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Abstract—We present a novel approach for analyzing two-dimensional (2D) flow field data based on the idea of invariant moments.
Moment invariants have traditionally been used in computer vision applications, and we have adapted them for the purpose of
interactive exploration of flow field data. The new class of moment invariants we have developed allows us to extract and visualize 2D
flow patterns, invariant under translation, scaling, and rotation. With our approach one can study arbitrary flow patterns by searching
a given 2D flow data set for any type of pattern as specified by a user. Further, our approach supports the computation of moments at
multiple scales, facilitating fast pattern extraction and recognition. This can be done for critical point classification, but also for patterns
with greater complexity. This multi-scale moment representation is also valuable for the comparative visualization of flow field data.
The specific novel contributions of the work presented are the mathematical derivation of the new class of moment invariants, their
analysis regarding critical point features, the efficient computation of a novel feature space representation, and based upon this the
development of a fast pattern recognition algorithm for complex flow structures.

Index Terms—Flow Visualization, Feature Detection, Pattern Extraction, Pattern Recognition, Image Processing.

1 INTRODUCTION

Feature extraction has become an enabling technology for interactive
and visual data exploration. Especially highly complex scientific data
sets like those generated by modern computational fluid dynamics sim-
ulations require us to develop more effective feature-based visualiza-
tion approaches. A core effort for feature-based methods is the proper
detection and classification of relevant information. But the classifi-
cation of relevant information is not trivial. Many existing methods
concentrate on the topological properties of a vector field. Though
this is a reasonable and widely accepted methodology, most methods
are very limited. For application, it is also interesting to extract and
visualize more complex features, e.g., for the comparison of data sets.
There is still a lack of methods that offer the recognition of freely de-
fined user patterns in an acceptable amount of time. Complex pattern
structures can with currently existing methods be recognized in just
one configuration. For finding all occurrences in a data set, the pat-
tern has to be computed multiple times in various scales and for each
scale in various rotation angles. Since this is the bottle-neck of exist-
ing methods, there is the lack of a pattern description that is invariant
to scaling and rotation operations. As a first step towards the goal
of a real-time pattern detection algorithm for general flow fields, we
present an approach for a rotation- and scale-invariant representation
for 2D flow field patterns.
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We present a novel mathematical approach that extends the so-called
moment invariants to flow data. Moment invariants are very common
in font recognition and image understanding. The extension to flow
fields is not trivial, since flow vector data is spatially correlated so that
a component-wise approach would not be appropriate. The fact that
vectors of a pattern structure change their values upon rotation of the
structure is described in Section 3.1.
Besides presenting the mathematical foundations we also analyze the
behavior of our novel flow vector moment invariants for topologically
interesting features. This enables us to propose a very simple algo-
rithm for detection of sinks, sources, and rotations, even of deformed
versions.
Our main goal and second major contribution is an algorithm that can
indeed detect patterns of arbitrary complexity on a circular domain for
2D flow fields. Using a tolerance control we also enable users to find
similar pattern structures. The algorithm uses the precomputed mo-
ment invariants containing all possible pattern configurations. As the
computation of the moment invariants of one reference pattern is ex-
tremely fast, the additional usage of a look-up-table for the moment
values contained in a field reduces the search space and thus enables a
fast pattern recognition.
The pre-computed structure for this search algorithm, the so-called
moment pyramid (see Section 5.4) is built by the application of a fast
convolution implementation. For this reason, moment basis functions
have been discretized to masks, see Section 5.2.
A general pattern recognition method like this is also applicable for
comparative visualization purposes. By pre-defining certain patterns
for example data sets can be visually compared. There is also the
possibility of performing comparative visualization by browsing the
feature space built up by our moment invariants.
The main advantage of our pattern recognition method compared to
others aiming the same goal is that with our method, it is possible
to provide a rich information base in a pre-computation step that en-
ables pattern detection and classification a lot faster. Besides speed,
another main focus is generality. With this work we are presenting a
fundamental first step towards future development of a fast 3D pattern
classification and visualization. The theory part of our work is pre-
sented in Section 3 (mathematical definition of the moment invariants)
and Section 4 (their properties for prominent flow features). After the
computational aspects in Section 5 we present specific applications, as
core the novel fast pattern recognition algorithm, and the results we
obtained in Section 6.

2 RELATED WORK

Higher-level and more qualitative means for effective processing
and analyzing complex scientific data sets is becoming increasingly
important. Especially in the context of analyzing and understanding



the increasingly large and complex data sets produced by contem-
porary supercomputer simulations of realistic flow field phenomena,
methods for meaningful feature extraction and feature visualization
are required. Computational fluid dynamics data sets have motivated
our research presented here especially for large datasets. Much
work has been done in the area of automatic detection of features
such as shock waves, vortex cores, boundary layer separation and
reattachment lines, flow topology, and boundary layer characteristics.
What features are considered to be most important depends on the
specific application. Given the large amount of research that has been
done in these areas an exhaustive overview would go beyond the
scope of this paper. For a more detailed overview over common flow
visualization methods we refer to [17] and [8]. While these methods
are very successful when looking for these specific features they are
too specific to approach more general structures, which might not
belong to one of these classes.

