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Abstract Technological advancements are constantly in-
creasing the size and complexity of data resulting from
microarray experiments. This fact has led biologists to
ask complex questions, which the existing, fully automated
analyses are often not adequate to answer. We present
GeneBox, an interactive tool for two-dimensional and three-
dimensional visualization of microarray data sets resulting
from experiments involving multiple experimental variables,
for example, multiple genotypes and time points. Through
an easy-to-use interface, GeneBox facilitates the exploration
of such data, especially in visually “highlighting” inter-
esting genes and supporting the formulation of hypotheses
on their functional differences and similarities. GeneBox
is based on state-of-the-art statistical methods for microar-
ray data normalization, differential expression inference,
and significance determination. We demonstrate our tool
on a public microarray dataset consisting of multiple geno-
types under different experimental conditions, obtaining ex-
cellent results in all examples. Our tool is available at
http://graphics.cs.ucdavis.edu/∼nyshah/GeneBox.
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1 Introduction and Motivation

Early microarray experiments [2, 1, 9] were overall very
simple, focusing only on gross differential expression
under test conditions, many even lacking repeats, as
standard statistical practice would require [8]. Conse-
quently, many early microarray data analysis tools were
geared towards finding genes that are simply differen-
tially or similarly expressed under the test (versus con-
trol) conditions. The use of any such data analysis tool

requires the researcher to appropriately tune these pa-
rameters for a specific data set, in order to avoid ar-
bitrary results in terms of the number of data clusters,
size, density, etc. Today, microarray experiments are
routinely performed under multiple experimental con-
ditions, on multiple test samples, and for multiple con-
trols. Such versatile data allows us to ask more inter-
esting questions, like which genes are expressed sim-
ilarly under some but not all experiments. Since it is
actually the differential expression under some, but con-
ceivably not all, experimental conditions that sets genes
apart functionally, the ability to consider such questions
is ultimately very important. For example, in an ex-
periment with two genotypes and two time points, a
scientist might be interested in finding genes that are
similarly expressed at the first time point in both geno-
types but expressed differently at the other point in the
genotypes. Exploring such data can benefit substan-
tially from interactive visualization tools that bring the
problem of data mining and analysis closer to the in-
dividual researcher in the field, by allowing real-time
visual data manipulation.

GeneBox is a general-purpose 3-D visualization tool
for multi-variable microarray gene expression data.
GeneBox is designed to help scientists answer complex
queries through interactive visual exploration of mi-
croarray data sets. It works with microarray data origi-
nating from multiple chips, e.g. genotypes under multi-
ple experimental conditions. GeneBox is built around a
few core methods for microarray data analysis: (1) data
normalization methods, as data originates from multi-
ple microarray chips; (2) statistical differential expres-
sion inference; and (3) statistical significance of differ-
entially expressed genes in three dimensions. Its real
strength, however, is its multidimensional visual inter-



face, necessary to represent the multi-variable microar-
ray data, coupled with interactive functionalities and a
variety of user controls to customize and enhance the
output.

2 Related Work

Real-time interactive visualization techniques are
powerful means to explore complex data sets. Rotation
and scaling of points in three dimensions is used by
several tools for analysis of multivariate data [7]. Some
of the available software packages for microarray data
analysis are capable of producing 3-D scatter plots, but
with little amount of real-time user interactivity (see
http://ihome.cuhk.edu.hk/∼b400559/arraysoft.html
for a list of available software packages
for microarray analysis). The commer-
cial software package GeneSpring 5.1 (see
http://www.silicongenetics.com/cgi/SiG.cgi/Products/-
GeneSpring/index.smf) supports 3-D scatter plots.
A user can rotate and scale a plot but interaction is
not real-time. The data points are rendered as point
primitives, which results in poor 3-D effects on a 2-D
screen. Genesis [10], a non-commercial package,
supports 3-D visualization by performing principle
component analysis on a data set, and using its first
three components for a 3-D plot. Major drawbacks of
currently existing software packages are: insufficient
degree of user interactivity, lack of efficient selection
mechanisms, and poor 3-D rendering.

