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Abstract. The authors introduce an integrative approach for the
analysis of the high-dimensional parameter space relevant for
decision-making in the context of quality control. Typically, a large
number of parameters influence the quality of a manufactured
part in an assembly process, and our approach supports the
visual exploration and comprehension of the correlations among
various parameters and their effects on part quality. We combine
visualization and machine learning methods to help a user with the
identification of important parameter value settings having certain
effects on a part. The goal to understand the influence of parameter
values on part quality is treated from a reverse engineering
perspective, driven by the goal to determine what values cause
what effects on part quality. The high-dimensional parameter value
domain generally cannot be visualized directly, and the authors
employ dimension reduction techniques to address this problem.
Their prototype system makes possible the identification of regions
in a high-dimensional parameter value space that lead to desirable
(or non-desirable) parameter value settings for quality assurance.
They demonstrate the validity and effectiveness of our methods and
prototype by applying them to a sheet metal deformation example.
c© 2020 Society for Imaging Science and Technology.
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1. INTRODUCTION
The rapid advancements made in technology supporting an
entirely digital integrated approach from digital design and
to digital and automated manufacturing lead to the need
of a much improved approached to assuring production
quality demand. Our work presented here was driven by
this demand. Lean production [1] is key to reducing idle
times and improving storage capacity in plants. In-sequence
production systems ensure that assembly parts are delivered
at assembly stations in time and proper sequence. These
automated concepts are only viable when a zero-failure (or
near-zero-failure) environment can be assured as stopping a
production process for human intervention is prohibitively
expensive. The necessary quality control (QC) can be divided
into a priori or ex anteQC, with a prioriQC becoming more
important for achieving the zero-failure goal. Ex-ante QC is
based on collecting a vast amount of data for each produced
part in short time; a priori QC only considers few available
pilot parts.

Solution approaches for the ex-ante QC problem,
especially those using machine learning (ML), are not
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well-suited for a priori QC. In order to overcome the lack
of data, simulations are used, with the goal of synthetically
generating the needed amount of data resulting from a high
sampling of parameter value ranges to capture the char-
acteristics of a real-world environment. These simulation
systems are often called ‘‘digital twins,’’ i.e., they are viewed
as virtual computer simulations capable of replicating
all relevant physical properties appropriately (see [2–9]).
Digital-twin data augment available data produced by a
pilot phase. A part being assembled and measured can
now be classified as acceptable or non-acceptable. Making
an acceptance/rejection decision merely on the few data
produced by a pilot phase is not sufficient. Rejection in
this production phase causes high costs as it interrupts the
workflow. The important question that must be answered
is this: Can one determine production parameter values
such that a part can still be acceptably assembled, or is it
possible to propose a viable way for avoiding rejection? To
answer this question, the dominant relevant parameters and
parameter values that lead to rejection must be determined.

We investigate how this reverse engineering problem can
be tackled with an effective combined use of visual ensemble
analysis, parameter space exploration, and an ML method.
For visual ensemble analysis, considering the case of sheet
metal deformation analysis as driving scenario, we analyze
displacement and stress field variance and explore data via
an exploratory contouring approach. For parameter space
exploration, we interactively visualize distributions via violin
plots [10]. This visualization can be complemented by scatter
plot matrix (SPLOM) plots that permit a more detailed
analysis by showing pairwise parameter cross-correlations.
Parameter space analysis is further supplemented by per-
forming principal component analysis (PCA [11]) to detect
higher-order clusters. We have tested some commonly used
classifiermethods (i.e., the k-nearest-neighbor classifier [12],
random forest classifier [13], and adversarial neural network
classifier [14]), for determining parameter space regions
defining ‘‘accept’’ and ‘‘reject’’ regions. Our application data
set contains symmetries, shows strong cross-correlations
between parameters, and has anisotropic value ranges. Our
research was motivated by these research questions:

1. Is a combination of visual analytics and ML techniques
effective for detecting the parameter values causing specific
effects under given boundary conditions?
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2. Is a high-level similarity analysis and visualization
sufficient for our purpose?

We have devised and implemented an incremental
approach in our system. We start with the simulation
ensemble analysis, complemented by summarizing distances
between measurements and simulation data, producing a
single similarity value. We analyze parameter value impact
by using distribution characteristics anddescriptive statistics.
Subsequently, we incorporate correlations of parameter
similarity relative to test data, using simple regression
techniques. In order to reduce parameter cross-correlation
complexity, we use PCA for dimension reduction. Finally,
we assess how well an ML approach can predict dominant
parameters.