A more flexible way to approach a wider range of predefined
features is using methods from signal and image processing for
pattern recognition. Heiberg et al. [11] introduced a convolution
operator for pattern recognition applied to vector field data defined
over an underlying uniformly spaced mesh. Ebling and Scheuermann
modified this approach based on Clifford algebra [4] and applied
it also to non-uniform data [5]. These methods are based on filters
that in general are neither scale- nor rotation-invariant. To find
patterns of different size and orientation one has to perform the
filtering multiple times using adjusted filter masks. To speed up the
time-intensive convolution step, Ebling and Scheuermann introduced
a vector Fourier transform based on Clifford algebra [6]. This reduces
the filter operation to a multiplication in frequency domain. For the
unstructured case Schlemmer et al. [19] generalized this approach
to a non-uniform fast Clifford Fourier transform. Even though the
fast Fourier transform (FFT) improves the efficiency, the algorithms
are still far away from supporting real-time pattern recognition for
arbitrary pattern scales and orientations.
In image processing the problem was tackled by introducing invariant
moments, first proposed by Hu [12]. By now, they have become
a standard method in image understanding and font recognition.
Therefore, many scientists use these moments or their derivatives for a
wide range of applications, e.g., Liao et al. [15] for Chinese character
recognition and Terrillon et al. [21] for face tracking in virtual reality
(VR) environments. Abu-Mostafa and Psaltis [1] revised Hu’s theory
of moment invariants by introducing complex moments that have
been further improved by Flusser [9, 10].
The definition of our invariant moments is in analogy to the definition
of a moment basis by Flusser. With our approach, we are able to
create a look-up table for the information given in the flow field
speeding up the process of pattern recognition substantially.
Our concept of invariant moments opens new possibilities to compare
data in moment space. Traditional comparison techniques are image-
based, where visualizations for each data set are generated separately
and compared side-by-side. For scalar fields a quantitative compari-
son method on the data level has been proposed by Edelsbrunner et
al. [7]. Sahasrabudhe et al. [18] defined metrics for comparing data in
the spatial domain, which are usable for images and other data sets.
Previous work on comparative visualization for flow fields includes
the work of Pagendarm et al. [16] and Verma and Pang [22], which
is based on the comparison of stream and vortex lines. Recently,
Svakhine et al. [20] and Callahan et al. [3] have presented systems
that support comparative visualization. The use of our approach,
which is based on scale- and rotation-invariant moments, offers a very
flexible pattern-based similarity computation.

3 DEFINITION OF MOMENT INVARIANTS FOR FLOWS

3.1 Problem Description and Motivation

A major contribution of our work is the definition and realization of in-
variant moments for feature-based analysis of flow fields. Our method
supports the fast recognition of arbitrarily defined patterns in given
flow vector data. With arbitrarily defined patterns we mean patterns

on a circular domain with arbitrary content. There are interesting ex-
amples where recognizing freely defined flow patterns can be useful
in practice. Our main motivation however is building a solid founda-
tion towards an interactive 3D environment for analyzing structures in
scalar, vector, and tensor data. This work represents a first step towards
this goal. Although, a similar pattern recognition in flow fields might
also be performed with related methods, like the method of Ebling and
Scheuermann, we are able to do this with higher accuracy, much faster,
also for large data sets.
Moment Invariants, a technique known from image understanding, can
be used for pattern recognition in scalar data. In this section we in-
troduce a new class of moment invariants describing 2D flow vector
patterns being invariant under translation, scaling, and rotation.
Moment invariants capture essential information of a given field, con-
taining most of the information in its lower order elements (similar to
a Fourier representation). The main advantage of this technique is that
the pattern information is stored in a form that is invariant to transla-
tion, scaling, and rotation.
When generalizing the invariant moments to flow fields it is not
enough to consider each component separately as it would be possi-
ble for spatially uncorrelated vector-valued data, e.g., color images.
The definition of rotation invariance of scalar moment invariants is not
appropriate for flow fields. This problem is illustrated in an exam-
ple shown in Figure 1. In the following paragraph the mathematical

Fig. 1. Difference in the understanding of a rotation operation between
spatially uncorrelated data (e.g., a vector representation of colors, (left
part) and flow data (right part). While for uncorrelated data a rotation
only applies to the domain, rotation of the (vector) values has to be
taken into account for an invariant description of flow features.

foundations of our flow moment invariants are explained. Even though
the physical meanings of moment invariants are an interesting research
subject we will concentrate on their algebraic properties, since we con-
sider those properties being most important for pattern recognition and
visualization. As an example for application areas of moment invari-
ants, Section 4 shows the characteristics of moment invariants for crit-
ical point features. For this special area, moment invariants are quite
similar to other known descriptors like the Pointcaré index. In contrast
to the Pointcaré index, moments are designed to handle more general
patterns, not only critical point features.

