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COMPUTATIONAL GEOMETRY TOOLS IN GRID GENERATION

Bharat Soni* and Bernd Hamann**

ABSTRACT

The B-spline approximation techniques applicable to surface grid generation pertinent to computational
field simulations are presented. A systematic procedure to first correct design process errors and then unite se-
lected surface patches yielding an overall continuous approximation is developed. The application of these tech-
niques to surface grid redistribution, automatic remapping, and elliptic refinement is presented.

INTRODUCTION

Very often, CAD/CAM data files resulting from design processes contain errors, such as gaps between sur-
face patches and intersections of patches. The correction of these errors are exremely crucial in the generation
of surface and volume grids applicable to field simulations. Geometric design and computer aided geometric
design techniques [ 1-4) have been utilized 1o eliminate design errors for proper surface generation. The resulting
B-spline surfaces are utilized in development of well-distributed and well-refined surface grids [5-9].

B-SPLINE APPROXIMATION

The creation of a single B-spline cubic paich approximating a part of the given geometry requires four
points on the original surface in either clockwise or counter-clockwise order. These points determine a 3D hexa-
hedral block used for the selection of the surfaces to be approximated. The “top” and “‘bottom” face are computed
by considering normal vectors at the specified quadrilateral’s corners and the lengths of its edges. A pictorial
view of four selected surface points, unit normal vectors at these points, and edge lengths are shown in figure
la, and the constructed block is shown in figure 1b.

Fig. la. Surface and four selected points Fig. 1b. Implied block

Fig. 1. Block coastructed from quadrilateral

Bezier, B-spline, and NURBS surfaces lie within the convex hull of their control points (1,2]. Therefore,
such surfaces can not have interior 5168k points if the bounding box of their control points has no intersection
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with the bounding box of the block. All triangles used for the surfaces’ discretization lying completely or partly
inside a block are kept. The clipping of surface triangles against block faces is illustrated in figure 2.
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Fig. 2. Clipping surface triangles against block faces

In order to compute a B-spline approximation for the surface lying inside a block, a finite set of

(M + 1)(N + 1)points is generated. These points are interpolated yielding the local surface approximation. The

finite set of surface points is obtained by intersecting the surface triangles inside the block with line segments.

Each line segment ab is defined by a pair of corresponding points on opposite block faces, one point on the “top”

face, the other one on the “bottom” face. A line segment can intersect exactly one riangle, more than one riangle,

-or no triangle at all. If at least one intersection point is found the point closest to the block’s “top” face is chosen
for the approximation.

Since exactly (M + 1)(N + 1) points are interpolated for the local approximation, additional points are
needed in case that certain line segments do not intersect any triangle. Each intersection point can be written
as (1 = 1) a + b, t € [0,1]. Additional points are generated using Hardy's reciprocal multiquadric method [3]
to compute a bivariate function I (u, v). The bivariate interpolation constraints are obtained by considering all
intersection points found and using a uniform parametrization for the bilinear “top” and “bottom” faces,
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where only those values #;,, u;,. u,. v, and v; are considered for which an intersection point has been found.
Using uniform parameter spacing (3, = ., — 4.i = 0..(M = 1), 6, = v;,, = v, j = 0...(N — 1)), the val-
ues R = %(d_ + 4,) and the exponent -0.001 yield good results. If the analytical definition of all surfaces is
known all intersection points found are mapped onto the real surfaces.

The (M + 1)(N + 1) points are interpolated by a C? continuous, piecewise bicubic B-spline surface. The
resulting B-spline surface of order 4 is given by
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where d,, is a B-spline control point and ¥, (1) and N,, (v) are normalizesB-spline basis functions defined on
two pre-computed knot sequences [y < 4, < .. < u,,Jand [vo < v, < .. < v, J[I].

In this application, the domain of a B-spline surface, which is [u,, u,.,,] x [v,.v,.,], is normalized by set-
Ung uy = vy = 0 and u_,, = v,,, = 1. Therefore, the linear system to be solved becomes

N+2M+2

Xy = By V) ™ z Z iy Nig Wy PN V3 ) T=0.MJ=0.N. 4)
j=0 =0
Once 2 local B-spline approximation is determined, an error estimate is computed. This estimate is the
Toot-mean-square exror estimate based on shortest distances between points on the approximating B-spline
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surface and the approximated surface(s). This error estimate can be computed, regardless, whether an analytical
definition of the original surfaces is known or not.

CONNECTING B-SPLINE SURFACES

Topologically, all approximating B-spline surfaces are four-sided entities having at most four neighbors.
Two B-spline surfaces are considered neighbors when sharing acommon boundary curve. All B-spline surfaces
used in the approximation must satisfy these topological constraints: (i) Each boundary curve of a B-spline sur-
face 1s shared by at most two surfaces (no bifurcations). (ii) A corner vertex of a B-spline surface can be shared
by any number of surfaces. (iii) Each B-spline surface has at least one point along one of its boundary curves
in common with another surface (“connectivity”). (iv) If a corner vertex of a2 B-spline surface is shared by a

second surface then this point is also a corner vertex of the second surface (“full-face interface’™). Examples of
such topologies are illustrated in figure 3.