3-D scatter plots offer similar visual representations
of data as provided by GeneBox. However, their utility
in exploratory studies is not as general or flexible due to
lack of interaction.

GeneBox addresses these drawbacks by providing
the following functionalities: (1) rotation and scaling of
data in realtime; (2) support of intuitive selection mech-
anisms with user-friendly interface that facilitate defin-
ing important genes and filtering them from unimpor-
tant ones; and (3) high-quality 3-D visualization by use
of lighting and perspective projection, and rendering of
data points as three-dimensional geometric primitives
of varying shape, size and color.

3 Visual Components

The basic set-up of GeneBox is a unit cube in space,
rendered in perspective, in which the gene shapes are
visualized. Each gene is rendered as a 3-D icon (see
Figure 1). Its location and color are determined by its
differential expression. GeneBox maps differential ex-
pression of a gene under three different experimental
conditions to coordinates along the three axes in 3-D
space (differential expression is calculated as described

Figure 1: GeneBox screenshot. Red, blue, and green
axes represent different experimental conditions. Genes
selected by selection plane (red rectangle) and selection
box (red cube) are highlighted with a different color.

in Section 4.2). Color can be used to show differential
expression under an additional fourth experimental con-
dition, if any. The shape of a gene object is determined
based on its location.

Three differently colored: red, blue, and green axes
represent the three spatial dimensions (see Figure 1).
Each axis is representative of an experimental condi-
tion. The value along an axis indicates the quantity
of differential expression under the represented experi-
mental condition. The three axes are user-configurable.
A user can also specify control experiment for each
axis.

Color is used to represent a fourth experimental con-
dition. Red is used to indicate up-regulated expression,
green is used for down-regulated expression, and yel-
low is used to indicate no significant change in gene ex-
pression. Alternatively, color can also be used to mark
selected genes.

Shape is used to further distinguish between genes
in the same significance category, but from different ex-
periments. The shapes can be spheres, cuboids, ellip-
soids, etc. The features of all of the visual elements can
be directly controlled through a control panel (see Fig-
ure 2).

4 Analysis Methods

GeneBox requires input data from a number of microar-
ray chips. It is assumed that the same genes have been
expressed and that each chip corresponds to an experi-



Figure 2: Control panel screenshot.

mental condition. Gene annotations are also accepted,
if available. Microarray data can be either normalized
or “raw”. In the case of raw data, we apply a normal-
ization technique.

4.1 Normalization and Differential Ex-
pression

Calculation of differential expression of a gene requires
one to compare fluorescence intensities. Due to vari-
ous sources of systematic and random error, the intensi-
ties cannot be compared directly. Data has to be cal-
ibrated or “normalized” before such comparisons are
made. One way of measuring differential expression
is the fold-change, that is the ratio of calibrated inten-
sities. We use a statistical model for microarray gene
expression data introduced by Huber et al. [5] which
is a state-of-the-art differential gene expression identi-
fication method. A major advantage of this model is its
ability to properly correct for low expression, and thus
bringing out lowly, but differentially expressed genes.
The model comprises of data calibration, quantification
of differential expression, and quantification of mea-
surement error. Data is calibrated by affine-linear map-
pings defined as:

ŷki = Oi + Siyki,

whereyki is the measured intensity data for genek and
experimenti, ŷki is the calibrated intensity value for
genek and experimenti, andOi andSi are parameters
of the affine-linear mapping that normalize the intensity
values of experimenti to the same scale as other exper-
iments.

A variance-stabilizing transformation is applied to
the calibrated data. For large intensities, this transfor-
mation is equivalent to the usual logarithmic transfor-
mation but it does not have a singularity at zero, and
it continues to be smooth and real-valued in the range
of small or negative intensities. We transform intensity
after calibration step defined as

hki = ar sinh(ai + biyki),

whereai = a + bOi, bi = bSi, andhki is the trans-
formed intensity.

