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Abstract
Although the processing of data streams has been the fo-

cus of many research efforts in several areas, the case of
remotely sensed streams in scientific contexts has received
little attention. We present an extensible architecture to
compose streaming image processing pipelines spanning
multiple nodes on a network using a scientific workflow
approach. This architecture includes (i) a mechanism for
stream query dispatching so new streams can be dynam-
ically generated from within individual processing nodes
as a result of local or remote requests, and (ii) a mech-
anism for making the resulting streams externally avail-
able. As complete processing image pipelines can be cas-
caded across multiple interconnected nodes in a dynamic,
scientist-driven way, the approach facilitates the reuse of
data and the scalability of computations. We demonstrate
the advantages of our infrastructure with a toolset of stream
operators acting on remotely sensed data streams for real-
time change detection.

1 Introduction
Advances in remote sensing research and technology

have fostered a diverse spectrum of applications in the Earth
sciences at multiple spatio-temporal scales. Besides global,
long-term changing phenomena (e.g., climate change), also
important are the real-time settings where prompt response
is of major concern, as is the case of environmental moni-
toring (e.g., hurricane tracking and wildfire detection). Al-
though increasingly larger sets of remotely sensed data are
continuously streaming down to Earth, and computing in-
frastructures are improving, the necessity for specially tai-
lored scientific data management frameworks has been rec-
ognized. Operational tasks like data handling and prepro-
cessing, remote collaboration among researchers, and –in
particular– data sharing, are an integral aspect of the scien-
tific effort and should be considered in a systematic way.
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Current satellite data delivery systems generally provide
query capabilities for users to request specific products ac-
cording to several criteria (e.g., area of interest, time pe-
riods, spatial resolution). Complete datasets are generated
and then delivered on demand. Less frequent is that users
be able to access the raw streaming data generated by the
satellite sensors. In spite of the current options to obtain
data, scientists often find themselves replicating some of the
required computations because of a lack of effective ways
to discover existing datasets and easily integrate them into
new computations (for example, cloud cover masks are a
common input in many remote sensing processes).

We address the above shortcomings, specifically in the
case of streaming geospatial image data, by proposing an
extensible and scalable infrastructure for the processing of
data streams. In our approach, nodes in a networked en-
vironment are set up to support the execution of streaming
image pipelines with some components performing remote
sensing analyses, and others enabling the remote access to
the streams in the pipeline.

2 Background

Processing Remotely Sensed Data. At a high-level, im-
age processing in remote sensing change detection typically
includes the following steps: 1) data acquisition, 2) geome-
tric rectification, 3) radiometric correction, 4) change detec-
tion, and 5) product generation. Primary inputs include re-
flectance information at various spectral wavelengths. Data
must next undergo a number of preprocessing steps before
it can be analyzed for change detection. Sub-setting (ex-
traction of region of interest), masking, and mosaicking
(combination of multiple images into a composite one) are
routine pre-processing steps as datasets may originate from
different sensors and/or be captured under different condi-
tions. The images in the available datasets usually must be
co-registered such that they are geometrically aligned, i.e.,
pixels are located in the same reference system. Also differ-
ences in sensor characteristics (e.g., radiometric precision,
spectral response) must be rectified. From an abstract pers-
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pective, the scientist chains these operations together in the
form of direct acyclic graphs (DAGs), and then applies the
necessary parameterization to accomplish a set of tasks.

Scientific Workflows. A scientific workflow is a collec-
tion of well defined activities and computations to attack
a scientific problem. In this work we use KEPLER [8], a
multi-institutional, open-source project aimed at offering
scientists in diverse disciplines a system to design, execute,
and deploy scientific workflows using Web- and Grid-based
technologies. KEPLER is built on top of the PTOLEMY II
system [4], which provides the infrastructure to support the
execution of scientific workflows under a wide set of mod-
els of computation.

A scientific workflow is a network of actors whose mu-
tual interaction is governed by a particular model of com-
putation as implemented by a corresponding director. The
overall structure is illustrated in Figure 1. Among the va-
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Figure 1. Main elements in a workflow.

riety of models of computation provided by the underly-
ing PTOLEMY II system, we use the process networks (PN)
model as this naturally supports the execution of workflows
on streaming data [7]. In the PN model, actors execute
concurrently and communicate under a blocking-read, non-
blocking-write scheme.

The KEPLER/PTOLEMY II environment is an excellent
vehicle for scientists to interact with our proposed infras-
tructure for a number of reasons. The toolset of streaming
image processing operators developed in this work is inte-
grated with the extensive list of KEPLER/PTOLEMY II ac-
tor packages that include operations for transparent access
to Web services, Grid data transfers, remote job execution,
and interaction with database management systems. Fea-
tures like visual workflow design, ontology integration, and
support for semantic types make the environment especially
useful for domain scientists.

