to when copying individuals
from the prior generation directly (right). Blue data points not visible are eclipsed by orange data points. For these
results, 20 iterations were considered for the termination condition.

Figure 11. Mutation: Geometrically decreasing the chance of mutation decreases the overall outcome of the algorithm
(left). Geometrically decreasing the maximum magnitude of mutation too greatly is detrimental to the overall outcome
of the algorithm (center). As long as the mutation chance decreases a few times through the course of the algorithm, the
overall outcome of the algorithm improves (right).

5.2 Crossover

The effects of utilizing crossover rather than copying individuals from the prior generation directly are subtle. For
large population and selection sizes, crossover may greatly reduce the number of iterations the algorithm executes
before terminating without decreasing the final outcome individual of the algorithm (See: Figure 10). Neither of
the crossover methods introduced in 3.2 appeared to strongly impact the final outcome of the algorithm under
these conditions. For small population and selection sizes, crossover appears to positively impact the average
fitness of the final selected individual produced by the algorithm; however, the average fitness of the final selected
individual given such small population and selection sizes may be sub-optimal. It is worth noting that for some
data sets, the space of possible linear projections may not be complex enough to necessitate crossover to find a
global optimal projection. This especially applies data sets with only a few local optima.

5.3 Mutation

We vary the attributes R, Θ, Φ of basis vectors in three-dimensional space according to a specified probability,
within some maximum magnitude which decreases over time. Insufficient mutation chance and magnitude are
detrimental to the algorithm’s convergence.

Figure 12. Termination: Requiring a small (0.01-0.10) FI has a positive impact on final outcome fitness (left). Increasing
FI too greatly decreases overall outcome fitness. Considering an insufficient number of iterations in the termination
condition decreases overall outcome fitness (right).

5.4 Termination Conditions

The algorithm terminates when the most recent I iterations fail to keep up some minimum fraction C of the
average increase in fitness of the most fit individual across all iterations. With decreased C, the algorithm
plateaus further before terminating. With increased I, the algorithm is required to continue iterating into a
plateau, potentially even to an unnecessary extent. When C becomes sufficiently large, I will force the algorithm
to run until it has reached its minimum number of iterations, after which point it will stop.

6. CONCLUSIONS

The presented genetic algorithm, which determines appropriate linear projections to preserve arbitrarily selected
qualities of point cloud data given in high-dimensional space, converges effectively and reliably across a variety
of data sets. The results obtained using three different underlying quality metrics are plausible, and with the
two presented global metrics, are confirmed against a brute-force approach to produce near-optimal projections.
Due to the algorithm’s modularity, a user can supply the algorithm with a broad variety of similarity metrics
with minimal effort, making the algorithm viable for users who are performing initial exploratory visualization
of a data set that can be effectively sampled. The run-time behavior of our method is magnitudes lower than
related brute-force strategies; our presented approach is able to process six-dimensional, one-thousand-point
data sets in approximately eleven minutes, as opposed to the forty-six hours required by a related brute-force
approach. However, appropriate parameter value choices must be made in order to obtain high-quality results.
The properties of the introduced approach make it a very useful method to show specific trends and qualities in
high-dimensional data which are difficult to present with existing projection and visualization techniques.

Future research is open in several areas. The fitness evaluation function is responsible for a large portion
of the algorithm’s run time and is embarrassingly parallel. Since fitness evaluation is the same process in each
individual, running the algorithm on parallel GPU architectures should decrease runtime significantly. Further
investigation regarding the significance of crossover may lead to the ability to reliably decrease the population
and selection sizes used in the algorithm, as well as the algorithm’s run time. We will also perform research
directed at visualizing contextual information about the structural decomposition of the data by using clustering
techniques. Such contextual information can serve to disambiguate or clarify the relationships between points in
high-dimensional space, despite loss incurred by low-dimensional projections, and increase the scalability of the
algorithm to larger data sets.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of Deutsche Forschungsgemeinschaft (DFG) for partially funding
this research (#RO3755/1-1). The authors also acknowledge Oliver Kreylos for providing the Vrui framework
as well as Jeremy Bottleson for developing the InfoVisualizer software both used within our research.