The parametersa and b are obtained by assum-
ing that variance for intensities of a gene in all
experiments depends only on that gene through a
quadratic function of its mean intensities. Parame-
ter estimation and transformation can be done using
the “R” package (freely available for academic use at
http://www.bioconductor.org/). Differential expression
of a genek in experimenti, versus experimentj, can
then be calculated as

Dk,i:j = hki − hkj .

Higher value of the differential expression places
genek further away along an axis. Positive values indi-
cate up-regulation, and a gene will be along the positive
direction of the axis. Negative values indicate down-
regulation and a gene will be along the negative direc-
tion of the axis.

4.2 Time-series data

Some microarray experiments are performed on the
same organism at multiple time points, under several
sets of experimental conditions. For example, yeast
cells have been monitored for cell-cycling genes under
three different experimental set-ups, at 16, 18, and 24
time points [9].In such cases in addition to considering
each time point a separate experiment, it is often use-
ful to group the chips based on the experimental condi-
tions. The above experiment, for example, would then
have three different parts as opposed to 58. Therefore,
one needs a suitable measure of similarity for gene ex-
pression time-series data. Much work has been done on
devising such similarity measures [3]. In GeneBox we
have addressed this issue for short time-series of up to
three points, and are planning to extend the methods to
general time-series similarity measures. We use a com-
bination of Hamming distance and Euclidean distance
to capture the similarity between two short time-series
data.

Given two time-series:1, and2 of three time-points



each, we calculate their distance as:
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whereeij is the differential expression of time-seriesi

with respect to control at time pointj. By considering
the differential expression of a gene at time pointj with
respect to thej + kth time point,hij,k for time-seriesi
is defined as follows :

hij,k =







1, if gene up-regulated;
0, if gene not differentially expressed;
−1, if gene down-regulated.

For k = 0, we consider differential expression with
respect to control.Wk is a value chosen to weigh a
k-neighborhood. We use this formula to calculate dif-
ferential expression between two time-series data of a
gene. Thus, although each gene can experimentally
have more than one coordinate, in GeneBox it is com-
bined into one distance value.

4.3 Statistical significance

Every location in the GeneBox is assigned a statistical
significance value between zero and one. Statistical sig-
nificance of a location is a likelihood estimate of genes
being in that location by chance. Higher value of sig-
nificance at a location implies that the differential ex-
pressions of genes at that location are important. We
calculate significance values by discretizing the entire
volume into sub-volumes of given granularity. Random
data is generated by random permutation (shuffling) of
the actual data set. Genes are assigned locations us-
ing the shuffled random data. The significance value of
each sub-volume is the normalized ratio of the number
of genes in that sub-volume for actual data to the num-
ber of genes in that sub-volume for random data. If the
number of genes in a sub-volume for random data is
greater than for actual data, then the significance value
of all locations in that sub-volume is zero. If no genes
for random data fall in that sub-volume, then the signif-
icance is one. Formally, the significance valuep for a
sub-volumeSv is defined as

p(Sv) =







0, if Nr ≥ Na;
1, if Nr is zero;
Na/Nr

Smax

, otherwise.

Here,Na is the number of genes inSv for actual data,
andNr is the number of genes inSv for random data.

5 Interaction

To support data analysis and understanding, GeneBox
provides a number of elements of interactive visualiza-
tion. The first step to be done after loading the data is
configuring GeneBox, i.e., deciding which experiment
variable is associated with which axis. This configu-
ration is done in realtime and can be changed easily.
Once the axes are set and the data is mapped to the unit
cube, the user can start to explore and identify interest-
ing genes by performing the following operations:

1. Rotating and scaling the 3-D visualization box to
view the data from various perspectives. This fea-
ture alone lets the user identify features of the data
set that may not be visible in lower dimensions.
2-D scatter plots of any two experiments are ob-
tained by orienting the third axis perpendicularly
to the display plane.

2. Selecting “interesting” genes and filtering out un-
interesting genes using a combination of selection
tools (described below).

