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Abstract. In this paper we describe user interaction with an optimiza-
tion algorithm via a sophisticated visualization interface that we devel-
oped for this purpose. The primary functions of our visualization tool
are viewing the current data and interactively manipulating the avail-
able data to help in faster convergence of our iterative algorithm in a 3D
environment with multiple obstacles and ant paths. We demonstrate that
a user wielding this tool can improve the performance of an ant colony
optimization algorithm as applied to a problem of finding 3D paths in the
presence of impediments. Computational experiments demonstrate the
value of this approach to engineering stochastic local search algorithms.
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1 Introduction

Interacting with an algorithm during execution can be a powerful way to fa-
cilitate engineering of local search algorithms and/or a way to improve their
performance directly. In this paper we describe user interaction with an opti-
mization algorithm via a sophisticated visualization interface that we created
for this purpose. We demonstrate that a user wielding this tool can improve
the performance of an ant colony optimization (ACO) algorithm as applied to
a problem of finding 3D paths in the presence of impediments. There are a cou-
ple of reasons that we should investigate “user-in-the-loop” optimization. One
is that a user might be able to interact with the algorithm find ways to improve
the performance that can later be automated by finding generalizations of what
the user does. In other situations, the nature of the problem instances may be
changing so rapidly that a very general purpose algorithm (such as ACO) needs
to be used and assisted by a user during each execution. In order to demonstrate
how a user can improve an ACO algorithm, we develop a graphical tool and user
interface enable the user to assist the algorithm.

Our problem is to find a shortest path between two points through a rectan-
gular space that contains spherical impediments. Traveling through the spheres
increases the length of the path. See [13] for a full description of the problem. In
general, the problem cannot be solved exactly, so one solution method for this
problem involves finding the shortest path through a rectangular grid. The more
grid resolution, the better the solution. However, for three dimensional problems
even the search for a shortest path through the grid requires computational ef-
fort that rises rapidly with the grid resolution. Hence, heuristic approaches are
be needed.

Ant colony optimization (see, e.g., [4, 5]) is ideally suited to such a problem.
The grid implies a network and every ant finds a path through it using a combi-
nation of greediness and pheromone left by previous ants. After an ant reaches
the end it leaves some pheromone on every arc it used in proportion to the qual-
ity of the path: The shorter the path it has found, the more pheromone it leaves.
Subsequent ants are more likely to use the arcs that have a higher amount of
pheromone.

The improvement of the best path found by the ants is dependent on the luck
and the experience of the other ants, but ants can not consider the structure of
the problem. Since the structure of the problem is easy for a person to under-
stand, humans have a good sense of how to improve ant-paths for example by
deleting zigzagging that does not help avoiding any spheres. Therefore we need
a good visualization tool that helps us see what the path created by the ants
looks like and how we can give the ants hints to improve the result.

The visualization literature covers many aspects related to our problem. For
example, analysis of search algorithm results can be effectively done using visu-
alization [6]. Monitoring an algorithm using visualization gives the user all levels
of information [3]. Visualization plays a major role in steering computations as
can be seen in numerous cases. To list a few instances- visualization for inter-
active visual computing of programs [1], visualization in adaptive grid methods



3

for debugging as well as analyzing computational algorithms [8]. Computational
steering, which is the terminology for use of visualization to monitor simulations
or iterations and using the feedback for improving computational results, has
been a powerful research tool and a taxonomy of existing systems can be found
at [10]. Mitsubishi research labs has conducted extensive research concerning
what they call “human guided search” (see, e.g., [9, 7]). They have developed
visualization tools for optimization problems such as scheduling, routing, and
layout. One of their ideas is that computer algorithms can locate local minima
given a starting point, but users can suggest new and better starting points. Our
approach here continues this research line, but we provide tools for interacting
directly with the operation of the ant system by allowing the user to lay down
pheromone.

Visualization of, and interaction with, search paths in three dimension is not
so easy, but we describe a tool in §3. Before we can do that we describe the
problem and ACO algorithm in §2. In order to systematically demonstrate the
potential value of having the user in the loop, we describe experiments in §4.
The paper offers concluding remarks in §5

2 Problem formulation and Solution Method

A typical problem instance is shown in Figure 1. The goal is to get from the lower
left corner to the upper right corner with the shortest possible path length, but
the length is penalized when the path is inside one of the spheres.

