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Summary. Surface models of biomolecules have become crucially important for the
study and understanding of interaction between biomolecules and their environment.
We argue for the need for a detailed understanding of biomolecular surfaces by
describing several applications in computational and structural biology. We review
methods used to model, represent, characterize, and visualize biomolecular surfaces
focusing on the role that geometry and topology play in identifying features on
the surface. These methods enable the development of efficient computational and
visualization tools for studying the function of biomolecules.

1 Introduction

The molecular basis of life rests on the activity of biological macro-molecules,
including nucleic acids (DNA and RNA), carbohydrates, lipids and proteins.
Although each plays an essential role in life, nucleic acids and proteins are
central as support of the genetic information and products of this informa-
tion, respectively. A perhaps surprising finding that crystallized over the last
decades is that geometric reasoning plays a major role in our attempt to
understand the activities of these molecules. We address this connection be-
tween biology and geometry, focusing on hard sphere models of biomolecules.
In particular, we focus on the representations of biomolecular surfaces, and
their applications in computational biology.
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1.1 Significance of shape

Molecular structure or shape and chemical reactivity are highly correlated
as the latter depends on the positions of the nuclei and electrons within
the molecule. Indeed, chemists have long used three-dimensional plastic and
metal models to understand the many subtle effects of structure on reactiv-
ity and have invested in experimentally determining the structure of impor-
tant molecules. The same applies to biochemistry where structural genomics
projects are based on the premise that the structure of biomolecules implies
their function. This premise rests on a number of specific and quantifiable
correlations:

e enzymes fold into unique structures and the three-dimensional arrange-
ment of their side-chains determines their catalytic activity;

e there is theoretical evidence that the mechanisms underlying protein com-
plex formation depend mainly on the shapes of the biomolecules in-
volved [1];

e the folding rate of many small proteins correlates with a gross topological
parameter that quantifies the difference between distance in space and
along the main-chain [2, 3, 4, 5];

e there is evidence that the geometry of a protein plays a role in defining its
tolerance to mutation [6].

We note that structural biologists often refer to the ‘topology’ of a biomolecule
when they mean the ‘geometry’ or ‘shape’ of the same. A common concrete
model representing this shape is a union of balls, in which each ball corre-
sponds to an atom. Properties of the biomolecule are then expressed in terms
of properties of the union. For example, the potential active sites are detected
as cavities [7, 8, 9] and the interaction with the environment is quantified
through the surface area and/or volume of the union of balls [10, 11, 12]. In
what follows, we discuss in detail the geometric properties of the surface of
union of balls, their visualization, and their relation to the physical properties
of the biomolecules they represent.

1.2 Biomolecules

Biomolecules are usually polymers of smaller subunits, whose atomic struc-
tures are known from standard chemistry. While physics and chemistry have
provided significant insight into the structure of the atoms and their arrange-
ments in small chemical structures, the focus now is set on understanding
the structure and function of biomolecules, mainly nucleic acids and proteins.
Our presentation of these molecules follow the general dogma in biology that
states that the genetic information contained in DNA is first transcribed to
RNA molecules which are then translated into proteins.
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Fig. 1: Visualizing protein-DNA complexes. Homeodomains are small proteins
that bind to DNA and regulate gene expression. Here we show the complex of
the antennapedia homeodomain of drosophila melanogaster (fruit fly) and its DNA
binding site [13], using three different types of visualization. The structure of this
complex was determined by X-ray crystallography [13]; the coordinates are taken
from the PDB file 1AHD. The protein is shown in green, and the DNA fragments
in orange. (a) Cartoon. This representation provides a high level view of the local
organization of the protein in secondary structures, shown as idealized helices. This
view highlights the position of the binding site where the DNA sits. (b) Skeletal
model. This representation uses lines to represent bonds; atom are located at their
endpoints where the lines meet. It emphasizes the chemical nature of both molecules.
(c) Space-filling diagram. Atoms are represented as balls centered at the atoms, with
radii equal to the van der Waals radii of the atoms. This representation shows the
tight binding between the protein and the ligand, that was not obvious from the
other diagrams. Each of the representations is complementary to the others, and
usually the biochemist uses all three of them when studying a protein, alone or, as
illustrated here, in interaction with a ligand. All panels were drawn using Pymol
(http://wuw.pymol.org)