3. Assigning color and shape to selected genes or
groups of genes.

GeneBox offers five different ways to select genes.
They are:

1. Mouse click: A gene can be selected by a mouse
click. Annotation for the selected gene and its ex-
pression values for all experiments are shown.

2. Selection plane:The selection plane is a 2-D rect-
angle (see Figure 1). A user can move and resize
the rectangle. All genes that lie within the rect-
angle after projection on to the 2-D screen are se-
lected. A user can browse through the list of anno-
tation and expression value information of selected
genes.

3. Selection box: The selection box is a 3-D cube
(see Figure 1). A user can move and scale the
cube. It can be used to select genes lying in a sub-
volume. The selection box can be used in combi-
nation with the selection plane. Intersection and
union operations can be performed on the set of
genes selected by the “selection plane” feature and
the set of genes selected by selection box.

4. Range selection:A range of differential expres-
sion values can be specified for each of the axes
and color. All genes falling outside the specified
range are not shown. This selection mechanism is
useful for setting cut-off values at which the differ-
ential expression can be considered significant.



5. Significance threshold: By varying the signifi-
cance threshold, a user can remove genes from the
display that fall at the location with significance
value less than the threshold value. By default all
the genes are shown and color is assigned where
darker indicates higher significance.

A user can use any combination of the above selec-
tion tools. Selected genes can be filtered out and elimi-
nated from further analysis or can be assigned a certain
shape and color. After the three axes are reconfigured,
color and shape assigned to selected genes in previous
configurations represent information for the experimen-
tal conditions that were represented in previous config-
urations. Thus, we can represent more than four dimen-
sions of a given microarray data set. The number of
visually distinct shapes and colors limits the number of
dimensions that can be represented visually.

6 Case Study

We describe how an investigator having a large, multi-
variable data set could use our tool. We chose a data
set from a study of phosphate pathways in yeast, Sac-
charomyces Cerevisiae [6]. Data was downloaded from
http://genome-www.stanford.edu/microarray [4]. The
data set consists of eight microarray chips: two of wild-
types (yeast strains NBW7 and DBY7286), four of mu-
tants (PHO4c, pho80, pho85, PHO81c),and one repli-
cate for a wildtype (NBW7) and one replicate for a mu-
tant (PHO81c). The objective of the original study was
to find genes involved in phosphate metabolism. The
mutants were created from the two wildtype strains,
where genes that were already known to be involved in
the pathway were mutated.

Our goal is to show how a user can meaningfully
explore this data with GeneBox. We discuss scenarios
for two different assignments of the chips to the axes.

First scenario: In the first exploration, we attempt to
identify genes expressed similarly in the wildtypes but
differently in the mutants. The original study was ac-
tually concerned with this goal. We chose the mapping
as follows: On the red axis we show the differential ex-
pression of NBW7, low phosphate conditions (low Pi)
vs. high Pi; on the blue axis we show the differential
expression of DBY7286 low Pi vs. high Pi; and on
the green axis we show PHO4c mutant vs. wildtype.
Initially, the third (green) axis points towards the user,
implying that the plot is a 2-D scatter plot of DBY vs.
NBW7, i.e., the two wildtype yeasts. The darker genes
are more significantly differentially expressed than the
lighter ones (see Figure 3).

By rotating the box (see Figure 4), features are be-
coming apparent that could not be seen in a 2-D render-
ing. Questions like which genes are differentially ex-

Figure 3: 2D scatter plot of differential expression un-
der low phosphate conditions (Pi) vs. high Pi. The ver-
tical blue axis represents the DBY strain, and the hori-
zontal red axis represents NBW7 strain. Darker genes
are more significant.

Figure 4: Rotation of GeneBox shows three dimensions
of the data set. The green axis represents differential
expression of PHO4c mutant vs. wildtype.



Figure 5: Genes with significance valuep > .8. Genes
differentially expressed in only one of the three experi-
ments are rendered as cuboids, genes differentially ex-
pressed in two experiments are cylinders, and genes dif-
ferentially expressed in all three experiments are shown
as ellipsoids.

pressed in DBY and NBW7, but not in the mutant, can
be answered. By using a selection plane tool one can
select genes (blue highlight in Figure 4) that are inter-
esting. In our example, these genes are simply farther
than the others.