T & K

Fig. 3. Possible B-spline surface topologies
A connectivity table stores the (up t0) four neighbors of each surface. Two surfaces are identified as neigh-
bors if an estimate for the “distance” between pairs of boundary curves of two surfaces is smaller than some toler-

ance. Once determined, this connectivity table is used in the enforcement of continuity along edges of neighbor
surfaces and at surface corner vertices shared by multiple surfaces.

All surfaces constructed must be compatible, i.¢., they must be piecewise bicubic surfaces, all having the
same number of control points and the same knots along common boundary curves. If this condition is violated
surfaces are made compatible by performing degree raising and knot insertion [4]. Once all surfaces are compat-
ible, continuity is enforced along the common boundary curves of two surfaces by averaging rows (or columns)
of control points along the common curve. Continuity is enforced at acommon corner vertex of multiple surfaces

by averaging control points “around” this vertex. Currently, each B-spline surface must be represented by at
least six rows and six columns of control points.

The figures 4 and 5 demonstrate the surface approximation of different geometries. A single B-spline sur-
face approximating parts of multiple parametric surfaces of a fighter aircraft is represented in figure 4. Multiple

approximating surfaces on the space shuttle geometry are shown in figure 5. Ori gmal surfaces are shaded darker
than the approximating surfaces.

Fig.4. Fighter Configuration (Single Approximating Fig.5. Space Shuttle Conﬁgwwoo (Mmﬂple
B-Spline Surface) Approximating B-Spline Surfaces)
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SURFACE GRID REDISTRIBUTION AND REMAPPING:

Letr = (x,(s.). x(s.1). x4(s,1) denote a parametric surface with Euclidean coordinates (x,, x,, x,) and pa-
- rameter values (s, f). The parametric space associated with a NURBS surface is transformed as the distribution
(normalized arc length based) mesh [5]. The redistributed surface grid is obtained by evaluating the B-spline
surface at the respective parameter associated with the desired distribution space.

Now, consider a sculptured surface (figure 5a). The surface grid is mapped as an O-grid on the surface.
However, if the user is interested in mapping a A-type grid on the surface then a re-mapping process is accom-
plished by essentially creating a distribution space which, when evaluated, results in a surface grid of figure 5d.
The associated parametric (distribution) spaces are presented in figures Sb-c. The creation of the distribution
space for remapping is intuitive and highly application-dependent. Remapping of the surface grid is also re-
quired when the interior object(s) is (are) to be kept fixed as part of the interior surface grid. For example, consid-
er the sculptured surface and the associated parametric space presented in figures 6a-b. Interior objects on the
surface are presented in dark. The remapping process is needed to blend interior objects as a part of the surface
grid. An interpolation search algorithm based on the NURBS presentation is developed to evaluate parameters
associated with the interior object. The interpolation/search algorithm utilizes derivatives 1,.z,.r,,.z,. ands, and
Taylor’s expansion to inversely evaluate parameters. An automatic algorithm based on the weighted transfinite
interpolation [5,7] in two dimensions is developed which blends the parameters associated with interior object
into an overall distribution space. The resulting re-parametrized distribution space is demonstrated in figure 7a.

The surface grid is then evaluated with respect to this new distribution space. The resulting, re-mapped surface
grid is presented in figure 7b.

ELLIPTIC REFINEMENT:
Consider a three-dimensional elliptic grid generation system [8,9)
3 8. 3
y i
_Z Zs Lo * Zcbk,rﬂ 0.
i=]j=1 k=]
h
where e )
.2 E (gjmgbn o gjngkn) 4
1= 123, 7= 123"
and £ = (x,,x,.x,) and £ = (§'.£% £°) denote the physical and computational space, respectively.

The control functions ¢,.k = 1,2, 3, for an orthogonal grid [6] can be formulated as

o] g S 25 :
¢ = 2 (In riigjj) . (i), k) cyclic ,
and g
é o 8% .8, # fori = 1,2,3.
k 8ii8j 2
A quasi two-dimensional elliptic system for surface generation can be formulated [9] as
8Ty = P17 — 28,7, + 8,/ (1, — &1, = Kir xr, \r xr ), (6)
82arge " (rpxryy = 2819y, = (rpxry) + 8\ Iyy * (rpxry) et
ki b £ ) 127 gy fo’n &117m ;“Vv. )
Iré.xr,,l

Here, the surface is represented as a coordinate surface £°= constant (£ = &'andn = &9),
£' — and &* —lines are assumed to be perpendicular to £° lines (g,, = &x» = 0), and the principal curvatures of
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Fig. 7b. Resulting surface grid
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the £*-lines are assumed to be zero on the surface. The elliptic system of equations (6) - (7) can be transformed
to the parametric space as follows:

JoA - (alry = Bir)) &
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The elliptic surface grid refinement is accomplished by solving (8)-(9) with proper forcing functions for

the distribution mesh (s,t) and then evaluating the associated B-spline surface at refined parameter values.

Fig. 8a. Initial surface grid Fig. 8b. Refined grid

" An example demonstrating the influence of the refinement algorithm is presented in Figure 8a.b.
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