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Abstract. The problem of finding bottlenecks in flow networks often appears in real world applicati-
ons like production planning, factory layout, flow related physical approaches and even cyber security.
This work introduces intuitive visual mechanisms to enable domain experts and users to visually ana-
lyze stable regions of a network and identify critical transitions. Those transitions form a varying
bottleneck front for different configurations of network restraints. To tackle this problem, this work
enhances the comparability of different network configurations by utilizing ensemble visualization
techniques. The effectiveness of this approach is demonstrated by showing how this enables users to
evaluate the progress of different bottlenecks and individual regions in a flow network.

Introduction

The analysis of flows is an important topic in various applications such as cyber security [14], biologi-
cal pathways [20] and cyber physical manufacturing systems [15]. In particular, one aim of designing
a manufacturing system is to identify weaknesses in the manufacturing system’s layout in an early
planning stage to minimize costs, raise the product quality and shorten production times. An impor-
tant factor to optimize production system is the identification and elimination of bottlenecks [18].

The analysis of bottlenecks in cyber physical manufacturing systems can be described by flow
networks with machines as nodes/vertices and product flows as edges of the network. Depending on
the factory setting, each of these edges has a specific capacity, describing the maximum amount of
products that can flow between the two connected machines. To identify the bottleneck of a manufac-
turing system, the correlating flow network is subject of analysis. Contrary to intuition, the bottleneck
of a flow network is not a single edge between two nodes. Instead, a bottleneck is a whole set of edges.
The minimum cut of a flow network can help in describing these bottlenecks. This cut separates the
nodes of the flow network into two groups: one that can be reached by the network’s source, and the
other being the remaining nodes. In this mathematical setup, the question arises how to identify the
true bottleneck edge in the group of minimum cut edges, how to visually encode this bottleneck, and
how to compare various network configurations and their resulting bottlenecks. A sufficient solution
targeting all mentioned problems was not provided so far, as shown in section “Related Work”.

This work extends the definition of a minimum cut in a flow network by separating the nodes of
a flow network into three groups: nodes that can be reached from the source, nodes that can reach
the sink of the network, and the remaining nodes. This definition allows an enhanced classification of
edges crossing these regions to identify those specific edges that are the bottlenecks of the network.
To define an intuitive visualization for bottlenecks in a network, this work presents an intuitive visua-
lization based on Voronoi diagrams [10] derived from the underlying graph’s node layout. This work
uses color-coded regions to indicate bottleneck transition of a flow network. Based on these regions,
an ensemble visualization technique for multiple configurations of a flow network is presented in
this work. The resulting ensemble visualization indicates common bottlenecks and differences in the



underlying configurations by an intuitive color-coding of Voronoi cells (section “Methods”). Section
“Conclusion” will summarize this work and point out future challenges.

Therefore, this work contributes:

• An extended definition of the minimum cut in flow networks

• An intuitive visualization of a minimum cut in a flow network

• An intuitive ensemble visualization for multiple configurations of a flow network

Related Work

This section will present the state of the art in minimum cut visualization as well as ensemble visua-
lizations for flow networks.

Visualization of Minimum Cuts. Vehlow et al. [19] presented a state of the art report summarizing
available network drawing methods with the goal of grouping the nodes of graphs. Although they
presented a large variety of graph-drawing algorithms, an intuitive visual mapping of the minimum
cut itself was not presented. In contrast to that, the presented approach introduces a visual encoding
for the minimum cut based on Voronoi cells.

Brandes et al. [5] presented a planar visualization for the minimum cut in flow networks by arran-
ging a network in an rectangular manner and adding a poly-line to indicate the cut. This method is
widely used in open source solutions as [16, 17, 12]. Although this method gives a suitable first indi-
cation of the minimum cut, it can not indicate edges in a flow network that represent a bottleneck for
the network. The presented approach utilizes the method of Brandes et al. as a starting point and refi-
nes the definition of a minimum cut to enhance transitions that form the bottleneck of the considered
system.

Ensemble Visualization of Flow Networks. The ensemble visualization of graphs is an important
feature to allow a comparative investigation of their behavior. A state of the art report was given by
Borgo et al. [11]. They presented a large variety of visualization techniques for graph ensemble. The
relevant techniques will be discussed below.