1.1 Related Work
Increasing use of digital technology in factories demands
increased use of data visualization techniques for data
comprehension. The survey of Zhou et al. [15] classifies
visualization methods based on the application scenario and
industry sector. Our approach was driven by the needs of the
automotive industry, more specifically, automobile prepro-
duction. Following Zhou’s taxonomy, our method concerns
the ‘‘phase between’’ the design and production phases. Xu
et al. introduced ViDX [16] for the analysis of assembly line
performance. Their tool combines historical and real-time
data. The system devised by Ramanujan et al. [17] analyzes
similarities in computer-aided design (CAD) repositories,
while an approach developed by Wu et al. [18] concen-
trates on condition monitoring. Leu et al. [19] provided
an overview of the steps necessary to acquire reliable
assembly simulations, including the one considered by us. A
prominent example of the combined use of decision trees and
dimension reduction techniques is included in Sun et al. [20].

Projection-based methods, including the method de-
scribed by Bui-Tahn et al. [21] and Gaggero et al. [22],
are appropriate for inverse and optimal design. Combining
these methods with ML and neural network techniques has
produced promising results for parameter space prediction
in inverse design applications [23–25]. ML-based analysis
approaches pose new visualization challenges since interac-
tive and visual ML systems are still in their infancy [26].
Following the steps of parameter estimation, we can employ
several methods. To quantify similarity for vector field
ensemble elements, for example, Jarema et al. [27] proposed
a visual analysis method combining statistical analysis and
comparative visualization used in 2D space. Considering
our application scenario, i.e., sheet metal deformation, we
contemplate a deformation field on a surface as a 2D vector
field.

Definition and labeling of clusters of ensemble elements
can be carried out on the local scale using an entire surface
geometry, using the method of Rieck et al. [28] that clusters
elements based on persistent homology. Such an approach
addresses the problems encountered with unlabeled data
on a given surface. When a user labels classes, the level
of confidence in decisions made is an important aspect

Figure 1. Generic sheet metal example. The boundary conditions for the
simulations used in this article are depicted and labeled. The directions
(X , Y and Z ) for this part are indicated.

considered in methods like the one of Kumpf et al. [29],
helping with the understanding of different outcomes.
Analyzing pairwise parameter correlation behavior for a
high-dimensional parameter space can lead to visual clutter.
Correlation maps [30] and interactive regression lenses [31]
are methods tackling this issue. Causal and correlated
behaviors often coincide, and direct visualization methods
rely on correlation coefficients only. The method of Wang
et al. [32] solves this problem by including additional
quality measures computed via statistical correlation in a
visualization. For example, a visual analysis approach to
evaluate the capabilities of epidemic prediction models was
discussed by Bryan et al. [33].

2. USE CASE: ASSEMBLY-INDUCEDDEFORMATIONS
2.1 Generic Metal Sheet Deformation
We present an example based on the deformation of a
simple sheet metal car body part to show the performance of
the proposed method. The chosen simulation model shows
a similar deformation per length ratio like real exterior
car components during assembly. Thus, this example is
representative for real-world use cases. Figure 1 shows
the geometry and used boundaries. The shown part has
dimensions of 50 mm × 30 mm and has a thickness
of 0.5 mm. The material model is a linear-elastic model with
the properties of steel (E-Modulus of 210 GPa and Poisson
ratio of 0.3). The boundaries are shown in the picture as
well, two boundaries located opposite each other on the edges
in X-direction, four boundaries in Z-direction on the part
surface, and two boundaries inY -direction on the same edge.
The Y -boundaries are set to zero to hold the part in place.
The other directions are modeled as displacement load and
varied within the tolerance interval of +/− 0.1 mm, which
leads to different shapes the part can take on.

2.2 Automotive Car Body Part Variation Simulation
For a more application-driven view, a real-world example
from the automotive industry was chosen. The geometry
is an engine hood. This part has two hinges, two locks,
and two buffers as mechanical boundaries attaching the
hood to the chassis, see Figure 2. A finite element (FE)
simulation predicts deflections during the assembly process
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Figure 2. Sheet metal car body part used in automotive industry. The
used boundaries for the simulation are highlighted, with external forces
used via gas springs. The coordinate system for this part is shown.

of the part. However, the final shape of a material part
can vary due to production uncertainties. To deal with
uncertainties and tolerances during the production, the
engine hood’s boundaries, i.e., hinges, locks, and buffers, are
adjustable. Adjusting these boundaries properly to obtain an
acceptable gap and flushness is a challenging task [34]. A
post-assembly measurement induces necessary corrections.
The goal of the proposed method is to find the best set
of changes from measured deviations, which forms the
optimal set of adjustments. The method uses as input an
assemble of statistical distributed simulations that cover
the solution space spanned by the available adjustment
possibility of each boundary. The used car hood is an
assembly containing seven individual sheet metal parts,
connected by spot welds and different types of adhesives.
Based on the CAD files, a simulation model was created
by meshing the geometry with 3D-shell elements and
connecting the assembly considering spot weld, adhesive
positions, and thicknesses of components. The material
model is linear-elastic with an e-modulus of 210 Gpa and a
Poisson rate of 0.3. Two fixed, external loads, modeling the
gas springs near the hinges with themagnitude of 580N each,
complete the model.