REFERENCES

[1] Jolliffe, I. T., [Principal component analysis], Springer, New York (2002).
[2] Hyvärinen, A., Karhunen, J., and Oja, E., [Independent Component Analysis], Wiley, New York (2001).
[3] Cox, T. F. and Cox, M., [Multidimensional Scaling, Second Edition], Chapman and Hall/CRC, 2 ed. (2000).
[4] Fodor, I., “A survey of dimension reduction techniques,” LLNL technical report (June 2002).
[5] Friedman, J. and Tukey, J., “A projection pursuit algorithm for exploratory data analysis,” Computers,

IEEE Transactions on C-23(9), 881–890 (1974).
[6] Koren, Y. and Carmel, L., “Robust linear dimensionality reduction,” IEEE Transactions on Visualization

and Computer Graphics 10(4), 459–470 (2004).
[7] Dhillon, I. S., Modha, D. S., and Spangler, W. S., “Visualizing class structure of multidimensional data,”

Proceedings of the 30th symposium on the interface: Computing science and statistics 30, 488–493 (1998).
[8] Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R., “iPCA: an interactive system for

PCA-based visual analytics,” Computer Graphics Forum 28(3), 767–774 (2009).

[9] Friedman, J. H., “Exploratory projection pursuit,” Journal of the American Statistical Association 82,
249–266 (Mar. 1987).

[10] Sammon, J. W., “A nonlinear mapping for data structure analysis,” IEEE Transactions on Computers 18(5),
401–409 (1969).

[11] Kohonen, T., “The self-organizing map,” Proceedings of the IEEE 78(9), 1464–1480 (1990).
[12] Venna, J. and Kaski, S., “Local multidimensional scaling,” Neural Networks 19, 889–899 (July 2006).
[13] Colorni, A., Dorigo, M., and Maniezzo, V., “Genetic algorithms and highly constrained problems: The

Time-Table case,” (1990).
[14] Golmah, V. and Parvizian, J., “Visualization and the understanding of multidimensional data using genetic

algorithms : Case study of load patterns of electricity customers,” International Journal of Database Theory
and Application 3, 41–56 (Dec. 2010).

[15] Panicker, R. C. and Puthusserypady, S., “A constrained genetic algorithm for efficient dimensionality re-
duction for pattern classification,” in [Computational Intelligence and Security, International Conference
on], 0, 424–427, IEEE Computer Society, Los Alamitos, CA, USA (2007).

[16] Guo, Q., Wu, W., Questier, F., Massart, D. L., Boucon, C., and de Jong, S., “Sequential projection pursuit
using genetic algorithms for data mining of analytical data,” Analytical Chemistry 72, 2846–2855 (July
2000).

[17] Romero, G., Guervós, J. J. M., Valdivieso, P. A. C., Castellano, J. G., and Arenas, M. G., “Genetic
algorithm visualization using self-organizing maps,” in [Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature], PPSN VII, 442–451, Springer-Verlag, London, UK, UK (2002).

[18] McCaffrey, J. D., “An empirical study of categorical dataset visualization using a simulated bee colony
clustering algorithm,” in [Proceedings of the 5th International Symposium on Advances in Visual Computing:
Part I], ISVC ’09, 179–188, Springer-Verlag, Berlin, Heidelberg (2009).

[19] Raymer, M., Punch, W., Goodman, E., Kuhn, L., and Jain, A., “Dimensionality reduction using genetic
algorithms,” Evolutionary Computation, IEEE Transactions on 4(2), 164–171 (2000).

[20] Ogras, Ümit Y. and Ferhatosmanoglu, H., “Dimensionality reduction using magnitude and shape approxima-
tions,” in [Proceedings of the twelfth international conference on Information and knowledge management],
CIKM ’03, 99–107, ACM, New York, NY, USA (2003).

[21] Bagherjeiran, A. and Eick, C. F., “Distance function learning for supervised similarity assessment,” in
[Case-Based Reasoning on Images and Signals], Perner, P., ed., 73, 91–126, Springer Berlin Heidelberg,
Berlin, Heidelberg (2008).

[22] Kim, D., Lee, K., Lee, D., and Lee, K. H., “A kernel-based subtractive clustering method,” Pattern Recog-
nition Letters 26, 879–891 (May 2005).

[23] Poranne, R., Gotsman, C., and Keren, D., “3D surface reconstruction using a generalized distance function,”
Computer Graphics Forum 29, 2479–2491 (Dec. 2010).

[24] Tejada, E., Minghim, R., and Nonato, L. G., “On improved projection techniques to support visual explo-
ration of multi-dimensional data sets,” Information Visualization 2, 218–231 (Dec. 2003).

[25] Aggarwal, C. C., “Towards systematic design of distance functions for data mining applications,” in [Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining],
KDD ’03, 9–18, ACM, New York, NY, USA (2003).

[26] UCI repository of machine learning databases, “Autos mpg,” (1983).
[27] Kandogan, E., “Visualizing multi-dimensional clusters, trends, and outliers using star coordinates,” in [Pro-

ceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining],
KDD ’01, 107–116, ACM, New York, NY, USA (2001).

[28] Engel, D., Rosenbaum, R., Hamann, B., and Hagen, H., “Structural decomposition trees,” Computer Graph-
ics Forum, EuroVis 30, 921–930 (June 2011).