DNA

The Deoxyribo Nucleic Acid is a long polymer built from four different build-
ing blocks, the nucleotides. The sequence in which the nucleotides are arranged
contains the entire information required to describe cells and their functions.
Despite this essential role in cellular functions, DNA molecules adopt surpris-
ingly simple structures. Each nucleotide contains two parts, a backbone con-
sisting of a deoxyribose and a phosphate, and an aromatic base, of which there
are four types: adenine (A), thymine (T), guanine (G) and cytosine (C). The
nucleotides are capable of being linked together to form a long chain, called a
strand. Cells contain strands of DNA in pairs that are exact mirrors of each
other. When correctly aligned, A can pair with T, G can pair with C, and the
two strands form a double helix [14]. The geometry of this helix is surprisingly
uniform, with only small, albeit important, structural differences between re-
gions of different sequences. The order in which the nucleotides appear in one
DNA strand defines its sequence. Some stretches of the sequence contain in-
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formation that can be translated first into an RNA molecule and then into a
protein. These stretches are called genes; the ensemble of all genes of an or-
ganism constitutes its genome or genetic information. The DNA strands can
stretch for millions of nucleotides. The size of the strands vary greatly between
organisms and do not necessarily reflect differences in the complexity of the
organisms. For example, the wheat genome contains approximately 1.6 - 1019
bases, which is close to five times the size of the human genome. For a complete
list of the genomes, see http://wit.integratedgenomics.com/GOLD/ [15].

RNA

Ribo Nucleic Acid molecules are very similar to DNA, being formed as se-
quences of four types of nucleotides, namely A, G, C, and uracil (U), which
is a derivative of thymine. The sugar in the nucleotides of RNA is a ribose,
which includes an extra oxygen compared to deoxyribose. The presence of this
bulky extra oxygen prevents the formation of long and stable double helices.
The single-stranded RNA can adopt a large variety of conformations, which
remain difficult to predict based on its sequence. RNA molecules mainly serve
as templates that are used to synthesize the active molecules, namely the pro-
teins. The information needed to synthesize the RNA is read from the genes
coded by the DNA. Interestingly, RNA is considered an essential molecule in
the early steps of the origin of life. More information on the RNA world can
be found in [16].

Proteins

While all biomolecules play an important part in life, there is something spe-
cial about proteins, which are the products of the information contained in
the genes. They are the active elements of life whose chemical activities reg-
ulate all cellular activities. As a consequence, studies of their sequence and
structure occupy a central role in biology. Proteins are heteropolymer chains
of amino acids, often referred to as residues. There are twenty types of amino
acids, which share a common backbone and are distinguished by their chem-
ically diverse side-chains, which range in size from a single hydrogen atom
to large aromatic rings and can be charged or include only non-polar satu-
rated hydrocarbons. The order in which amino acids appear defines the pri-
mary sequence of the protein. In its native environment, the polypeptide chain
adopts a unique three-dimensional shape, referred to as the tertiary or na-
tive structure of the protein. In this structure, non-polar amino acids have a
tendency to re-group and form the core of the proteins, while polar amino
acids remain accessible to the solvent. The backbones are connected in se-
quence forming the protein main-chain, which frequently adopts canonical
local shapes or secondary structures, such as a-helices and (-strands. ;From
the seminal work of Anfinsen [17], we know that the sequence fully determines
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the three-dimensional structure of the protein, which itself defines its func-
tion. While the key to the decoding of the information contained in genes was
found more than fifty years ago (the genetic code), we have not yet found the
rules that relate a protein sequence to its structure [18, 19]. Our knowledge of
protein structure therefore comes from years of experimental studies, either
using X-ray crystallography or NMR spectroscopy. The first protein struc-
tures to be solved were those of hemoglobin and myoglobin [20, 21]. Currently,
there are more than 37,000 protein structures in the database of biomolecular
structures [22, 23]; see http://www.rcsb.org. More information on protein
structures can be found in protein biochemistry textbooks, such as those of
Branden and Tooze [24], and Creighton [25].