3.2 Basics

Our derivation of flow vector moment invariants is based on complex
moments, as used by Flusser [9]. We generalize the complex moments
c′pq to vector-valued functions. Let f : R2 →C∼= R2 be a map from R2

with f $= 0 only in a compact subset G ⊆ R2. Let further p,q ∈ N and
i =

√
−1 ∈ C. The complex moment of order (p + q) of f is defined

as

c′pq =

∞∫

−∞

∞∫

−∞

(x+ iy)p(x− iy)q f (x,y)dxdy. (1)

Note, that we use the isomorphism of R2 and C to represent the im-
age of f as complex values. By application of the binomial theorem
complex moments of arbitrary order can be represented as linear com-
binations of regular moments:

c′pq =
p

∑
j=0

q

∑
k=0

(
p

j

)(
q

k

)

(−1)q−k ip+q− j−k m j+k,p+q− j−k (2)



with the regular moments

mpq =

∞∫

−∞

∞∫

−∞

xpyq f (x,y)dxdy. (3)

3.3 Translation and Scale Invariance

In the scalar case translational invariance is obtained by shifting the

original origin of function f : R2 → R2 onto its centroid zscal
f , being

defined by zscal
f = (x̄, ȳ)T =

(
m10
m00

, m01
m00

)T
. As a similar function is

likely to have a similar centroid, this method enables a translation-
invariant comparison. In contrast to scalar fields, where the centroid
corresponds to the center of mass, there is no obvious equivalent
for vector-valued data. An appropriate definition of the centroid is
strongly dependent on the specific application. Therefore we leave the
centroid definition open in this section to keep the theory part of our
work as general as possible. In practice, the centroid can be defined,
for example, by vector length or by vector direction.

Scale invariance means that the moments do not change when
the patterns are scaled. This can be achieved by scaling the moments
appropriately. Again there are different possibilities to define scale
invariance for vector fields. In particular we propose two definitions.

Let f : G → C be a vector-valued function as defined above. Let
further f̃ : G̃ → C be a version of f scaled by a factor s ∈ R\{0}. The
function f is scaled equally in domain and value: f̃ (x,y) = s · f ( x

s ,
y
s ).

An invariant Is with Is( f ) = Is( f̃ ) is called total scale invariant.

This definition is very restrictive. Patterns are only recognized
to be similar when both domain space and dependent vector field
values scale in the same way. However, for many patterns it is more
interesting to consider only the direction field. In these cases it would
be advantageous to define scale invariance only on the domain, not
on the image of f . A weaker definition appropriate for homogenized
flow fields, is given in the following:

Let f : G → C be a vector-valued function as defined above.
Let further f̃ : G̃ → C be a version of f , on a domain scaled by a
factor s ∈ R\{0}: f̃ (x,y) = f ( x

s ,
y
s ). An invariant Is with Is( f ) = Is( f̃ )

is called domain scale invariant.

These invariants can be obtained by multiplying the complex
moments, as defined in Equation 1, with a scaling factor. For an
invariant Is( f ) this factor is defined by a power of the volume of the
domain G of f . Combining translation and scale invariance, we can
define scale- and translation-invariant complex moments as

cpq =
1

vγ

∞∫

−∞

∞∫

−∞

(x̂+ iŷ)p(x̂− iŷ)q f (x,y)dxdy (4)

with v =
∫

G 1 dxdy, x̂ = (x− x̄), ŷ = (y− ȳ), and γ = p+q+3
2 for total

scale invariance, γ = p+q+2
2 for domain scale invariance. In analogy

to equation (2), there is an alternative representation for cpq:

cpq =
p

∑
j=0

q

∑
k=0

(
p

j

)(
q

k

)

(−1)q−k ip+q− j−k η j+k,p+q− j−k (5)

with the normalized central moments

ηpq =
1

vγ

∞∫

−∞

∞∫

−∞

x̂pŷq f (x,y)dxdy. (6)

3.4 Rotation Invariance

For the derivation of rotational invariance it is essential to rewrite the
moments in polar form. This can be done similarly for regular complex

moments c′pq as well as the translation and scale invariant version cpq.
Since the derivation of rotation invariance is independent of scale- and
translation-invariance, we only use the term complex moments as it is
more general. The substitutions of x̂ = r cos(ϕ) and ŷ = r sin(ϕ) yield

cpq =
1

vγ

∞∫

0

2π∫

0

rp+q+1 ei(p−q)ϕ f (r,ϕ)dϕdr. (7)

Lemma 3.1 Let f̃ be a version of f rotated around its centroid with
angle α: f̃ (r,ϕ) = eiα · f (r,ϕ −α). Let c̃pq be a complex moment of

order (p+q) of f̃ . Then:

c̃pq = ei(p−q+1)α cpq (8)

Proofs are given in the Appendix. Using this lemma, we can derive a
set of moments that is invariant to rotations for 2D flow fields. For this
purpose, the factor ei(p−q+1)α has to be eliminated by an appropriate
combination of complex moments cpq.