2.3 Use Case Classification
We can characterize the presented application scenario as
follows:

• Parameters generally correlate with each other.
• Correlation (strength and direction) depends on value
range.
• Parameters are anisotropic (direction dependent).
• The distance metric is anisotropic.

• Even on a full point-wise scale, the mapping between
parameter and resulting displacement is, in general, not
bijective.
• The effect of parameters is neutralized under some

conditions. (Some combinations of parameters and
value ranges can lead to the same displacement field.)

In general, parameter estimation leads to multiple ‘‘accept-
able’’ candidates and may include the ‘‘neutral parameter
sets.’’

3. METHOD
In each step of the analytics pipeline, numerous methods are
available. Figure 3 depicts our general workflow. Selection of
methods is guided by three principles:

• Solving the problem of parameter estimation/Finding
the dominant parameters.
• Arriving at a minimal set of parameters (for the method

itself).
• Requiring a small integration effort (in terms of

software system design).

3.1 Data Analysis and Preprocessing
The input data is a collection of simulation results on
a predefined 2-dimensional grid. The grid is generally
unstructured and consists mostly of quads and triangles.
The displacement field is stored as a point-wise vector value,
indicating the direction of the deformation. The stress tensor
is transformed into a scalar field using the von Mises yield
criterion and is stored for each cell. The results are then
transformed into VTK unstructured grid files and arranged
in a simple database format to match the varied parameters
with the result files. We further enrich this database with the
calculated distances to a test data set (see Table I). For the
distance between two parts, we use the normal difference
of each cell’s displacement vector and summarize it for
the whole geometry using root-mean-square (RMS). Based
on these summarized distance values, we can define two
classes for acceptance and withdrawal. In general, there is
no restriction on using regression rather than classification.
We favored the classification approach as it is more common
among the application and more natural to visualize and
interpret. Once a suitable classification method is identified,
switching to regression is possible.

3.2 Visual Ensemble Analysis
We start our evaluation with a rough analysis of the
simulation ensemble. Therefore, we calculated the statistical
properties for both fields (Displacement ‘‘U,’’ Mises-Stress
‘‘S’’) for each cell. The resulting field still preserved the
original topology of the part and allowed us to investigate
the whole geometry distribution. In Figure 4, the standard
deviation of both fields is visualized. In addition, we used
contours to highlight further the regions with a similar
response to the induced loads.
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Figure 3. Workflow for classifier comparison. The workflow steps are preprocessing, parameter pair selection, and classifier evaluation. The preprocessing
step integrates simulation and measurement data and calculates distance values for the whole domain or features selected a priori. In the pair selection
step, a combination of visual methods, e.g., scatter plot matrices and statistical methods like principal component analysis (PCA), can be used. Classifier
performance is evaluated at multiple levels of detail.

Figure 4. Visual Ensemble Analysis. The standard deviation of the resulting fields (Displacement U and Mises-1 Stress S) are calculated along each cell.
This allows a visualization of the resulting deviations along the whole geometry. Contours are used to highlight similar behaving regions. The displacement
field shows the linking of the Z -parameters, in the dark green areas, while the stress field indicates higher impact for the X -parameters (yellow). See Fig. 1
for definitions of the parameters.

Table I. A schematic view of the studied cases and their properties. + refers to
load in positive direction, − in negative direction, and 0 means no load is induced at
this position. We have picked a set of exceptional load cases, to specifically test the
performance in extreme conditions.