Next, we select the genes that are of high signifi-
cance (p > 0.8) (see Figure 5). Genes differentially
expressed in only one of the three experiments are ren-
dered as cuboids, genes differentially expressed in two
experiments are shown as cylinders, and genes differen-
tially expressed in all three experiments are rendered as
ellipsoids.

Second scenario:The idea used here builds on the
previous scenario. We attempt to find out whether there
is a difference in gene expression among the three mu-
tants, as compared to a wildtype (as above). Thus, we
established a different assignment for the axes: red axis,
pho80 mutant vs. wildtype; blue axis, PHO81 mu-
tant vs. wildtype; and green axis, pho85 mutant vs.
wildtype. We chose the genes that have a significance
threshold of 0.8 or higher. The results are shown in Fig-
ure 6. The blue colored genes are the significant genes
from the previous configuration (first scenario). By in-
tersecting the two sets of significant genes we obtain a
small number of genes that are significantly differen-
tially expressed in both scenarios. (see Figure 7)

Finally, we select, using the box selection tool, the
genes that are significant and up-regulated, i.e., genes

Figure 6: Different axes assignment. The red axis rep-
resents pho80 mutant vs. wildtype, blue axis represents
PHO81 mutant vs. wildtype, and green axis represent
pho85 mutant vs. wildtype. Genes with significance
valuesp > .8 are selected. Blue genes are the signifi-
cant genes from the previous configuration (Figure 5).

Figure 7: Genes with significance valuesp > .8 in both
axis configurations (Figures 5 and 6) are selected.

Figure 8: Up-regulated genes selected from the signifi-
cant genes in Figure 7 using a selection box.



that lie in the positive octant in the cube (see Figure 8).

Of the 24 genes selected, 19 are the same phosphate-
regulated genes described in the original study [6], in-
cluding all eight novel genes that that study showed
are important in yeast phosphate metabolism. Thus
GeneBox does a very good job in helping identify the
interesting genes. In addition, our selection includes 5
other genes, some of which have known functional roles
in phosphate metabolism pathways, while at least one is
of unknown function and may make an interesting ex-
perimental target. The results are summarized in the
appendix.

7 Conclusions and Further Work

Considering the needs of working professional in the
field of microarray data analysis, GeneBox is an effec-
tive and efficient tool for interactive data exploration.
Benefiting from state-of-the-art microarray data analy-
sis methods, GeneBox supports a large spectrum of in-
teractive functionalities. We have demonstrated through
simple examples how quickly a researcher could focus
on the interesting features of a data set.

GeneBox can be made more useful in variety of
ways. One of our goals was to make it general and
not specific to particular kind of experiments or data
sets. We realize, however, that generality necessitates a
learning process to familiarize oneself with the various
features available. To address this concern we plan to
add modules of other functionalities to GeneBox, which
address particular tasks or data sets (for example, time-
series data sets) and can be used in a turnkey fashion.
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Appendix

1. Significant genes selected using GeneBox that were deemed

related to phosphate metabolism pathways in [6]:

PHO5, PHO11, PHO12, PHO8, PHO84, PHO89, PHO86,

SPL2, PHM1/VTC2, PHM2/VTC3, PHM3/VTC4, PHM4/VTC1,

CTF19, HIS1, HOR2, PHM5, PHM7, PHM6, PHM8

2. Significant genes selected using GeneBox not mentioned in [6])
(with SGD annotation):

YGL088W: function unknown

YGR247W: 2’,3’-cyclic nucleotide 3’-phosphodiesterase, similar to
cyclic phosphodiesterases from Arapidopsis and wheat

IMP2’: Protein involved in nucleo-mitochondrial control of maltose,
galactose and raffinose utilization

GRH1: mitotic spindle checkpoint (activated by defects in protein
phosphatase type I)

TIF5: GTPase activator activity and translation initiation factor ac-
tivity