Using the third dimension to stack different network configurations on top of each other was pre-
sented by Brandes et al. [4] and Itoh et al. [13]. Although this provides a good overview over the ca-
pacity values in the considered network configurations, the approach is not able to indicate common
bottlenecks. In contrast to that, the presented approach uses a visualization based on regions that in-
dicate the specific location of nodes with respect to the bottleneck of a network.

Temporal variance [1, 2, 3], variety-based edge visualization and selective accumulated visualiza-
tion [2] form techniques that are visualizing the variety of occurring capacity constraints in a network
ensemble. Although they provide an interactive visualization for an overview of the occurring capa-
city values, they lack the ability to indicate common bottlenecks. Therefore, the presented approach
allows to identify common bottlenecks of a given ensemble of a network’s capacity configurations.

Cesario et al. [6] presented a technique to visualize graph ensembles by visually encodingmultiple
capacities per edge. This enables users to get an overview of different network configurations, but lacks
the ability to show the resulting bottlenecks. In contrast to that, this work focuses on the visualization
and accumulation of bottlenecks and their propagation.

Boyandin et al. [3] presented a visualization of graph capacities that are aligned in a plane and can
therefore be reviewed in total. Although, the line representation of the minimum cut could be added
to each of these representations easily, it would be hard to identify their similarities. Therefore, this
work presents a single visualization for the entire ensemble that is able to indicate stable and divergent
bottleneck regions.



Methods

The analysis of bottlenecks in flow networks is an essential task for many real world applications in
planning and engineering. This section will introduce a method to visually inspect those bottlenecks.
Also, a method to analyze the propagation of bottlenecks for a network with an ensemble of different
configurations will be demonstrated.

Flow Networks. This work will rely on the general definition of flow networks with a single source
and sink, which will be presented below. Fig. 1 shows an example for such a flow network. A network
N = (G, c, s, t) consists of a directed graph G = (V,E) with a finite set of vertices V and a set of
directed edgesE ⊆ V ×V . Here, the edges should not include self loops or multiple edges in the same
direction between any two nodes. The capacity function c : E → R+ assigns a non-negative capacity
value to every edge in the network. The vertices s, t ∈ V with s ̸= t should be the only source and
sink in the network, respectively.

Fig. 1: Flow network consisting of vertices, directed edges, a source and sink vertex, and a flow and
capacity value per edge. The capacity limits the flow. Except the source and sink, all vertices preserve
the flow.

A flow f : E → R+ is a function assigning a non-negative flow value to each edge in the network.
Hence, a flow network is a network together with a specific flow on it. There are several constraints that
have to apply for such a flow. The flow should be limited by the capacity, so ∀e ∈ E : f(e) ≤ c(e), me-
aning, that the flow along an edge is never larger than the edge’s capacity. Also, all vertices except the
source and sink should preserve the flow, so ∀v ∈ V \ {s, t} :

∑
(w,v)∈E f(w, v) =

∑
(v,w)∈E f(v, w),

meaning, that the total incoming flow is equal to the total outgoing flow for a vertex. For the source,
the total outgoing flow is larger than the total incoming flow, and for the sink this is reversed.

The value of a s-t-flow |f | =
∑

(s,w)∈E f(s, w) −
∑

(w,s)∈E f(w, s) is the value of the outgoing
flow of the source sminus its incoming flow. Since all vertices except the source s and sink t preserve
the flow, this is the same as the value of the incoming flow of the sink sminus its outgoing flow. This
work focuses on planar flow networks, so to restrict the general definition of (flow) networks to planar
(flow) networks, the respective graph G should be planar. This means, that G can be plotted in a 2D
plane without edges crossing each other. Fig. 1 shows an example for a planar flow network with a
proper embedding into the image plane.

Maximum Flows. A maximum flow f̂ on a network N has the largest value among all possible flows
on N , so there exists no other flow f with |f | > |f̂ |. Maximum flows are interesting, since lower ca-
pacity constraints could be used to achieve flows with smaller values. This means, that given capacity
constraints limit maximum flows only. So to evaluate the full potential of networks, the maximum



flows have to be analyzed. This leads to the question of how to find a maximum flow for a given
network. The method of Ford and Fulkerson [9] is a general approach to find such a maximum flow.
Fig. 2 shows the individual steps of this approach. To understand this approach, the definition of a
residual network needs to be understood.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: Iterations of the Ford and Fulkerson method to improve the flow of a network. To a given
flow network (left images), the residual network is calculated and a path from source to sink is found
(right images). This augmenting path is used to increase the flow along the path’s edges in the original
network. When no more path is found (see 2(h)), the flow is a maximum flow (see 2(g)).