ID Property X1 X2 Z1 Z2 Z3 Z4

2
Ambiguous cases

+ 0 0 0 0 0
7 0 − 0 0 0 0

5 Translation in X + − 0 0 0 0
365 Pure Translation − + + + + +

730 Rotation 0 0 + − − +

458 Maximum Load + − − + − +

3.3 Parameter Space Exploration
3.3.1 Similarity Calculation
At first, we analyzed the displacement field and split the do-
main into clusters in a preprocessing step. On these clusters

or the whole domain, we apply a distance metric between
the measurement/test data and the simulation/training data.
This distance metric is normalized, leading to a general
similarity term using the following formula:

Si = 1−
1(Ui, Û )

max(Ui)
. (1)

Here, Ui refers to each displacement field of the training
data set, and Û refers to the reference displacement field.
1 is synonymous for the chosen distance metric. In our
use cases, we use the RMS error. Hereafter, we will only
refer to similarity as our primary dependent attribute.
The resolved similarity calculation is the starting point for
the parameter estimation task. To better cope with the
classification methodology in quality control, we have to
separate the value range of the similarity into discrete classes.
For simplicity, we chose only two classes: Acceptance and
Withdrawal. We only have to define one threshold value,
typically referred to as thhigh in the figures.
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Figure 5. Distribution patterns using violin plots. An example of how violin plots can be used interactively to spot patterns in the distributions for different
similarity thresholds. The orange distribution refers to the acceptance class, the blue to the withdrawal class. The distribution is shown for each of the six
parameters. Given the example, the values of X1 are more frequently negative for higher similarity values and positive for lower values, which copes with
the test sample used here.

3.3.2 Distribution Analysis
Our first parameter space visualization uses violin plots [10],
see Figure 5. We define a threshold value for similarity
to separate our data set in two classes. For each class, we
plot the distribution of each parameter. With this visual
representation, we can compare parameter impact, in terms
of how often it is present in each class. We can relatively
compare the mean and quartiles, but, more importantly, spot
differences in the shape of the distribution. Of particular
interest are distributions with multiple maxima or minima
(multi-modal distributions), as these suggest the presence of
some symmetry.

3.3.3 Scatter Plot Matrix (SPLOM)
The predictive result for separately investigating each param-
eter is limited. Therefore, we extend the analysis by using
scatter plots, kernel-density estimates, and linear regression
for each parameter pair and compare the distribution and
correlation with similarity in more detail, see Figure 6. The
arrangement in a SPLOM allows us to combine three types of
visualizations in one view. In the lower diagonal, we plot the
distribution of each class based on the respective parameter
values using a kernel-density estimator (KDE). It allows us
to identify high-density regions for parameter combinations.
In the upper diagonal, we use a scatter plot with linear
regression for each class to highlight the interaction between
the two parameters. The correlation from the upper diagonal
plots allows us to determine in what direction to look

for cluster separation. On the main diagonal, we plot the
distribution density of the classes for each parameter.

3.3.4 Principal Component Analysis
At this point, we have analyzed the parameters individually
and found correlations between them. In the next step, we try
to reduce dimensionality and focus on pairs of parameters
or linear recombinations of our initial parameter space. We
investigated two techniques: hierarchical linear regression
(HLR) and principal component analysis (PCA) [35]. In the
HLR approach, we use ordinary-least-square (OLS) as the
model with one constant factor. First, we apply the linear
regression model to each parameter individually and sort
the output by explained variance (R-squared). We use this
order to incrementally add each parameter in the model
and observe its impact on R-squared. Based on the added
value to R-squared in the model, we can determine what
parameters to focus on. In general, this method allows us to
use anymodel, and it has the highest potential to incorporate
application knowledge into the system. Unfortunately, it
restricts us to the original parameter space, and choosing
a good model is a complicated task. PCA finds linear
recombinations of the original parameter space based on
a correlation or covariance matrix. The only parameter we
have to choose is the threshold value for similarity. PCA is
applied to each class. From the bi-plots, shown in Figure 7
we can determine what original parameters contribute to the
principal derived components. The more they align with the
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Figure 6. Scatter plot matrix (SPLOM) with kernel-density estimator (KDE). For a complete pairwise correlation analysis we use the concept of a SPLOM.
In the upper diagonal we use a simple scatter plot which is colored based on the set class labels and enhanced with linear regression curves for
each class. On the lower diagonal we used a KDE to better visualize the shape of the distribution of the two classes. This high-level view allows
us to spot relevant correlations in addition to the ones already found in the ensemble analysis, e.g. row three (Z1) and column six (Z4) indicates
a negative correlation.

axes of a principal component, the better we can separate
our dimensions. The lengths of the arrows depict the relative
impact of each parameter on the derived components. If
multiple principal components have a similarly explained
variance, we investigate each combination separately to
determine good splits.

3.4 Classification via Machine Learning
In the final step of parameter estimation, we use a set of
supervised learning classification methods. All implementa-
tions used in this evaluation are from the ‘‘scikit-learn’’ [36].
The classifiers are chosen in a way to represent a vast range
of methodologies, taking into account the special properties
of the application scenario. Analyzing the commonalities and
differences of them helps us to select the appropriate ones for
further optimization.