2.1 Problem Formulation

A general formulation seeks the best path through a connected, closed set of
points A ⊂ <D from a ∈ A to b ∈ A where the presence of impediments affects
the evaluation of the quality of the path. Since the original problem is, in general,
not solvable, we create a finite set of points G ⊂ A, then for i, j ∈ G the path
is given by the variable pij which is one if the arc from i to j is in the path
and zero otherwise. The problem on a grid G is called (G) and is written as a
shortest path problem:

min
p

∑
i∈G

∑
j∈G

[
Dijpij

(
1 +

∑
s∈S

csβ(s, i, j)

)]
(G)

subject to:∑
i∈G

Iaipai = 1∑
i∈G

Iibpib = 1∑
i∈G

Iikpik −
∑
j∈G

Ikjpkj = 0, k ∈ G\{a, b}

where the elements of incidence matrix, Iij , have the value one if i and j are
neighbors and zero otherwise; i.e., it indicates the presence of an arc between
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Fig. 1. Typical Problem Instance

grid points i and j. The elements of the distance matrix, Dij give the distances
between neighboring points i and j. This formulation assumes that a and b are
both in the set G. The data β(s, i, j) gives the portion of the line segment between
i and j that is in the range of impediment s. If the problem is to be solved using
a general purpose solver, then these values must be pre-computed; however, if
a shortest path algorithm is used, they can be computed as needed. The main
point is that it is a shortest path problem so once the data is made available
it can be computed rapidly for large instances. Unfortunately, for D = 3 the
instances become very large even for modest resolution. We use a rectangular
grid, where arcs are parallel to the coordinate axes meaning that the nodes
only differ in one coordinate by 1

k−1 , diagonal in two dimensions meaning that
they are connecting nodes that differ in two coordinates by 1

k−1 or the three
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dimensional diagonal that means that nodes that differ in all three coordinates
by 1

k−1 are added.

2.2 Ant Colony

Each ant decides independently which node to go next to based on the pheromone
trail τij and a heuristic value ηij for grid points i and j. We are searching for a
path that consist of as few arcs as possible each of which is as short as possible,
so we set our heuristic value so that it considers both aspects.

ηij =

{
((
√

3
k−1 + |i− b| − |j − b|) ∗ γ + 1

Dij(1+
P

s∈S csβ(s,i,j)) ∗ (1− γ) , if Iij = 1
0 , otherwise

where γ is a parameter on which aspect to emphasize more. The first term
shows how much closer j is to the end point than i in Euclidean distance plus
the maximal length of an arc, so that this value is positive. The second term
gives the cost for this arc.

The ant located in the node i selects the arc to node j according to the
probability

pij(t) =
(τij(t))α(ηij)β∑

n∈N (τin(t))α(ηin)β
, ∀j ∈ N

where the parameter α and β determine the relative influence of pheromone and
heuristic value. After each ant reaches the endpoint, pheromone is deposited:

∆ij(t) =
{

Q/L(t) if (i, j) ∈ T (t)
0 otherwise

where Q is a constant and L(t) is the length of the path T (t) generated by ant
t. So the shorter a path is the more pheromone is laid on its arcs. The amount
of pheromone is updated according to the rule:

τij(t + 1) = ρτij(t) + ∆τij(t)

where ρ (0 < ρ < 1) represents the persistence of the pheromone trail.
It is well known that some form of randomization is needed to improve the

exploration done by the ants (see, e.g., [12, 2]). The scheme given by Nakamichi
and Arita [11] has been shown to be affective and can be applied directly to our
algorithm. We introduce a random selection rate r to improve the diversity of
the paths. Since greedy strategies do in general not lead to the shortest path for
our problem it is reasonable to increase the chances for arcs that are not that
locally promising, but that may result in a better path. With a rate of r we
replace our random distribution based on pheromone and heuristic by uniformly
one over all arcs emanating from the node.

An important feature of our algorithm is the insertion of the user into the
process. On arcs that are deemed to be useful by the user an extra pheromone
amount of δ is added. This is usually done by “correcting” one of the paths found
by an ant. In order to do that in three dimensions, a powerful visualization tool is
needed. We confirm the value of this approach for our problem using experiments
reported in §4.
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3 Visualization and Path Edit Tool

The primary functions of our visualization tool (shown in Figure 2) are view-
ing the current data and interactively manipulating the paths to help in faster
convergence of our iterative algorithm in a 3D environment. The data to be vi-
sualized consists of paths, coordinates of the centers of spherical impediments,
and their respective radii. These spheres are clipped by a bounding box, which
is our volume of interest. Each sphere imposes a path-lenght penalty, which is
indicated by the opacity of the sphere. As we generate paths using the ACO
algorithm, they are plotted as thin solid tubes winding through the translucent
spheres. Figure 3 zooms in on the controls that are shown in the right side of
Figure 2.

Fig. 2. A snapshot of the complete visualization and interaction tool.
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Fig. 3. A snapshot of the controls.

Each path is represented as a vector of points. An exisiting path can be
modified by inserting a point, deleting a point, or overwriting a point. The tool
facilitates various features to interactively modify the paths, and save these
changes to feed it back into the algorithm. Hence our tool includes an interface
for modifying an existing point or adding a new point, as shown in Figure 4.
This point modifying tool shows the current coordinates of the point and allows
the user to move along the three orthogonal axes to place the point in a new
position. In this snapshot, the modifications are taking place in the upper right
corner.