Theorem 3.1 (Construction of rotation-invariant moments)
Let cpjq j

, j = 1, ...,n, be complex moments of a map f : G → C ∼= R2,

with G ⊆ R2 and let
n

∑
j=1

(p j −q j) = −n. Then

Ir =
n

∏
j=1

cpjq j
(9)

is invariant under rotation, i.e., Ir does not change when f is rotated
with an arbitrary angle α .

3.5 Invariant Moment Basis for Flows

A combination of complex moments needs to satisfy the property
n

∑
j=1

(p j − q j) = −n as stated in Theorem 3.1 to form moment in-

variants. Using the shown methods to derive translation-, scale- and
rotation-invariant moments, an infinite number of moment invariants
can be generated. In practical applications, only a finite number can
be used. In scalar application, moments are in general limited to order
three, since higher-order moments become more and more numerically
instable. Furthermore, almost all information is stored in lower-order
moments. For our applications we have constructed a basis B of order
two of invariant moments, according to theorem 3.1, incorporating the
translation and scale invariance given in Section 3.3. A basis of mo-
ment invariants of a specific order n is a set of moments with order ≤ n
that contains only independent moments and can represent completely
all other moments of this order. For more details on the definition of
a moment basis, we refer to Flusser [9]. Our basis for flow vector
moment invariants is defined as follows:

B =
{

c01, c00c02, c11c02, c10c2
02, c20c3

02

}

. (10)

As mentioned, those complex values describe a vector function invari-
antly under translation, scaling, and rotation. There is another very
interesting property of those moments. The real part of the complex
moments is invariant to mirror operations, while the imaginary part
just changes its sign. This means that mirrored occurrences of a pattern
structure can also be recognized by regarding the real part and the ab-
solute value of the imaginary part. For patterns being self-symmetric
the imaginary part is zero. For improved notation in the following sec-
tions, we define abbreviations for our complex-valued basis elements:

Ψ1 = c01,
Ψ2 = c00c02,
Ψ3 = c11c02,

Ψ4 = c10c2
02,

Ψ5 = c20c3
02.

(11)

In contrast to the scalar case, c00 is not rotation-invariant. This obser-
vation arises from the fact that not only the domain, but also the vector
values change under rotation of the flow pattern (see Figure 1).
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Fig. 2. Invariant moment values for proto-typical flow features. The fact that all second-order moments (Ψ2,3,4,5) are zero for linear vector fields
enables an easy recognition of these features.

4 VECTOR MOMENT CHARACTERISTICS FOR CRITICAL

POINTS

In this paragraph we exemplarily provide some continuous moment
representation for some proto-typical 2D critical points. This contin-
uous evaluation is compared with our discrete computation results in
Section 6.2. Critical points are only a special class of patterns we
want to observe with our method. However, we consider them as a
good example to show how the moments are evaluated continuously
and provide some information on their behavior.
As an example for a pattern we present the continuous values of our
vector moment invariants for a counter-clockwise rotation. It can be
described continuously by f : G → R2:

f (x,y) =









(0,0)T , if x = y = 0

1√
x2+y2

(

−y

x

)

, otherwise
. (12)

The moments of f over a circular domain with radius one and center
in the critical point can be derived with equation (3):

mpq =

1∫

−1

√
1−x2
∫

−
√

1−x2

xpyq −y+ i x
√

x2 + y2
dydx (13)

for (p+q) ≤ 2 yielding

m01 = − 1
3 π m10 = i 1

3 π
m00 = m02 = m11 = m20 = 0.

(14)

As we integrate over the unit circle (having area π) with the critical

point as centroid, it yields ηpq = 1
πγ mpq, γ = p+q+2

2 . Therefore, we
can apply equation (5) and (11) to calculate our moment invariants:

Ψ1 = i 2
3
√

π
≈ 0,376126389 i

Ψ2 = Ψ3 = Ψ4 = Ψ5 = 0.
(15)

This calculation can also be performed for other critical features, i.e.,
clockwise rotation, convergence, divergence, or saddles. For these
critical features we also obtain interesting results as shown in Fig-
ure 2. Obviously, only the first-order invariant moment Ψ1 = c01 is
non-zero for most of the observed features. Rotation patterns have a
purely imaginary value in c01, while it is real for convergence and di-
vergence. This fact even holds for compressed versions offering a sim-
ple algorithmic way for a good classification of these features. Further-
more, turning each single vector belonging to a pattern 90◦ counter-
clockwise yields a multiplication of c01 with the complex number i.
Moreover, this fact holds for any kind of pattern.
We discovered that the continuous representation of purely homoge-
neous flow as well as saddles have their moment invariants being zero.
This can be resolved by taking into account an already precomputed
parameter: the absolute value of the sum over all vectors in the pattern

|m00|. For saddles |m00| vanishes, while it is definitely non-zero for a
homogeneous flow. Instead of |m00| one can also use the shifted and
scaled version |c00|. We present a method for highlighting critical fea-
tures using the properties described in Section 6.2 and as second-order
moment invariants are relevant for more complex patterns, we also
present a pattern recognition algorithm suitable for search patterns of
arbitrary complexity on a circular domain.