3.4.1 Nearest Neighbor Classifications
This is considered as a type of instance-based learning, i.e., it
is not constructing or fitting any internal model but simply

classifies the training data based on a majority vote [12].
The only parameters to choose is the number of neighbors
for the query and a weight function. With increasing k,
noise is reduced in favor of distinctness of classification
boundaries. In general, this method suffers from the ‘‘curse
of dimensionality’’ [37, 38]. In our evaluation, k= 3 turned
out to be a good trade-off value, as we expect to have only a
small degree of noise in the data. The weights are uniform, as
our input space is uniform.

3.4.2 Decision Tree and Random Forest Methods
These methods follow the principle of learning a set of
simple decision rules (if-then-else) from training data [13].
The method of decision trees resembles the manual progress
of an experienced person familiar with an assembly [20].
Decision trees are the only classifier in this evaluation that
can be easily visualized even for higher dimensions. The
decision tree has the highest number of parameters. First,
the quality criterion for the split is chosen. We picked Gini
impurity, as we did not observe any significant differences
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for depth > 4 in comparison to entropy (information gain).
For the split strategy, we chose best over random, as our
training data is nearly uniform. For all other tree parameters,
we used default values, either minimum or maximum
values. The simple decision tree tends to over-fit with these
settings. To address this shortcoming, we extended our
approach by using the random forest classifier, which fits
several decision trees to various sub-samples and averages
the results. We found out that n = 10 subdivisions are a
good trade-off between computational time and increased
predictive quality.

3.4.3 Neural Network
We used a fundamental neural network definition [14]
as starting point for further investigations. A multi-layer
perceptron classifier was chosen with a rectified linear unit
function for the activation, one hidden layer, and a total
number of 40 perceptrons (6 × 16 + 16 + 16 × 2 = 144
weights). The default L2 penalty (0.0001) was chosen with
a constant learning rate. A small test series revealed that a
maximum of 4000 iterations is a good choice as termination
criterion. With two layers, we are still in the class of
continuous functions and can keep the method comparable
to the others, as proven by Brutzkus et al. [39]. In general, a
two-layer network can learn polynomial functions of degree
r over d-dimensional inputs [40].

3.4.4 Confusion Matrix
To objectively compare the quality of the parameter esti-
mation, we use the concept of confusion matrix [41–43].
Each method itself, and the combination of methods, leads
to a prediction range in parameter space. The input test
parameter set and a predefined acceptable deviation are
defining the true conditions for the confusion matrix.
The acceptable deviation depends strongly on the specific
application’s accuracy goal. In the case of the generic
example, we chose 5% of the total parameter value range.
For the real model, we chose 10%. In the confusion matrix
we counted the number of true positives tp, true negatives
tn, false positives fp, and false negatives fn for our total size
of the training data set n. For the evaluation and interpre-
tation, we focus on these three ratios derived from those
numbers:

Accuracy (ACC)=
tp+ tn

n
(2)

Sensitivity (TPR)=
tp

tp+ fn
(3)

Specificity (TNR)=
tn

tn+ fp
. (4)

Accuracy describes the ratio of all correct predictions
concerning the total population. Accuracy does not provide
information about the type of correct/incorrect predictions.
Therefore we additionally use the sensitivity (true positive
rate), which describes the method’s ability to detect the true
parameter values correctly. A high value of sensitivity reliably

rules out negative predictions, while a positive result in high
sensitivity prediction is not necessarily useful for ruling in
the parameter set. Specificity deals with this shortcoming. A
method with high specificity value reliably handles positive
parameter set predictions. Considering our application, one
or the other rate is more important. In ML, high accuracy is
generally preferred over sensitivity or specificity.We consider
two cases:

1. The preproduction phase and quality assurance benefit
from a high sensitivity over specificity to detect anoma-
lies and failures reliably.

2. Mass production and online steering applications favor
a high specificity to minimize spoilage.

Once fitting the training data is accomplished, each
classifier and its underlying data model can be used to
predict the target class, given a set of parameter values.
Typically, a classifier does not just return the best class label;
it also generates a probability for each class in the model for
specified values. More formally,

Predict(PS)CL = [p(class0), p(class1), . . . , p(classi)] (5)

p(classk)= 1.0−
∑

p(classj), for j 6= k, (6)

where PS determines the tested input parameter set, CL
describes the used classifier, and p(classi) is the probability
for predicting classi.