3 Stream Operators
To describe the data and the operations on remotely

sensed image data, we use the algebra described by Gertz et
al [2]. We define a raster image as a function from a raster
point set X to a value set F, where X is a regularly-spaced
lattice in R

2 or R
3, and F is some algebraic system (a set

together with a finite number of operations). Typical value
sets in remotely sensed data are the integers, real numbers,

as well as vectors of these types for multi-banded images.
Being functions, common operations on functions are appli-
cable to images as well. For example, a domain restriction
on an image a : X → F to a point set R ⊆ X, denoted
a|R, is defined as the function {(x, a(x)) : x ∈ R}.
In our case, we often refer to R as a region of interest
(ROI). Also, operations associated with the value set F in-
duce corresponding operations on F-valued images. For
example, binary addition of real numbers induces the bi-
nary addition of real-valued images a and b, formally ex-
pressed as a + b ≡ {(x, a(x) + b(x)) : x ∈ X}, where
a,b : X → R. Time is included in the model by associating
a time stamp τ(a) to each image a. A raster image stream
(stream, for short) is a sequence of timestamped raster im-
ages α ≡ 〈a1, a2, . . . , at, . . .〉 where τ(at) < τ(at+1).
Each image in a stream is assumed to be captured instan-
taneously. We use the notation α ≡ 〈. . . , at〉 to refer to the
current image at just produced by the data source generat-
ing the stream α. In this paper, we use the concept of current
image as a convenient simplification to describe some of the
operations on streams, particularly binary operations. An
appropriate semantics actually involves considerations re-
lated to spatio-temporal granularities, synchronization, and
handling of missing data. See [2] for details.

Operations on streams include those induced by opera-
tions on images. For example, spatial restriction of a stream
α ≡ 〈. . . , a〉 to a region of interest (point set) R is de-
fined as α|R ≡ 〈. . . , a|R〉; and the binary addition of two
streams α ≡ 〈. . . , a〉 and β ≡ 〈. . . ,b〉 is the stream formed
by adding their current images, α+β ≡ 〈. . . , a+b〉. Unary
and binary operations on images (absolute value, addition,
multiplication, etc.) are naturally extended to streams.

An important operation for temporal change detection
is the delay operation. Given a stream α ≡ 〈. . . , at〉,
a delayed stream by δ samples is defined as Dδ(α) ≡
〈. . . , at−δ〉, i.e., the current image in Dδ(α) is the image
that was current δ clocks ago in α. Temporal restriction,
which selects the images in a stream whose timestamps are
contained in a given set of time intervals, as well as value
transformation and spatial reprojection (conversion from
some coordinate system to another) are also typical oper-
ations on streams [2].

Figure 2 illustrates some of the operators in terms of
workflow actors. The G-Reader actor can read a stream
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Figure 2. Operators in the toolset.
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from the GEOSTREAMS server [3] or from other workflows
as explained in Section 4. The ROI actor applies the spatial
restriction of a stream α over a point set X to a given raster
point set R ⊆ X. Regions of interest are very often speci-
fied in geographical coordinates, e.g., latitude-longitude and
Universal Transverse Mercator (UTM), rather than in spe-
cific sensor coordinates. Given an appropriate set of pa-
rameters p, the ST actor applies the corresponding spatial
transformation to convert a point set X into a point set
Y. The GROI actor spatially restricts a stream α over a
point set X to a given region of interest G that is given
in some geographical coordinate system. The THR actor
applies a thresholding operation to each image in a stream
producing the corresponding stream of resulting images.
Given a real-valued image on a point set X, and a scalar
h ∈ R, the thresholding operation gets the binary image
χ≥h(a) ≡ {(x, 1) : a(x) ≥ h} ∪ {(x, 0) : a(x) < h}. The
last actor in Figure 2 performs the delay Dδ(α) operation
given a non-negative integer parameter δ.

4 Inter-Workflow Composition
We extend the composition mechanism described above

to the inter-workflow level by means of inter-workflow con-
nections. “Producer” workflows operate on the streams
provided by primary data sources, e.g., satellite receivers,
and perform typical pre-processing operations including ra-
diometric and geometric calibrations, and re-projection to
commonly used spatial reference systems. Some of them
may also provide storage related capabilities, e.g., histori-
cal static datasets and delayed streams.

“Consumer” workflows ingest data from producer work-
flows (as well as from other external data sources), and typ-
ically perform tasks related to report generation, visualiza-
tion, and even further processing to eventually become pro-
ducers of new data streams.

Workflow Interconnection. A specially designed com-
ponent, the Net interface (NI) actor, is used to indicate the
streams in a workflow that are to be externally accessible.
Actual access to the streams in a net-enabled workflow is
accomplished by means of two special components that col-
laborate with the NI actor: a query dispatch (QD) actor and
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Figure 3. NI, QD, and SS collaboration.

a stream server (SS) actor. Figure 3 shows the collabora-
tion between these components: a) a client requests stream
α from the workflow; b) NI forwards request to QD, which
returns output port for α; c) NI instantiates an SS actor; d)

the SS sends requested stream to client. Only one SS in-
stance is created for each stream; multiple clients interested
in this stream are handled by the same SS instance.