5 COMPUTATION OF MOMENT INVARIANTS FOR FLOWS

5.1 Basic Considerations

Invariant moments are mainly used in image processing and font
recognition. They are usually applied to a pre-segmented portion of
a given data set. A vector field segmentation implies, however, strong
restrictions to special regions of flow behavior. To keep the system
general for the recognition of arbitrary flow patterns, the whole data
set has to be taken into account. Thus, we developed a multi-scale
approach for analyzing 2D flow data, described in Section 5.4. This
approach can be used for an invariant pattern recognition. To extract
the information of a data set at various scales, one has to use filter
functions to extract the information. For covering the whole field one
can apply a correlation operation. Thus, we discretize the flow vector
moments to filter masks and perform the correlation by a convolution
of mirrored masks with the field enhanced by a Fast Fourier Transform
(FFT) implementation. The discretization and convolution process is
described in detail in Section 5.2.
The convolution is computed for all discrete radii resulting in the mo-
ment pyramid. Since the convolution operation increases continuity
by one degree, small perturbations in the radii between these discrete
positions tend to have only very limited effects. Since the convolution
operator covers the whole field, translation invariance becomes obso-
lete for this special application of the theory. This does not mean it
becomes obsolete in general, i.e., for our setting we have to choose the
centroid to be located in the center of each filter mask.
We have mentioned two types of scale invariance in Section 3. De-
pending on the application, one might be only interested in the di-
rectional behavior of vector patterns. If total scale-invariant moments
are chosen, vector magnitude has a big influence on the results, i.e.,
patterns that are equal in directions and different in scale are not rec-
ognized. Therefore, we decided to homogenize the vector length of the
field and store the magnitude information separately as a scalar field.
The direction information can be examined using our flow vector mo-
ments with domain scale invariance. Flow magnitude can be regarded
as an image and be processed using our pyramid approach with the
standard scalar moment invariants. If one is only interested in recog-
nizing structures that are both, similar in vector direction and length,
one has to change the computation from domain scale invariance to
total scale invariance.

5.2 Correlation with Moment Filter Masks

For an efficient computation of the vector moments of the complete
field we have implemented a correlation of the field with specific mo-
ment filter masks. In equation (5) we have shown how complex mo-



ments can be represented by normalized central moments. Those mo-
ments can be easily derived from regular moments mi j . Regular mo-
ment filter masks can be discretized and computed independent from
the data. It is the correlation of these masks with f that result in the
moments mi j . For an efficient computation, we perform the correla-
tion as a convolution with mirrored filter masks. The convolution can
be enhanced by using component-wise Fast Fourier Transforms (FFT)
and multiplication in frequency domain. The normalized central mo-
ments ηi j are calculated by application of shifting and scaling onto
mi j . As rotation invariance cannot be fully guaranteed for rectangular
masks, the moments are trimmed to a circular isotropic domain around
the chosen centroid. Those can be used to compute our complex mo-
ments cpq (see equation (5)). Inserting these values into our invari-
ant basis, we obtain according to equation (11) the values Ψ1, . . . ,Ψ5.
These values are finally invariant to translation, scaling, and rotation
for any kind of given pattern.

5.3 Overcoming Discretization Issues

For small mask sizes the coarse discretization of the moment calcula-
tion introduces a high relative error. This is because the domain ought
to be circular. Larger mask sizes are better in approximating this cir-
cle. So, using super-sampling we can strongly increase accuracy for
smaller mask sizes. The heuristic we applied for our data is to use
a five times super-sampled field for mask sizes from 5x5 to 20x20,
and for all others the regular field size. This procedure lifts accuracy
of a 5x5 moment computation to the stable 21x21 moment computa-
tion. The improvement in accuracy is also depicted in Table 1 of our
results section. The fact that an improvement can be reached by super-
sampling, as well as the fact that our theoretic foundations are based
on continuous data also show that our method is, though not imple-
mented yet, also applicable on arbitrary grids or pure point set data
without an underlying grid (see also Section 5.5).

5.4 Multi-scale Moment Pyramid

For each scale of the filter masks correlations are performed, each re-
sulting in a field on a two-dimensional domain containing the invariant
moments Ψ1, . . . ,Ψ5. Those fields become smaller for increasing scale
of the filter masks, since we decided to omit the border in our imple-
mentation. Thus, the resulting collection of moment fields is called
moment pyramid.
A moment pyramid provides a discretized description of all possible
vector patterns of an underlying field, stored with height correspond-
ing to the scale of the pattern and the corresponding position at each
specific scale level of the pyramid.