For the flow networks in Fig. 2(a)-2(g), the respective residual networks are shown in Fig. 2(b)-
2(h). For a given flow network N = (G, c, s, t) with flow f the residual network is defined as Nf =
(Gf , cf , s, t) withGf = (V,Ef ). So the vertices V and the source s and sink t of the residual network
are the same as the ones of the given network, though the edges Ef and their capacities cf change.
The edges and capacities of the residual network are defined as follows. For each edge (v, w) ∈ E a



forward edge (v, w) is added to Ef if f(v, w) < c(v, w). The capacity of such a new forward edge
(v, w) is set to cf (v, w) = c(v, w) − f(v, w). For each edge (v, w) ∈ E a backward edge (w, v) is
added to Ef if f(v, w) > 0. The capacity of a new backward edge (w, v) is set to cf (w, v) = f(v, w).
Following this definition, a residual network describes the amount of flow that can be added to an edge
before the capacity limit is reached (forward edge), and the amount of flow that can be subtracted from
an edge before a negative flow would arise (backward edge).

The method of Ford and Fulkerson now operates on these residual networks. For a flow network in
Fig. 2(a)-2(g) the residual network in Fig. 2(b)-2(h) is calculated. A directed path from the source to
the sink is found in the residual network. This path is called an augmenting path, since the flow of the
edges in the original network on this path can be improved, thereby increasing the value of the overall
flow in the network. So for a forward edge in the residual network the flow of the original edge is
increased, and for a backward edge in the residual network the flow of the original edge is decreased.
This procedure is iterated as long as no more augmenting paths can be found in the residual network.
It can be shown, that the value of the resulting flow is maximal, so the resulting flow is a maximum
flow. Fig. 2(g) shows the maximum flow with a value of 5.

The algorithm of Edmonds and Karp [7] uses a breadth-first-search from the source to always
find a shortest augmenting path in the residual network. This ensures the termination of the algorithm
as well as a polynomial bound of the algorithm’s run-time, leading to an efficient algorithm to find
maximum flows. It can be shown, that the run-time complexity of this algorithm is in O(|V | · |E|2),
meaning that the run-time is bounded asymptotically by k ·|V |·|E|2 for a fixed constant k, |V | vertices
and |E| edges, and therefore is not dependent on the capacities. Although even faster algorithms with a
complexity of nearly up toO(|V |·|E|) are known, themethod of Ford and Fulkersonwas demonstrated
above, as the shown definitions like augmenting paths will be used in the following.

Minimum Cuts. To find bottlenecks in networks, maximum flows could be considered. As the max-
imum flow in Fig. 2(g) shows, there are exhausted edges. For these edges the flow value equals the
capacity value, so the flow can not be increased any further. An example for such an edge is the edge
(Source, B)with values “2/2”. One could easily think, that increasing the capacity of this edge would
result in a larger maximum flow, meaning, that this edge would be called a bottleneck edge in the
following. It turns out, that this early intuition is wrong, and an increase of the capacity of this edge
would not increase the value of the maximum flow. To countervail this effect, this work focuses on
cuts instead of flows.

A s-t-cut C = (S, S ′) is a partition of the vertices V into the disjunct sets S ⊂ V with s ∈ S and
S ′ ⊂ V with t ∈ S ′ such thatS∪S ′ = V . The capacity of a s-t-cut |C| =

∑
(v,w)∈E : v∈S ∧ w∈S′ c(v, w)

is the sum of the capacities of edges from a vertex in S to a vertex in S ′. Aminimum cut Č of a network
N has the smallest capacity among all possible cuts ofN , so there exists no other cutC with |C| < |Č|.

The max-flow min-cut theorem [8] from graph and optimization theory states |f̂ | = |Č|, so the
value of a maximum flow is equal to the capacity of a minimum cut and vice versa. This means,
that instead of considering maximum flows for the analysis of the performance and bottlenecks of
networks, minimum cuts can be utilized.

The standard approach to find a minimum cut for a given network is to first calculate the maximum
flow as described above, and then collect all vertices that are reachable from the source vertex in the
resulting final residual network. Those vertices form the set Š of the cut, with Š ′ = V \ Š being the
set of remaining vertices. The desired minimum cut then is Č = (Š, Š ′).