2 Visualizing Biomolecular Surfaces

The need for visualizing biomolecules is based on the early understanding
that their shape determines their function. Early crystallographers who stud-
ied proteins and nucleic acids could not rely—as it is common nowadays—on
computers and computer graphics programs for representation and analysis.
They had developed a large array of finely crafted physical models that al-
lowed them to have a feeling for these molecules. These models, usually made
out of painted wood, plastic, rubber and/or metal were designed to highlight
different properties of the molecule under study. In the space-filling models,
such as those of Corey-Pauling-Koltun (CPK) [26, 27|, atoms are represented
as spheres, whose radii are the atoms’ van der Waals radii. They provide a
volumetric representation of the biomolecules, and are useful to detect cavities
and pockets that are potential active sites. In the skeletal models, chemical
bonds are represented by rods, whose junctions define the position of the
atoms. These models were used for example by Kendrew and colleagues [20]
in their studies of myoglobin. They are useful to the chemists by highlighting
the chemical reactivity of the biomolecules and, consequently, their potential
activity. With the introduction of computer graphics to structural biology,
the principles of these models have been translated into software such that
molecules could be visualized on the computer screen. Figure 1 shows examples
of computer visualization of a protein-DNA interaction, including space-filling
and skeletal representations.

Among all geometric elements of a biomolecule, its surface is probably the
most important as it defines its interface, i.e., its region of potential interac-
tions with its environment. Here we limit ourselves to the definition of surface
within the classical representation of biomolecules as union of balls. While
other models are possible (such as a atom-based Gaussian descriptions [28],
the hard-sphere model remains the most popular. Given the atom (ball) lo-
cations, the biomolecular surface can be defined in various ways. The first
definition stated that the surface was simply the boundary of the union of
balls. This surface, called the van der Waals surface, is easily computable
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but not continuous [29]. The solvent accessible surface is the collection of
points traced by the center of a probe sphere as it rolls on the van der Waals
surface [30]. The accessible surface is equivalently defined as the boundary
of the union of balls whose radii are expanded by the probe sphere radius.
This surface is not smooth at curves where the expanded spheres meet. The
solvent excluded surface, also called the Connolly surface, is defined as the
surface traced by the front of a probe sphere [31]. This surface is continuous
in most cases but can have cusp points and self-intersections. Figure 2 illus-
trates the definition of the above mentioned surfaces. Several algorithms have
been proposed to construct analytic representations of the solvent excluded
surface [32, 33, 34] and for triangulating the surface [35, 36].

(a) (b) (©)

@e- GO

(d) (e)

Fig. 2: (a) Each atom is modeled as a hard ball. (b) The van der Waals surface is
the boundary of the union and the solvent accessible is the boundary of the union of
expanded balls. Each atom is expanded by a value equal to the radius of the probe
sphere. (c¢) The Connolly surface is traced by the front of the probe sphere. (d)
The skin surface is defined as the envelope of an infinite set of spheres. Two atoms
(outermost, dotted) define a family of spheres (dotted) obtained as the convex hull.
Shrinking each sphere in the family results in yet another family of spheres (bold).
(e) The skin surface, defined as the envelope of the shrunken family of spheres, is
smooth everywhere. The radius of the two atoms is typically enlarged beforehand
so that, upon shrinking, we get spheres whose radius equal the atom radius.

The skin surface is the envelope of families of an infinite number of evolving
spheres [37]. It satisfies many desirable mathematical properties. For exam-
ple, it is smooth everywhere and, although defined using an infinite number
of spheres, it can be described by a finite number of quadric surface regions.
Efficient algorithms have been developed recently to triangulate the skin sur-
face [38, 39]. Besides being efficient in terms of computation time, these al-
gorithms also generate watertight skin surface meshes (i.e., without cracks)
containing good quality triangles (i.e., without small angles). The good qual-
ity of triangles leads to better visualizations of the surface. Watertight models
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facilitate the application of volumetric analysis methods on the surface. For
example, the volume occupied by the molecule, volume of voids, and their
derivatives can be computed robustly given a crack-free biomolecular surface.

Multiresolution models of the mesh enables interactive visualization of
the surface. Several methods have been developed to create level-of-detail
representations of surface meshes [40, 41].

3 Significance of Biomolecular Surfaces

The activity of a biomolecule is encoded in its shape. Of all geometric proper-
ties of a molecule, its surface play an essential role as it delineates the region
covered by the protein and therefore defines its region of interactions. Char-
acterizing biomolecular surface therefore play an essential role for analyzing
and predicting biomolecular complexes, as well as for modeling the energetics
of formation of such complexes. As the surface of a molecule also defines its
interface with the solvent it bathes in, the former is crucial for understanding
solvation.