5.5 Generalization

Although our implementation concentrates on circular features, there
are ways to handle differently shaped patterns. Patterns can be sub-
divided into (overlapping) circular regions. Those regions can be an-
alyzed or used as input for a search algorithm. A search algorithm
regarding these connected regions has to be extended with a method
that compares the positions of each circular pattern finding, enabling a
classification of non-circular patterns. Although, global features, like
for example separatrices cannot be found directly with this method
one might specify pattern regions that are characterizing separatrices.
Moment invariants might be utilized for vector field segmentation also
resulting in separatrices in future work.
Another point that has already been mentioned is the extension to un-
structured grids. This can be done in an elegant fashion, as the the-
ory of vector moment invariants is formulated for continuous data.
Though, to achieve this there is a need for a new data structure, as
the presented moment pyramid has been designed for uniformly struc-
tured data. Another possibility would be to keep the data structure
for this purpose and just use our super-sampling method at very high
resolution for unstructured grid data. Of course, in this case a good
interpolation method is essential for good results. An additional un-
certainty visualization should also be included in this case, depending
on the density of the input samples. This can also be an aspect of
future development.

6 APPLICATIONS AND RESULTS

6.1 Analyzed Data

In this section we describe two data sets from CFD: a simulation of a
turbulent swirling jet flow with low Reynolds number and the Boussi-
nesq Flow, both based on the solution of Navier-Stokes equations.

6.1.1 Low Re-number turbulent swirling jet flow

The development of a recirculation zone in a swirling flow is investi-
gated by numerical simulation. This type of flow is relevant to several
applications where residence time is important to enable mixing and
chemical reactions.
The unsteady flow in a swirling jet is simulated with a hybrid spec-
tral - finite difference method. The Navier-Stokes equations for an in-
compressible, Newtonian fluid are set up in cylindrical coordinates in
terms of (complex-valued) stream-function and pressure modes, which
are governed by Helmholtz PDEs, and azimuthal velocity and vortic-
ity modes, which are determined by evolution PDEs.
All equations are dimensionless containing the Reynolds number

Re ≡ vz(0,z0)D
ν and the swirl number as defined by Billant et al. [2]:

S ≡ 2vθ (R/2,z0)
vz(0,z0)

, where z0 = 0.4D, D = 2R is the nozzle diameter and ν

the kinematic viscosity.
The PDEs for the Fourier modes are discretized in the meridional
plane with 8th order central difference operators for the non-convective

terms and with a 9th order, upwind-biased operator [14] for the convec-
tive terms. Time integration is accomplished with an explicit s-stage,
state space Runge-Kutta method ([23], [13]) where the Helmholtz
PDEs for the stream-function and pressure modes are solved at each
stage, the present method is fourth order accurate with s = 5. The
time step is controlled by the minimum of two criteria: The limit set
by linearized stability analysis and the limit set by the error norms of
an embedded third order Runge-Kutta scheme [23]. The Helmholtz
PDEs for stream-function and pressure modes are solved with an iter-
ative method using deferred corrections and LU-decomposition of the
coefficient matrices. The deferred corrections method is designed to
reduce the bandwidth of the coefficient matrices. It converges rapidly
using about ten to twenty steps, the rate of convergence increasing
with the azimuthal wavenumber.
The simulation used for our feature-based analysis in section 6.3 re-
sults for the Reynolds number Re = 900 and the swirl number S = 1.41
within the range of the experiments of Billant et al. [2] at a time
(t = 12.4) when the recirculation bubble has formed and the initial
symmetries of the flow field have been broken due to the disturbances
introduced at the entrance boundary.

6.1.2 Boussinesq Flow

The second investigated data set is a classical Boussinesq approxima-
tion to simulate the flow generated by a heated cylinder. This approxi-
mation adds a source term proportional to the temperature (modeled as
a diffusive material property) to the vertical component of the velocity
field. The cylinder serves as a temperature source and thereby gener-
ates a plume of upward flowing material. As the plume moves upward,
its outer layers exchange heat with the surrounding flow, resulting in
inhomogeneous friction and hence turbulent flow.

6.2 Visualization of Critical Points

As shown in Section 4, invariant moments have certain properties for
critical point features. We propose an algorithm for highlighting 2D
critical point features, i.e., rotations, sinks, sources. Saddles need fur-
ther inspection, as first and second-order moment invariants are zero,
equally to any homogeneous flow pattern. This can be solved as ex-
plained in section 4 by observing the value of |m00| or |c00|.
Our algorithm uses a pre-processing step to compute a sorted list of
pyramid positions. The positions are sorted according to a combina-
tion of the absolute values of the second-order moments Ψ2,3,4,5, i.e.,
sorted according to a parameter n = |Ψ2|+ |Ψ3|+ |Ψ4|+ |Ψ5|. The
resulting list has the critical features, as well as homogeneous flow



resolution Im(Ψ1)
absolute relative
deviation deviation [%]

5×5 0.408543 0.032417 8.6187
5×5∗ 0.380274 0.004148 1.1028

10×10 0.386398 0.010272 2.7311
10×10∗ 0.376822 0.000695 0.1849
25×25 0.373890 0.002236 0.5945
50×50 0.379709 0.003582 0.9524
75×75 0.376525 0.000398 0.1059