In our experimental setting, the exact parameter values
are known. We evaluate the predict function for values in
a certain range, with a step size h used for visualization
resolution. We plot results from the predict function as
a heat map with value ranges between zero and one, see
Figure 8. The red square is marking the acceptance window.
We can link the three performance values in each row in
Figure 9 with our derived decision map (see Fig. 8). The
sensitivity is the summary result of the Acceptance Window
and specificity of the rest; accuracy summarizes both. Based
on these effective visualizations, we were able to deduce
a general workflow for classifier comparison, see Fig. 3.
For each classifier, we start with the summary performance
indicators, extend the analysis using ROC curves, see Figs. 9,
10, and finally evaluate the shape of the decision boundary
map (see Fig. 8).

4. RESULTS
In our evaluation, we have depicted three exceptional load
cases that are challenging to classify without context; see
Table I. The first group covers an ambiguous symmetric case
for the parameters X1 and X2. The second group consists
of pure translation or rotation. Finally, we consider the
maximum load case to observe the classifiers’ performance
on the boundaries. We will focus on the ambiguous load
and the maximum load case for the demonstration of the
workflow. We first analyze the generic sheet metal case in
more detail and then adapt the results for the automotive car
body part.
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Figure 7. Bi-plot for PCA. With the help of a bi-plot we are able to project the initial parameters with respect to their variance portion on the derived
first and second principal component (yellow arrows). The length of the arrows refer to the eigenvalues of the decomposition. In the given example the
first principal component mainly consists of X1, Z2 and Z4. The arrows opposite direction indicates a negative correlation between Z4 and X1, Z2. The
second principal component consists mainly of X2 and Z3. Z1 has en equal influence on both components.

4.1 Simulation Ensemble Sensitivity Analysis
We can observe that the regions vary, depending on which
field we use as a basis. The stress variation field shows
two dominant peaks left and right, which refer to the
parameters X1 and X2 and two smaller peaks at the bottom,
which refer to the Y boundary condition, which are fixed in
our simulation. Interestingly is that the varied Z-parameters
did not show such how variance peaks. From this, we deduce
that X1 and X2 are, in general, more dominant than the
Z-parameters.

The displacement variation field indirectly shows the
correlations to the initial boundary conditions. We can
roughly separate four regions, from left to right, that reacts
differently.Wehave two regions spanning from top to bottom
with nearly the same width with low variance. The first
region connects the parameters Z1 and Z4, while the second
region connects Z2 and Z3, which results in an overall higher
correlation between those pairs explicitly. In summary, the
analysis of the ensemble reveals three major parameter pairs
to consider: (X1, X2); (Z1, Z4); (Z2, Z3). In addition, if a

single number summary for each part is insufficient to find
the dominating parameters, one should consider segmenting
the geometry concerning two of these three pairs.

Considering the more sophisticated car body part, we
can observe a more complex distribution.

4.2 Parameter Space Exploration
At first, we analyze the distribution of similarity while setting
the threshold value for acceptance and withdrawal. Fig. 5
shows the results for one of the ambiguous cases (ID7). We
summarized our results in Table II concerning the shifting
direction of each class observed. For the ambiguous cases,
we found a shift in X1 and X2, but not in Z1–4. A distinction
between X1 and X2 is not possible. In the translation cases
(5,365), the shift in the distribution forX1 is ambiguous (both
the acceptance and withdrawal classes are shifted in the same
direction). The rotation case also indicates an influence of X1
and X2, which is not correct. For the maximum load case,
this method is not suited at all. Now further analyzing the
ambiguity, we make use of the SPLOM. We can observe that
the acceptance parameter values are clustered in the positive
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Figure 8. Decision Boundaries for three selected use cases. The heat maps are visualizing the prediction probability of each classifier. A five-step color
map is used to point out sharp prediction boundaries with higher values favoring the acceptance class and lower values the withdrawal class. The red
squares are indicating the correct value ranges of the test data set. Instead of comparing the raw numbers, e.g., in ROC curves, this visualization allows us
to compare the shape of the predictive model between the classifiers. For the ambiguous cases (ID2,7) the predictive quality is better than for the maximum
load case (ID458). Also the shape implies a more stable model compared to the maximum load case.

Table II. Results from the distribution shape analysis using violin plots for the generic metal sheet. ‘‘A’’ refers to the acceptance class and ‘‘W’’ for the withdrawal class.+ (−) indicates
a shift in positive (negative) direction. 0 indicates no significant shift. Double markings indicate a strong shift in one direction. Some cases are captured better than others. In most cases,
the dominant parameters are spotted, but the results can be ambiguous (e.g., ID 5,365 X1).