3.1 Solvent Models

The apparition of computers, and the rapid increase of their power has given
hope that theoretical methods can play a significant role in biochemistry.
Computer simulations are expected to predict molecular properties that are
inaccessible to experimental probes, as well as how these properties are af-
fected by a change in the composition of a molecular system. This has lead
to a new branch in biology that works closely with structural biology and
biochemistry, namely computational biology. Not surprisingly, an early and
still essential focus of this new field is biomolecular dynamics [42, 43]. Soluble
biomolecules adopt their stable conformation in water, and are unfolded in
the gas phase. It is therefore essential to account for water in any modeling
experiment. Molecular dynamics simulation that include a large number of
solvent molecules are the state of the art in this field, but they are inefficient
as most of the computing time is spent on updating the position of the water
molecule. It should be noted that it is not always possible to account for the
interaction with the solvent explicitly. For example, energy minimization of
a system including both a protein and water molecules would not account
for the entropy of water, which would behave like ice with respect to the
protein. An alternative is to develop an approach in which the effect of the
solvent is taken into account implicitly. In such implicit solvent models, the
effects of water on a biomolecule is included in an effective solvation potential,
W = Weiee + Wiy, in which the first term accounts for the molecule-solvent
electrostatics polarization, and the second term for the molecule-solvent van
der Waals interactions and for the formation of a cavity in the solvent.
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3.2 Electrostatics in implicit solvent models

Implicit solvent models reduce the solute solvent interactions to their mean-
field characterization, which are expressed as a function of the solute degrees
of freedom alone. They represent the solvent as a dielectric continuum that
mimics the solvent-solute interactions. Many techniques have been developed
to compute electrostatics energy in the context of dielectric continuum, in-
cluding techniques that modify the dielectric constants in Coulomb’s law,
generalized Born models, and methods based on Poisson-Boltzmann equation
(for a recent review, see [44]. A common element of all these techniques is
that they need a good definition of the interface between the protein core and
the dielectric continuum, i.e., a good definition of the surface of the protein.

3.3 Non polar effects of solvent

Whp, the non-polar effect of water on the biomolecule is sometimes referred
to as the hydrophobic effect. Biomolecules contain both hydrophilic and hy-
drophobic parts. In their folded states, the hydrophilic parts are usually at
the surface where they can interact with water, and the hydrophobic parts
are buried in the interior where they form a core (an “oil drop with a polar
coat” [45]). In order to quantify this hydrophobic effect, Lee and Richards
introduced the concept of the solvent-accessible surface [30]. They computed
the accessible areas of each atom in both the folded and extended state of a
protein, and found that the decrease in accessible area between the two states
is greater for hydrophobic than for hydrophilic atoms. These ideas were fur-
ther refined by Eisenberg and McLachlan [10], who introduced the concept of
a solvation free energy, computed as a weighted sum of the accessible areas
A; of all atoms 7 of the biomolecule:

Wnp = Z aiAi7

where «; is the atomic solvation parameter. It is not clear however which
surface area should be used to compute the solvation energy [46, 47, 48].
There is also some evidence that for small solute the hydrophobic term W,
is not proportional to the surface area [48], but rather to the solvent excluded
volume of the molecule [49]. A volume-dependent solvation term was originally
introduced by Gibson and Scheraga [50] as the hydration shell model. Within
this debate on the exact form of the solvation energy, there is however a
consensus that it depends on the geometry of the biomolecule under study.
Inclusion of W, in a molecular simulation therefore requires the calculation
of accurate surface areas and volumes. If the simulations rely on minimization,
or integrate the equations of motion, the derivatives of the solvation energy
are also needed. It should be noted that calculation of the second derivatives
are also of interest to study the normal modes of a biomolecule in a continuum
solvent.
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4 Feature-based Analysis and Visualization

To improve our understanding of a biomolecule and its functions, it is highly
desirable to visualize various of its properties over its surface. Such visualiza-
tion tools can for example help to emphasize important structural motifs and
to reveal meaningful relations between the physiochemical information and
the shape of a molecule.

One general framework for such visualization is as follows: the input molec-
ular surface is considered as a domain M, and one or more scalar functions
fi,..., fr are defined over it, where each f; : M — R is called a descriptor
function. Such functions describe various properties that may be important,
be it geometric, physiochemical, or any other type. We then visualize these
descriptor functions over M. Two key components involved here are (i) how
to design meaningful descriptor functions and (ii) how to best visualize them.
Below we briefly describe approaches in these two categories, focusing on
topological methods®.