100×100 0.376557 0.000430 0.1144
200×200 0.376339 0.000213 0.0567
continuous 0.376126 - -

Table 1. Results of the discrete moment computations compared with
the continuous value of a counter-clockwise rotation feature (∗using the
super-sampling approach). Super-sampling improves accuracy. Values
converge faster for odd pattern sizes. For proper recognition of exact
patterns the relative deviation parameter δ should be chosen by assum-
ing worst case deviation of the calculation, i.e., to capture small scales
δ ≈ 1%, and higher for the recognition of similar patterns.

patterns, at its front end. Excluding all feature values with the first-
order value Ψ1 near or equal to zero, results in a list that is sorted
according to criticality. Processing this list is straightforward: the list
is traversed to a user-defined point. Each entry contains the pyramid
position that maps directly to position and scale in the field, enabling
a fast visualization. We used this method to highlight rotations in a
Boussinesq flow data set (see Figure 3).
Operating on discretized features we obtain approximations of the
continuous values. Discretization results and deviations are presented
in Table 1 exemplarily for the rotation pattern observed in section 4.
As one can see, our super-sampling approach for small scales strongly
helps improving the results obtained with the moment invariants.

Fig. 3. Rotations in a Boussinesq flow (see Section 6.1.2). Features
found by searching with the criticality index being highlighted by red
colored circular region markers.

6.3 Fast Pattern Recognition in Flow Fields

Besides the recognition of critical points, moment invariants can be
used for the fast recognition and classification of arbitrary features. We
implemented a fast pattern recognition for 2D flow vector data using
the theory of our flow vector invariants. In a pre-processing step a mo-
ment pyramid is computed for the given data. This pyramid stores the
complex moment invariants Ψ1 . . .Ψ5 for local regions of the field. We
further compute a sorted offset of the moment values of Ψ1 linking to
the positions in our pyramid. We have chosen Ψ1, as it is a first-order
component containing the major part of the information. The pattern
matching algorithm can now be performed very efficiently. A pattern

S-shaped pattern Diverging pattern

Table 2. Moment invariants for two example search patterns. An S-
shaped structure from the swirling jet data set (see Figure 4) and a
diverging structure in the Boussinesq flow data (see Figure 5).

is selected, the computation of the invariant moments for a single pat-
tern is done rapidly, a delta region around the computed offset reveals
a short list of similar pattern candidates, which can be compared in the
remaining moment invariants Ψ2 . . .Ψ5.
As arbitrary patterns are recognized invariant to scale and rotation, no
time-intensive additional convolutions are necessary during execution
time. Similar patterns can be highlighted almost in real-time. The
only drawback of this method, the high usage of memory, could be
overcome by storing only the first component in the pyramid. This
would save disk space, but on the other hand lead to a little higher la-
tency, as moments must be computed for all matches. Since we use
the complete moment pyramid also for other applications, we decided
to perform our pattern recognition with the larger version.
In contrast to other algorithms for pattern recognition in vector fields
(like Ebling and Scheuermann [4] or Heiberg [11]), our algorithm is
able to detect any kind of pattern without an extra computation of ro-
tated or scaled versions. To illustrate this, we discuss two examples
for extra-ordinary pattern searches, showing that the patterns do not
have to satisfy any special properties. Figure 4 shows the swirling jet
data set discussed in Section 6.1.1, the pattern, and the matches. The
moment invariants for the search pattern can be found in Table 2. Each
pattern has been detected correctly. Note that there might be other S-
shaped structures not being found because of their different directional
behavior not being depicted in the streamline representation. This can
be tackled by comparison of the magnitude of real and imaginary part
in the first-order component Ψ1 separately so that the sign is skipped.
The Boussinesq flow, explained in Section 6.1.2, is shown in Figure 5.
We searched for a specific diverging flow pattern, and obtained good
results. By increasing the relative deviation δ , the search space is in-
creased. This takes effect on computation time, but increases the num-
ber of matches. We integrated these algorithms into our CoVE (Com-
parative Visualization Environment) system enabling a parallel pattern
search in multiple data sets. Patterns can be specified by selection,
by definition (through an integrated pattern editor), or by browsing
through invariant moment space. The identified patterns are then high-
lighted in all visualized data sets, allowing us to compare in a highly
effective way complex flow data sets based on arbitrary flow features.
Comparing the algorithm to the algorithms of Heiberg [11], and Ebling
and Scheuermann [4], our pre-processing step for all searches is ap-
proximately as expensive as the other methods to search for one single
pattern. The result of our pre-processing however, makes it possible
to search for all kinds of patterns in almost real time, even for larger
data sets. We now explain, why our pre-processing step and the search
times of the mentioned methods are similar. While for the other al-
gorithms, many rotated versions for any scale of the pattern have to
be correlated with the chosen field, we perform a correlation with ten
pre-defined basis functions mi j . This correlation step is the most ex-
pensive (but still highly optimized) part and has to be performed for
all methods. For our method, we need to sort and store the results as
our search data basis, while the other methods do not need to do this.
The other methods have to compute the rotated and scaled versions
prior to the correlation and they have to combine the search results for
the rotated and scaled versions to a final similarity map. All in all our
pre-processing step and the mentioned algorithms got approximately
the same complexity. Having the pre-processing step done once, mul-
tiple freely definable patterns can be searched for each in almost real



Fig. 4. Swirling jet flow (Section 6.1.1). We search for an S-shaped pattern (green circle) and find it three times at different scales for δ = 0.7 (green
and red circles). General data is visualized with streamlines, close-ups of the matching structures include a hedgehog representation. Even though
the swirls in the right image distract the viewers attention the global S-shaped structure has been recognized. Underlying color map and colors of
the hedgehog representation of the zoomed versions display the velocity of the swirling jet data.