X1 X2 Z1 Z2 Z3 Z4

ID A W A W A W A W A W A W

2 + ++ −− + 0 0 0 0 0 0 0 0
7 ++ − − −− 0 0 0 0 0 0 0 0
5 ++ ++ ++ −− 0 0 0 0 0 0 0 0
365 ++ ++ ++ −− + 0 + 0 + 0 + 0
730 − ++ + −− ++ − −− 0 −− 0 ++ 0
458 0 −− − −− 0 0 0 0 + −− ++ 0

part of X1. For the withdrawal parameter, there is no distinct
cluster in one specific region. This way, we can untangle
the ambiguity for cases 5 and 365. For the maximum load
case, analyzing the SPLOM reveals that every parameter has
an influence, which better copes with the expected solution.
Nonetheless, it does not favor any direction of the parame-
ters, but we can observe strong correlations between them.

To reduce the complexity, we use the PCA to summarize
the parameter correlations into two principal components.
Using the bi-plot from Fig. 7, we can group (X1, Z2, Z4)
and (X2, Z3), Z1 has an equal influence on both groups. The

vectors opposite direction indicates a negative correlation
between Z4 and X1, Z2. The length of the vectors for X2
and Z3 further implies a more substantial influence on the
components and influencing the first component as well. We
will further focus on these derived groupswhen analyzing the
classifier results.

4.3 Classifier Comparison
In the predictions discussed next, we will exemplarily show
the performance of the classifiers for one of the ambiguous
cases (ID 7) and the maximum load case (ID 458). In
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Figure 9. ROC curves and classifier performance indicator distributions for the ambiguous case (ID7). We tested three pairs of parameters here. The ROC
curves on the left show the ratio between false positives and true negatives. Throughout all classifiers it indicates the best performance for the parameters
X1–X2, which matches our expectations for this case. The specificity (right) is high for all classifiers and parameter pairs. Regarding sensitivity (middle) the
random forest approach is the most stable.

general, we observe that there is no overall best way for
classification regarding the special cases, which copes with
the ‘‘No free Lunch’’ theorem byWolpert and Macready [44]
and specifically holds for ML as well [45]. All classifications
have low sensitivity between 0.102 and 0.422 (mean= 0.212,
SD = 0.093), while accuracy is always above 0.842 (mean =
0.894, SD = 0.029) and specificity is usually high, between
0.892 and 0.928 (mean = 0.938, SD = 0.02). The classifiers
vary from case to case and from one projection to the other.
We can onlymerely explain the differences between the cases
as well as along the methodologies or projections just by
studying the performance indicators. Therefore, we enhance
the analysis with a more detailed view using the decision
boundaries as depicted in Fig. 8.

From the analysis of the performance indicators for
case ID 7, we can state that all classifiers retrieved the best
results for the (X1, X2) pair (see Fig. 9). The specificity is
high for all classifiers; only the k-nearest-neighbor approach

has two low specificity peaks. For the sensitivity, the neural
net performs worst. The k-nearest-neighbor has the highest
sensitivity peak, but also a higher low one. The Random
Forest approach is stabler in this regardwith an overall higher
sensitivity. On the other hand, the KNN and Random Forest
approach tend to over-evaluate the importance of the other
parameters (Z1–Z4). Now looking at the maximum load
case, the difference between the classifiers is shrinking.

4.4 Comparison among the Classifiers for Selected Cases
4.4.1 k-nearest-neighbor Method
The k-nearest-neighbor (KNN) method performs well for
cases with few dominant effects like the ambiguous cases 2
and 7 studied here, where only X1 and X2 are varied. In
general, we can observe that the classifier performs well in
the X1–X2 projection for all cases. The ROC curves for this
approach vary significantly. In the sensitivity distribution we
can observe the absence of a low sensitivity cluster in case 7
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Figure 10. ROC curves and classifier performance indicator distributions for the maximum load case (ID458). For the selected boundary case the
classifiers are struggling to fit an adequate model. Only analyzing the ROC curves would imply that the neural net seems to perform well. A closer look at
the sensitivity and specificity reveals that this results from very high specificity values shadowing the very low sensitivity.

compared to case 2. Analyzing the decision boundaries (see
Fig. 8), we find multiple small clusters with high prediction
probabilities. This effect shows that the KNN approach is
very sensitive to outliers.

4.4.2 Random Forest
The random forest approach is, on average, the best
performing classifierwith respect to sensitivity (mean= 0.25,
SD= 0.11). It performs similarly to the KNN approach, but,
due to its random nature, it is more stable in the presence of
outliers, producing better results on average. We can observe
this as well for the ROC curve which shows slighter changes
than for the KNN approach. In the distribution there is only
one dominant cluster, which stretches out over the three
clusters from the KNN. Due to its weighting of local minima,
it allows us to better detect clusters when compared to the
KNN approach, see Fig. 8. But the randomness makes it
harder to predict the right interval.