4.1 Descriptor functions

Descriptors capturing physiochemical properties, such as the electrostatic po-
tential and the local lipophilicity, are relatively easier to develop. Below we
focus on molecular shape descriptors. In particular, most current molecu-
lar shape descriptors aim at capturing protrusions and cavities of the input
structure, given that proteins function by interacting (binding) with other
molecules, and there is a rough “lock-and-key” principle behind such bind-
ing [51] (see Figure 3 (a) for a 2D illustration).

Curvature-based descriptors

The most natural choice to describe protrusions and cavities may be curva-
tures. A large family of molecular shape descriptors are based on curvatures.
One of the most widely used one is the Connolly function [52, 53]. For any
point z € M, consider the ball B, (z) centered at x with radius =, and let
Sr(z) = 0B, () be the boundary of B,.(z), and S; the portion of S, (x) con-
tained inside the surface. The Connolly function f,. : M — R is defined as
(see Figure 3 (b) for a 2D illustration):

Area(Sy)

fr(x) .
Roughly speaking, the Connolly function can be considered as an analog of
the mean curvature within a fixed size neighborhood of each point [54]. A

5 We note that both these components are widely studied in many other fields such
as computer graphics, vision, and pattern recognition. We focus only on methods
from the field of molecular biology.
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(a) (b) (c) (d)

Fig. 3: (a) The shape of two molecules complement each other at the interface. (b) In
the 2D case, the Connolly function value is proportional to the angle spanned by the
two intersection points between the circle and the curve. (¢) p and ¢ have the same
Connolly function value, but the details within the neighborhood are different. (d)
Using a fixed neighborhood radius is unable to distinguish the two features located
at p and q.

large function value at x € M means that the surface is concave around z,
while a small one means that it is convex.

The Connolly function ignores the exact details of the surface contained
in B, (x). Hence it is insensitive to the two features pictured in Figure 3 (c).
The atomic density (AD) function [55], fo : M — R, improves the Connolly
function by taking a sequence of, say k, neighborhood balls around a point x
with increasing radii, computing (roughly) the Connolly function with respect
to each radius, and obtaining the final function value at x based on these k
Connolly function values.

The concept of curvatures for 2-manifolds is more complicated than that
of 1-manifolds — there are two principal curvatures at a given point. Several
approaches have been proposed to combine these two curvatures into a single
value to describe local surface features [56, 57, 58, 59, 60].

More global descriptors

The functions above are good at identifying points located at local protrusions
and cavities. However, they all depend on a pre-fixed value r (the neighbor-
hood size) — if r is small, then they may identify noise as important features;
while if r is too large, then they may overlook interesting features. Further-
more, it is desirable that the function value can indicate the size (importance)
of the feature that a point captures. However, none of the functions described
above can measure the size of features directly (see Figure 3 (d)).

Since binding sites usually happen within cavities, it is natural to measure
how deep a point x € M is inside a cavity directly, independent of some
neighborhood size. For example, a natural way to define such measures is as
follows [61]. Given a molecular surface M, let CH(M) be the convex hull of
M, and Cover(M) = CH(M) \ M intuitively covers the cavities of M. One can
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define f. : M — R as d(z, Cover(M)) if x ¢ CH(M), and 0 otherwise; where
d(z,X) = minyex d(z,y) is the closest Euclidean distance from x to the set
X.

Fig. 4: 2D illustrations of (a) f.(z) and the shortest collision-free distance, (b) ele-
vation function (where Elev(z) = h). (¢) A local maximum of elevation function is
associated with three more points to indicate the shape of a cave it captures.

This measure however ignores details inside cavities. A better measure
is probably by using the shortest collision-free distance from a point z to
the convex cover (Figure 4 (a)), which intuitively measures how difficult it
is for a solvent molecule to access a specific point on the molecular surface.
However, the computation of collision-free shortest path is expensive, and we
are not aware of any result applying it to molecular surfaces yet. Furthermore,
such concavity measures is asymmetric in measuring convexity. The elevation
function Elev : M — R, developed in [62, 63] is independent of any pre-fixed
parameter, and can measure both convexity and convexity in a meaningful
manner.

Specifically, each point x € M is paired with a canonical pairing partner
y that shares the same normal direction n, with z, and the function value
Elev(xz) is equal to the height difference between x and y in direction n,. See
Figure 4 (b) for a 2D illustration. The identification of the canonical pairing
partners is based on a topological framework, called the persistence algorithm,
developed by Edelsbrunner et al. [64]. Roughly speaking, the persistence
algorithm provides a meaningful way to uniquely pair up critical points of a
given function f, each pair specifies some feature with respect to f, and its
persistence value indicates the size of this feature by measuring how long it
can persist as one changes the function value locally.