Dispatch Extensions. As shown above, the NI dynami-
cally instantiates SS actors to deliver data streams to clients.
The QD has the same ability of dynamically adjusting the
workflow structure while processing specific requests. Al-
though a detailed description of a comprehensive query dis-
patching mechanism is beyond the scope of this paper, we
illustrate the concept with the region of interest operation.

The query dispatch actor will create a new ROI actor in-
stance for each new region of interest requested from the
workflow. ROI actor instantiation is illustrated in Figure 4.
To dispatch a new region of interest R on a given stream
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Figure 4. ROI actor instantiation.

α, QD checks the set of current streams to find the small-
est Rm associated with α such that R ⊆ Rm. Initially,
a source stream α (possibly unrestricted) would be chosen.
Next, QD instantiates a new ROI actor with input α|Rm

and
parameter R. NI gets the returned output port correspond-
ing to α|R, and instantiates a stream server actor to deliver
the requested stream to the client.

Prototype. Actors for query dispatching, network inter-
face, stream delivery, and several others for stream pro-
cessing have been developed in Java using the PTOLEMY

II libraries. We use real-time data streams from NOAA’s
GOES-10 satellite [9]. With raw data transmitted at 2.6
Mbps, the imager instrument in the GOES-10 satellite
senses radiant and solar-reflected energy, generating data
for five channels with different spatial resolutions and spec-
tral characteristics. Visible channel data is generated at a
rate of about 190Kbytes/second, taking about 26 minutes
to scan the 22, 600 × 10, 900-pixel scene for the full field
of view of the satellite. GOES data and derived products
include surface temperature, cloud cover, and wildfire de-
tection. Actual data from the GOES-10 satellite is provided
in real time by the GEOSTREAMS system.

A complete image differencing and thresholding pipeline
spanning two workflows is shown in Figure 5. The final
stream obtained at the output of the THR actor in the con-
sumer workflow (shown at the bottom of the figure) can be
expressed as χ≥h(α−D1(α)) for a given threshold h. The
producer workflow on the top of the figure makes available
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Figure 5. Producer and consumer workflows.

the stream α corresponding to the GOES-10 visible channel
provided by the GEOSTREAMS server via a G-Reader actor,
as well as the delayed streams D1(α) and D2(α). The con-
sumer workflow uses two different G-Reader instances to
import the streams α and D1(α) from the producer work-
flow. It performs the image differencing and thresholding
operations. It finally uses a visualizer actor, G-Viewer, also
included in the toolset, for the real time visualization of
the resulting thresholded stream. Some of the visualization
functionality will also be demonstrated.

5 Related Work
Little work has been done for processing remotely

sensed geospatial streaming data in a distributed, scientific
workflow oriented fashion. Jaeger et al [5] propose to pub-
lish geospatial data and operations as individual Web ser-
vices, which can then be composed using the KEPLER sci-
entific workflow system. There are several fundamental
differences to our approach: In [5], like in our approach,
complex processing workflows execute via a process net-
work director (PN) and exhibit task parallelism, i.e., tasks
on different branches of the workflow can run concurrently.
However, in addition to task parallelism, we take full advan-
tage of the process network model of computation [7] and
provide real pipeline parallelism. This means that all in-
stances of workflow actors (i.e., components implementing
stream operators) can execute simultaneously. In particu-
lar, consecutive actors on the same branch can work at the
same time on different parts of the token stream. In contrast,
most scientific workflow approaches, including [5], do not
support pipeline parallelism. Often this is due to the fact
that the Web services on which they are built do not support
pipelining, or because the underlying model of computation
does not support pipelined execution.

The main novelty of our approach is the ability to inter-
connect independently executing workflow instances, run-
ning on different sites. The different instances can publish
and subscribe to each other’s data streams, providing a sim-

ple yet flexible means to reuse live data streams. In this
way, our approach is fundamentally different from conven-
tional Web-service based approaches (such as [5]), and in-
stead more similar to distributed environmental monitoring
systems such as the Antelope Real-Time System [1].

6 Conclusions and Future Work
We have presented an approach for the extensible

and scalable processing and analysis of remotely sensed
streaming image data particularly focused on its usabil-
ity by domain scientists. Our approach builds on KE-
PLER/PTOLEMY II, a robust, scientist-friendly problem-
solving environment. Both data reuse and computational
scalability are facilitated because complete processing im-
age pipelines can be cascaded across multiple nodes. The
mechanisms are readily extensible to allow incremental so-
phistication as it builds on the actor-oriented paradigm so
they integrate naturally into the workflow framework. Our
current efforts are aimed at enriching the toolset of change
detection operators and tuning up their integration with the
existing actor packages in KEPLER/PTOLEMY II.
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