Fig. 3(a) shows the residual network of the maximum flow (compare Fig. 2(h)), the collection of
vertices starting from the source in blue, and the remaining vertices in white. To enhance the intuitive-
ness of the visualization and enable users to easily analyze minimum cuts, Fig. 3(b) colors the Voronoi
cells [10] of each vertex by a partition specific color, blue for the vertices in S and white for all other
vertices in S ′. The Voronoi cell of a vertex is the area that is closer to this vertex then to all other
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Fig. 3: Residual network of an exemplary network with maximum flow (compare Fig. 2(h)) with
vertices/edges reachable forwards from source or backwards from sink (left images), and the original
network with minimum cut and classified Voronoi cells (right images). The classical construction of
a minimum cut (upper images) suggest wrong bottleneck edges, while the new extended construction
(lower images) shows the true bottleneck transitions (blue to black).

vertices. By using Voronoi cells that share a common border to other cells of the same color, regions
for both partitions of the minimum cut are formed.

As can be seen, the previously considered edge (Source, B) starts and ends in the blue region and
can not be increased to increase the value of the maximum flow. Hence, this edge is not a bottleneck
edge. In general, for all edges ending in S (blue region) by construction there exists a directed path in
the residual network from the source to the endpoint of the edge. So instead of increasing the capacity
of such an edge, the flow along this path could be improved. So an edge ending in S (blue region) can
not be a bottleneck edge. In contrast to this, one could investigate the behavior of an edge starting in
the blue region and leading to the white region. As and example, the edge (A,C) with values “3/3” is
considered. But again the intuition fails and the considered edge is not a bottleneck edge.

This shows, that the general definition of a cut is not enough to find bottleneck edges. To com-
pensate this shortcoming, this work extends the construction of a minimum cut by adding a third set
T ⊂ V to the partition. Fig. 3(c) and 3(d) show the same visualizations as before, but this time all
vertices that have a directed path to the sink in the residual network are collected in the set T and
colored in black. All vertices that are not reached from the source or do not reach the sink form the set
R ⊂ V with R = V \ (S ∪ T ) and are left white. So the new partition is P = (S,R, T ) (blue / white
/ black regions) with disjoint sets S,R, T ⊂ V , and S ∪R ∪ T = V , and s ∈ S and t ∈ T .

Analog to before, all edges starting in T (black region) can not be bottleneck edges, since by
construction there exists a directed path in the residual network from the starting point of the edge to
the sink. All edges ending in R (white region) also can not be bottleneck edges, since by construction
they do not have a directed path in the residual network from their endpoint to the sink. Increasing the
capacity of such an edge could increase the value of a flow from the source to the edge’s endpoint, but
not to the sink. So the overall flow would not increase, hence the edge is no bottleneck. Out of analog
reasons, edges starting in R (white region) also can not be bottleneck edges.



The only edges left that can be bottlenecks are edges starting in S (blue region) and leading to
T (black region). As can be seen in Fig. 3(d), the edge (B,D) with values “2/2” is of this kind and
is a bottleneck edge, so increasing the capacity of this edge would lead to a larger maximum flow
(compare Fig. 4(c)). In general, not only some, but all edges leading from S (blue region) to T (black
region) are bottleneck edges.

Proof: Let (v, w) ∈ E with v ∈ S and w ∈ T be an edge leading from S (blue region) to T
(black region). By construction, there exists a directed path (v1, v2, ..., vn) with v1, v2, ..., vn ∈ V and
v1 = s and vn = v in the residual network from the source s to the starting point v of the edge. By
construction there also exists a directed path (w1, w2, ..., wm) with w1, w2, ..., wm ∈ V and w1 = w
and wm = t in the residual network from the endpoint w of the edge to the sink t. If both paths had
a common vertex vi = wj , the path (s = v1, v2, ..., vi−1, vi = wj, wj+1, ..., wm−1, wm = t) would be
an augmenting path, and hence the given flow would not have been a maximum flow. So both paths
are disjoint and do not increase the overall flow without modifying c(v, w). Also, the flow f(v, w)
of the given edge equals its capacity c(v, w), because otherwise the edge (v, w) would be included
in the residual network and the path (s = v1, v2, ..., vn = v, w = w1, w2, ..., wn = t) would be an
augmenting path. But by modifying the capacity c(v, w) to a greater value c′(v, w) > c(v, w) it holds,
that f(v, w) < c′(v, w), so the edge (v, w) will be included in the modified residual network. This
leads to an augmenting path (s = v1, v2, ..., vn = v, w = w1, w2, ..., wn = t) that can be used to
increase the value of the overall flow. Hence, increasing the capacity of an edge from S to T increases
the value of the maximum flow, so all edges from S (blue region) to T (black region) are bottleneck
edges.