The color of the path is determined by a by the cumulative (penalized) dis-
tance at each point on the path. The color is obtained by linearly interpolating
a rainbow color scheme between zero and the maximum penalized distance pos-
sible. This allows us to have two different coloring possibilities- a global or a
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Fig. 4. A snapshot of the visualization and interaction tool with the point modifying
tool turned on and showing the two reference coordinates for the three axes and the
point modifying interface overlaid on the main GUI.

local coloring scheme for each path. The global scheme makes use of extrema of
penalties from all the paths, and the local scheme makes use of the penalties at
the two ends of the chosen path. (The penalties at the ends of the path are the
extrema, as we are considering cumulative, penalized distance here.)

For ease of visualization, the tool also gives different options for viewing
the spheres: using the penalty-based opacity, using user-defined opacity or as
wireframe. The tool gives navigational control to the user to rotate and translate
the bounding box and its contents. Since this tool is used for research purpose,
the interaction with the ACO algorithm is via a very simple, file based interface:
The graphics tool can be viewed and tested by visiting http://graphics.idav.
ucdavis.edu/~jaya/InterdictionViz.
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To illustrate the improvement when interacting with the ants we stop the
algorithm after the first 500 ants. We use our visualization tool to see which
shortest path the ants have found so far and draw a path close to this which
looks promising. We then add some pheromone on this path and continue the
algorithm with another 500 ants. To compare this to the original algorithm we
solve the same instance with 1000 ants. Since it takes some time and work for the
user to create the hint we also let the ants solve the problem until they get the
same shortest path as the ants with help. This gives us an idea of the advantage
the hints give to the ants.

The user-in-the-loop process can be seen by looking at Figures 5 through 10,
which traces the process for the network shown in Figure 1. The best path found
by the first 500 ants is shown in Figure 6 and for the first 1000 without user
intervention in Figure 7. However, if we add the hint shown in Figure 8 by
modifying the best path and then laying down extra pheromone, we get a better
path which is further improved by the next 500 ants as shown in Figure 9 and
summarized in Figure 10. The same thing is summarized for another instance in
Figure 11.

Fig. 5. Paths generated by the first 25 and 50 ants
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Fig. 6. Best path found by the first 500 ants
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Fig. 7. Best path found by the first 1000 ants
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Fig. 8. Best path found by the first 500 ants and hint



13

Fig. 9. Best path found by 1000 ants with hint
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Fig. 10. Best path found by 500 ants and 1000 ants with and without hint
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Fig. 11. Best path found by 500 ants and 1000 ants with and without hint
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4 Experimental Results

To show the improvement of path developed by ants when the user is in the loop
we generated six different problem instances. We found out that for these in-
stances the ACO parameters (α, β, γ, ρ, Q, r, δ) = (2, 3, 0.9, 0.99, 3, 0.03, 8) work
well. Results are summarized in Table 1. All but the first and last columns
show the best solution found after the given number ants. The column labeled
“1000with” shows the results if a hint is given after 500 ants. The first column
gives the instance number and the last column gives the number of ants needed
to find a solution without a hint that is as good as the solution found with the
hint. The hint is clearly quite valuable.

instance 500 1000with 1000 1500 2000 2500 ants until reached

1 2.880 2.180 2.546 2.283 2.224 2.170 2469
2 2.677 1.863 2.371 2.202 2.104 2.059 >500000
3 26.635 19.885 21.159 20.120 19.373 17.893 1643
4 8.544 5.935 7.514 7.113 6.908 6.854 11780
5 7.707 4.879 7.035 6.712 6.087 6.072 >500000
6 2.981 1.995 2.451 2.199 2.199 2.048 3545

Table 1. Results for the six instances

In order to demonstrate the need for the diversity parameter, r we conducted
tests on the six instance with and without the parameter. Since ants with a higher
chance of picking arcs randomly instead of taking arcs that are well known to
give a short path are more likely to get paths that contain a high number of
arcs, in average these ants take more CPU time to find the way through the
network. Therefore in order to have a fair comparison while varying r, rather
than comparing the length of the best path found by a certain number of ants
we let the algorithm run for a fixed time. After 500 seconds we get the results
shown in Table 2. Clearly, the randomization is needed. The effect is shown for
one instance in Figure 12.

instance r=0 r=0.03

1 2.395 2.751
2 3.094 2.298
3 16.996 21.004
4 9.622 7.426
5 6.072 5.681
6 4.413 1.941

Table 2. Results of a 500 second search conducted with, and without, randomization.

.
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Fig. 12. First 25 ants for r=0 and r=0.03

5 Conclusions

We have described a problem of finding a path on a grid and an ACO algorithm to
get good solutions to this problem. We also have described a powerful engineer-
ing tool for visualizing and interacting with the algorithm, which is challenging
in a 3D environment. Ant systems are particularly well suited for visualization,
but our main contribution has been to demonstrate the use of a tool for interact-
ing with the algorithm by allowing the user to lay down pheromone and hence
influence the future paths taken. Computational experiments demonstrate the
value of this approach to engineering stochastic local search algorithms. The tool
has been shown to result in improved performance of the algorithm by allowing
the user to take advantage of their knowledge of the problem and convey that via
the search control parameters. Human aided optimization is a fairly young topic
and seems to offer substantial promise as part of efforts to engineer stochastic
local search algorithms.
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