The elevation function has several nice properties that make it appealing
for various applications. In some sense, it finds a different and appropriate r for
every point x on the surface and the function value Elev(x) roughly measures
the depth of the cave (or protrusion) captured by z in its normal direction
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(Figure 4 (b)). More interestingly, each extreme point of the elevation function
is associated with pairing partners that helps the user to visualize the feature
located at this point (Figure 4 (c)).

The computation of the elevation function is unfortunately costly. The
function also has some discontinuity that may be undesirable when segment-
ing the input surface based on it. In general, there is no universally good
descriptor functions. Designing meaningful and easy-to-compute molecular
shape descriptors for visualization and structure characterization purposes is
still in great need.

4.2 Visualizing scalar functions

To enhance the visualization of a given scalar function, one natural approach is
to highlight features, such as the critical points of the input function. Another
widely used technique is to segment the input surface into meaningful regions,
which we focus on below.

Region-growing

Given a function f : Ml — R, one family of surface segmentation methods
is based on the region-growing idea [56, 65, 59]. In particular, certain seeds
are first selected, and neighboring points are gradually clustered into the re-
gions around these seeds. Merging and splitting operations are performed to
compute regions of appropriate sizes, and/or to obtain a hierarchical represen-
tation of segmentations. For example, it is common to use the critical points
of the input function as seeds. When two regions meet each other, criteria
such as the size of each region and/or the difference between the function
values of points from two neighboring regions decide whether to merge these
two regions or not.

The advantage of such methods is that the criteria used to merge regions is
not limited to the input function — such as using the size of current segment,
or even combing multiple descriptor functions into the criteria. Thus they
are able to create more versatile types of segments. On the other hand, the
decision of merging/splitting is usually locally made and ad hoc, thus may
not be optimal globally. Furthermore, various parameters control the output,
such as the order of processing different regions, and it is not trivial to identify
the best strategy for choosing these parameters.

Topological methods

A second family of segmentation algorithms is based on Morse theory [66, 67,
68]. Such topological frameworks usually produce a hierarchical representation
of segmentation easily, and are also more general — a segmentation is induced
for any given function f: M — R, with usually no parameter other than the
one to specify the resolution of the segmentation.
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Notation

Given a smooth 2-manifold M C R? and a scalar function f : M — R, a
point on M is critical if the gradient of f at this point is zero. f is a Morse
function if none of its critical points are degenerate, that is, the Hessian
matrix is non-singular for all critical points, and no two critical points have
the same function value. For a Morse function defined on a 2-manifold, there
are three types of critical points: minima, saddle points, and maxima. In
molecular biological applications, a molecular surface is typically represented
as a (triangular) mesh K, and the input scalar function f : K — R over K
is piecewise-linear (PL): f is given at the vertices and linearly interpolated
within edges and triangles of K. The type of a critical point p of such a PL
function can be determined by inspecting the star of p, which consists of all
triangles and edges containing p [69].

Morse complex and Morse-Smale complex

An integral line of f is a maximal path on the surface M whose tangent
vectors agree with the gradient of f at every point of the path. Integral lines
have a natural origin and destination at critical points where the gradient
equals zero. Grouping the integral lines based on their origin and destination
results in a segmentation of the surface. The Morse-Smale (MS) complex [67]
is a topological data structure that stores this segmentation (see Figure 5).
A characteristic property of this segmentation is that every cell of the MS
complex is monotonic (i.e, it does not contain any critical point in its interior).

Fig. 5: (a) A simple height function with two maxima surrounded by multiple local
minima and its Morse-Smale complex. (b) Smoother height functions are created
by canceling pairs of critical points. Canceling a saddle-maximum pair removes a
topological feature. The function is modified locally by rerouting integral lines to
the remaining maximum.

Alternatively, grouping integral lines based exclusively on their origin or
destination results in yet another segmentation called the Morse complex (see
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Figure 6). The MS complex can also be obtained as an overlay of the two
Morse complexes for the set of maxima and minima, respectively.