So the overall approachworks by first performing amax-flow calculation followed by two separate
breadth-first-searches in the residual network starting forwards from the source and backwards from
the sink, respectively. Since the residual network has the same number of vertices and at most twice
the number of edges than the original network, the run-time complexity of the breadth-first-searches
is inO(|V |+ |E|), meaning that the complexity and limitations of the overall approach are dependent
only on which max-flow algorithm is chosen, as described above.

Ensemble Visualization. The visualization in Fig. 3(d) (compare Fig. 4(a)) intuitively shows the dif-
ferent regions of a network with maximum flow. By construction, there is enough capacity left to
increase the flow from the source to the vertices in the blue region. On the other hand, there is enough
capacity left to increase the flow to the network’s sink from one of the vertices in the black region.
The white region consists of the remaining vertices that are not able to increase the flow in either di-
rection. So to identify bottlenecks for a single network, users can intuitively consider transitions from
a blue to a black region. Since multiple Voronoi cells form regions, in general there is not just a single
bottleneck edge, meaning a single transition, but a closed front of bottleneck transitions. In addition
to that, the different regions deliver insight into whether vertices and edges are in front of the overall
bottleneck front or behind it.

In real world application there often is the need to compare results for different layouts or con-
figurations. Here, the capability to get an overview of different capacity configurations for the same
underlying graph is desired. To tackle this problem, Fig. 4(a)-4(d) show an ensemble of networks, their
maximum flow and the different regions of the extended minimum cut. The different configurations
were chosen arbitrarily to demonstrate a variety of possible scenarios. The individual Voronoi cells
are accumulated and averaged as shown in Fig. 4(e).

Fully blue or black regions in the accumulated image indicate a completely stable location in
front of or behind the bottleneck, respectively. Fully white regions never occur in any other (blue
or black) region. The advantage of having chosen a blue / white / black color theme is, that these
colors accumulate uniquely. A region that is bluer appears more often before the bottleneck front in
the individual ensemble members, while blacker regions appear more often behind the bottleneck. The



(a) (b)

(c) (d)
(e)

Fig. 4: Ensemble of the same network with four different exemplary capacity configurations leading
to four different maximum flows and minimum cuts (smaller images). Transitions from a blue to a
black region are bottlenecks. The samples of the ensemble are accumulated and averaged, thereby
giving an overview of stable regions (fully blue or black) and the progress of the bottlenecks (larger
image).

same holds for whiter regions in the accumulated image that appear more often in neither of the two
(blue or black) regions.

Fully blue, black or white regions indicate a stable behavior of the respective vertices in all en-
semble members regardless of their different capacity configurations. In contrast to that, regions with
a not so well defined color indicate unstable regions, meaning a divergent behavior for the different
ensemble members. Also, a fully blue to fully black transition indicates a stable bottleneck regardless
of the different ensemble configurations. Overall, the presented visualization methodologies enable
an intuitive identification of network bottlenecks and the analysis of bottleneck propagation for an
ensemble of a network with different capacity configurations.

Conclusion

This work has introduced a novel approach to visualize and compare bottlenecks in flow networks
for real world applications like cyber physical manufacturing systems. Therefore, product flows and
constraints of a manufacturing system were mapped to a network. This work extended the definition
of a minimum cut of a network to identify bottleneck edges. This extended definition was used as a
basis to visualize minimum cuts and bottlenecks in production systems based on Voronoi regions. This
approach allowed a fast and intuitive identification of bottleneck transitions in a flow network.

As the planning of production systems involves the comparison of different factory settings, va-
rious configurations of a network need to be compared. This work has presented an ensemble vi-
sualization technique based on the visualization of extended minimum cuts. The presented examples
demonstrated, that the ensemble visualization technique indicates stable and divergent bottleneck tran-
sitions and regions, thereby enabling users to visually identify and analyze similarities and differences
of bottlenecks for an ensemble of flow network configurations.
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