Fig. 5. Search results (red) for a specific pattern in the Boussinesq flow
with δ = 0.5. The original pattern is highlighted by a green circle and a
zoomed representation is given in the upper right corner.

time. This is far better than the computation time for one single pattern
using the other algorithms. The only disadvantage of the new method
is that these patterns have to be defined on a circular domain. This
issue can be overcome by an advanced search approach as discussed
in Section 5.5. Quantitative results for our pre-processing step, the
calculation of the moment pyramid and for the search operations are
illustrated in Figure 6. Results have been computed on a Athlon X2
4600+ with 2GB RAM. The point where search times suddenly in-
crease can be explained by the fact that for larger data sets the search
in the moment pyramid has to be performed on the hard disk and not in
the main memory. The higher we chose the deviation, the less similar
the result patterns become. If one would like to find somewhat similar
patterns, he or she can enter a higher deviation. This is more expensive
as more possible results have to be compared with the actual moment
values. A smaller deviation is a more strict criterion and yields less
result positions, meaning less computation time.

Fig. 6. Computation results for scaled versions of the Boussinesq data
set. The upper diagram shows information on the pre-processing step
for generating the moment pyramid. The lower diagram shows the
recognition times for arbitrary circular patterns. A sudden time increase
at a data set size of 500x500 can be observed for the reason that for
larger data sets the pyramid exceeds the main memory. Search times
still remain acceptable.

7 CONCLUSIONS

We have presented a new class of moment invariants. Our first con-
tribution presented here is the mathematical derivation of these invari-
ants. They are able to provide a representation of correlated vector
data, i.e., flow data, being invariant to translation, scaling and rotation.
We further researched their properties and found that moment invari-
ants also serve as a good classifier for flow data, even when only using
moments of lower order. Finally, we have presented two algorithms for
fast recognition of flow patterns. One algorithm utilizes the fact that
for linear flow fields second-order moments are zero to recognize crit-
ical points. Our second and even more important contribution to the
state of the art of interactive visual data exploration is a new algorithm
that uses a pre-processing step to compute the moment invariants and



an indexing system that enables fast recognition of pattern structures
of arbitrary content (defined on circular domains). This pattern search
can be performed on many datasets in parallel, enabling comparative
visualization for self-defined or chosen patterns. Invariant moments
are capable of being applied to arbitrary grid structures, as their def-
inition is continuous. Future work will focus on defining orthogonal
moment invariants for flow fields, the practical implementation of mo-
ments derived from pure point data without underlying grid structure,
research on time-dependent 2D flow fields, segmentation of flow fields
using these invariants, and the mathematical theory for moment invari-
ants for flow fields defined on 3D spatial domains. The latter might be
achieved by the usage of a quaternion basis or by modification of other
scalar algebraic invariant moment formulations.
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APPENDIX

Proof of Lemma 3.1:

Using the substitution Φ(r,ϕ) =

(

r
ϕ−α

)

we obtain:

cpq =
1

vγ

∞∫

0

2π∫

0

rp+q+1ei(p−q)ϕ f (r,ϕ)dϕdr

Φ
=

1

vγ

∞∫

0

2π+α∫

α

rp+q+1ei(p−q)(ϕ−α) f (r,ϕ−α)dϕdr

= e−i(p−q+1)α 1

vγ

∞∫

0

2π∫

0

rp+q+1ei(p−q)ϕ f̃ (r,ϕ)dϕdr

︸ ︷︷ ︸

c̃pq

= e−i(p−q+1)α c̃pq

!

Proof of Theorem 3.1:
Let f̃ be a rotated version of f (counter-clockwise around the origin),
i.e., f̃ (r,ϕ) = f (r,ϕ −α) where α is the angle of rotation. Further let
the complex moment of the order (p+q) of f̃ be denoted as c̃pq. One
can derive the following:

n

∑
j=1

(p j −q j) = −n ⇔
n

∑
j=1

(p j −q j +1) = 0

⇒
n

∑
j=1

i(p j −q j +1)α = 0 ⇔
n

∏
j=1

ei(p j−q j+1)α = 1

and with Lemma 3.1 it follows

n

∏
j=1

c̃p jq j
=

n

∏
j=1

ei(p j−q j+1)α cpjq j
=

n

∏
j=1

cpjq j
.

!