4.4.3 Neural Network
The rudimentary trained neural network performs poorly
in most cases. Average sensitivity is 0.172 and standard
deviation is only 0.078, which makes it the most stable
method. In the ROC analysis, on the other hand, the
neural net achieved overall best results. In the sensitivity
distribution there is only one dense cluster, but with low
sensitivity. There are only minor variations between the
cases, which confirms the low standard deviation. When
analyzing the decision boundaries, we observe that the neural
net forms one clear cluster around the target parameter
set (see Fig. 8), but with low prediction probability. This
observation is an example of misled deduction based
on merely analyzing methods’ higher-level performance
characteristics, e.g., ROC curves. In summary the neural net
is better deducing a general model and less likely to over-fit.

4.5 Symmetrical Load Conditions on Real Car Body Part
In general, the results reassemble those from the generic
case, but with more noise. Instead of repeating the results,
we want to highlight one anomaly that caught our attention.
In the case where only ‘‘SB_L’’ or ‘‘SB_R’’ is varied, which

resembles the ambiguous case from the generic example,
we spot a significant difference in the predictive quality.
For the case ‘‘SB_L,’’ the proposed methodology worked
as expected, like in the generic use case (see Fig. 11 top).
However, for the symmetrical case, ‘‘SB_R,’’ none of the
studied methods here revealed a consistent and correct
dominating parameter. After some further testing, we found
out that this effect reoccurs when a significant high load in
the positive z-direction at ‘‘SB_R’’ is induced while ‘‘S_L’’
receives nearly zero loads. The decision boundary of the
classifiers (see Fig. 11 bottom) clearly shows this. We assume
that the current labeling approach does not adequately
cover the inherent asymmetric rigidity and distribution
of the boundary conditions, requiring a solution at the
preprocessing level to capture this property in the distance
metric adequately.

5. CONCLUSIONS
We have introduced a visual analytics approach to detect and
analyze the dominant parameters inmanufacturing assembly
processes, supporting a prioriQC from a reverse engineering
perspective. Our approach makes possible a comparison
by providing the ability to explore various indicators
and use different visualization methods in conjunction to
show differences for effective interpretation. Our integrative
approach to combining visual analytics and ML-based
classification results, with a focus on especially visualizing
decision boundaries, allows a user to efficiently explore
dominant parameters for a detailed analysis, see Figs. 8,
11. For relatively simpler cases, the analysis of distributions
is a viable option. An ensemble analysis provides us
with helpful insight for identifying parameter pairs to
focus the correlation analysis on. This is an important
contribution, as this allows us to reduce the SPLOM to few
comparisons. Dimension reduction techniques can be used
to identify higher-order correlations, revealing potentially
relevant parameter pairs for a specific case. It is possible to
use relatively few projections to explore decision boundaries,
as demonstrated in our example. We have shown how
classifiers can be compared regarding their predictive visual
shape in their respective prediction classes. We have used
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Figure 11. Different classification for symmetric boundary conditions for real car body part (sheet metal). When applying the methods to the sheet metal,
we can observe large performance differences for symmetric boundary conditions. The left-side boundary condition (SB_L) is better predicted than the
right-sided (SB_R ). The inherent asymmetric rigidity of the part is not captured by this simple approach. For more complex parts an a priori feature or cluster
definition in the domain space would be needed.

binary classification, but the approach can use any number
of classes. The limiting factor is a human’s cognitive capacity
for visual comparison.

There does not exist a dominating classifier that can
handle all exceptional cases better than the others. We
can investigate drawbacks of the classifiers for ambiguous
load cases. ROC curves used for comparison are ideally
part of a methodology, e.g., when comparing different
parameters in a random forest approach. For the comparison
of methods the shape of decision boundaries leads to
better results. Even when employing only a rudimentary
approach for labeling and training, classifiers identify trend
behavior of dominant parameters, effectively supporting
decision-making for ruling out specific parameter sets (high
specificity). It should be possible to achieve even better
results by improving labeling. This could be realized via
feature detection or local clustering instead of considering
RMS deformation distance values. Our method allows
one to directly compare and interpret changes in the
labeling approach for each classifier and classifier parameter
sets, which is crucial for comparing neural networks.
The high-dimensional data visualization challenge remains,
considering the large numbers of parameters involved and
the fact that decision boundaries are easily comprehensible
only with visualizations in the plane. It is planned to
compare different classification parameters and labeling
approaches, and extend the framework by adding capabilities
for enhanced interactive visualization. It is an open question
whether a generally applicable optimal distancemetric exists,
as we believe that it is the underlying application that
determines a best specific metric.
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