Fig. 6: Morse complex computed for the set of all (a) maxima and (b) minima. (c)
The Morse-Smale complex is obtained as an overlay of these two Morse complexes.
Paths connecting saddles within each cell of the MS complex segment the surface
into peaks and valleys.

Peak-valley decomposition

The Morse complex for the set of all maxima results in a segmentation where
peaks (regions around maxima) are separated (Figure 6 (a)). However, these
segments extend all the way to adjoining valleys (regions around minima).
The MS complex, on the other hand, does more refinement than necessary.
In many cases, it is desirable to segment input surface into peaks and valleys.
To this end, Natarajan et al. proposed an extension of the MS complex to
compute such segmentations [68]. In particular, each cell in the MS complex
is a quad containing one maximum, one minimum, and two saddles on its
boundary (Figure 5 (a)). Connecting the two saddles will bisects this quad.
Bisecting all quads that contain a specific maximum u, we get all regions that
constitute the peak containing u. Similarly, we can obtain valleys containing a
minimum v. In other words, these saddle-saddle paths describe the boundary
between peaks and their adjoining valleys, and the resulting segmentation is
called peak-valley decomposition (see Figure 6 (c)). Various criteria have been
explored in [68] for the construction of such saddle-saddle paths.

Hierarchical segmentation

A major advantage of using the MS complex as a starting point for segmenta-
tion is that we can segment the surface at multiple levels of detail. A smoother
Morse function can be generated from f by repeated cancellation of pairs of
critical points. Each cancellation makes the function smoother by removing
a topological feature. This operation can be implemented by a local modifi-
cation of the gradient vector field when the two critical points are connected
by a common arc in the MS complex [66]. Figure 5 (b) shows how the MS
complex in Figure 5 (a) is modified after canceling a saddle-maximum pair.
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The order of critical point pairs is guided by the notion of persistence [64],
which quantifies the importance of the associated topological feature. The
peak-valley decomposition can be computed at multiple levels of detail [68]
by first canceling critical point pairs in the MS complex and then constructing
saddle-saddle paths within the simplified complex. See Figure 7 for an example
where we visualize the peak-valley segmentation of a protein molecule (chain
D from the protein complex Barnase-Barstar with pdb-id 1BRS) based on the
atomic density function at different levels of details. There are on-going work
to use such segmentation to help to characterize protein binding sites.

(a) (b) ()

Fig. 7: (a) The atomic density function computed for chain D of the Barnase-Barstar
complex. Darker regions correspond to protrusions and lighter regions to cavities.
(b) Peak-valley segmentation of the surface. (¢) Coarse segmentation obtained by
performing a series of critical pair cancellations.

5 Conclusions

We have provided an overview of selected methods based on well-established
concepts from differential geometry, computational geometry and computa-
tional topology to characterize complex biomolecular surfaces. We have dis-
cussed how such concepts are relevant in the context of studying the complex
interaction behaviors between biomolecules and their surroundings. Mathe-
matically sound approaches to the analysis of intricate biochemical processes
have become increasingly important to make progress in the study of pro-
tein folding and protein-protein interactions. Some of the most exciting and
challenging questions that remain to be answered include dynamic biomolec-
ular behavior, where surface analysis techniques like the ones discussed by
us here need to be generalized substantially to support effective visualization
and analysis of rapidly changing shapes.
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(a) (b) (c)

Fig. 8: Visualizing protein-DNA complexes. Complex of the antennapedia
homeodomain of drosophila melanogaster (fruit fly) and its DNA binding site shown
using three different types of visualization. The protein is shown in green, and the
DNA fragments in orange. (a) The cartoon view highlights the position of the bind-
ing site where the DNA sits. (b) The skeletal model emphasizes the chemical nature
of both molecules. (c) The space-filling diagram shows the tight binding between
the protein and the ligand. Each representation is complementary to the others, and
the biochemist uses all three of them when studying a protein.

(a) (b)
Fig. 9: (a) A simple height function with two maxima surrounded by multiple local
minima and its Morse-Smale complex. (b) Smoother height functions are created
by canceling pairs of critical points. Canceling a saddle-maximum pair removes a
topological feature. The function is modified locally by rerouting integral lines to
the remaining maximum.

(a) (b) (c)
Fig. 10: (a) The atomic density function computed for chain D of the Barnase-
Barstar complex. Darker regions correspond to protrusions and lighter regions to
cavities. (b) Peak-valley segmentation of the surface. (¢) Coarse segmentation ob-
tained by performing a series of critical pair cancellations.



