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Abstract 
As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth 
scientists become more interested in detecting and delineating trees using LiDAR. The majority 
of conventional methods which detect and delineate trees convert point data into gridded 
surfaces. Unfortunately, this conversion process has the potential to introduce error. We improve 
a point-based geometric model fitting strategy based on RANdom Sample Consensus 
(RANSAC), known as StarSac, and compare the method’s results against field data. The 
analysis demonstrates that StarSac produces similar results to field data, and is a strong 
alternative to conventional methods. 
 
Keywords: geometric, RANSAC, model fitting 

1.  Introduction 
As the capabilities of aerial Remote Sensing (RS) technologies such as Light Detection And 
Ranging (LiDAR) increase in precision, the potential to directly measure vegetation 
characteristics has increased as well. The majority of methods using LiDAR data for individual 
tree detection and delineation emphasize the conversion of point data into gridded surfaces, and 
the application of algorithmic tools widely used for terrain surface analysis to identify and 
delineate individual trees. While these methods have been shown to be effective under a range of 
circumstances, the conversion to gridded data followed by watershed, valley-following, or other 
such methods have the potential to introduce error from both steps. Surface interpolation from 
unstructured point data (i.e., not evenly distributed in coordinate space) is non-trivial, requiring 
arbitrary decisions about cell size and interpolation strategy. Equally, strategies for delineating 
individual trees from gridded data are subject to error resulting from application of algorithms 
designed to function on terrain surfaces to idiosyncratic forest canopy surfaces. As these steps 
are sequential, errors from the first step can be compounded in the second. To reduce the impact 
of such errors, methods are often parameterized by field data (species, canopy height, etc.) and 
as a result can be quite accurate in tree detection and delineation. If extensive field data 
collection is required to parameterize the algorithm, the efficiency of the inventory effort is 
compromised.  

We have developed a RANdom SAmple Consensus (RANSAC)-based (Fischler and 
Bolles 1981) program, henceforth referred to as StarSac, which uses a geometric model fitting 
strategy to identify individual tree crowns directly from point data. Basal area is then calculated 
using a regression relating Diameter at Breast Height (DBH) to total height. We identify the 
location, and height of all trees within the scene without parameterization from field data using 
the point data directly and avoid the compounding error problem described above. Field data is 
used to parameterize the height-DBH regression for estimation of Diameter at Breast Height 
(1.37) (DBH). 
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1.1 Study site 

The study site is the van Eck forest, consisting of 879 ha of mixed conifer forestland in 
Humboldt County, California. The van Eck forest contains a great deal of structural and 
successional diversity, including riparian areas, selectively logged second growth mixed conifer 
stands, and stands which have not been harvested since initial clear cut in the early part of the 
century.  

The forest is divided in to four tracts, ranging from 130 ha to 315 ha (See Figure 1). It is 
a well-stocked second growth forest with an average timber volume of 170 m3ha-1.  

  
Figure 1: van Eck Study area location and management units. 

2.  Background 

2.1 Detection and delineation 

The majority individual tree identification methods using LiDAR data combine the creation of a 
Digital Surface Model (DSM) and Canopy Height Model (CHM) with Local Maxima (LM) 
filtering to identify tree locations (Jensen et al. 1987; Kaartinen et al. 2008; Lee et al. 2010; 
McCombs et al. June 2003; Tesfamichael et al. 2009, 2010). The efficacy of methods relying on 
LM filtering for tree detection depends on the determination of an analysis window size that 
reflects the crown area of the trees being identified. Popescu et al. (2002) tested an approach 
using a variable window defined by stand specific field data. However, this approach is 
dependent on field observation of crown radii to calibrate the LM window size.  

Several methods have been tested to estimate tree crown and bole parameters (radius, 
bole volume, etc) once tree location has been established. Region growing methods such as the 
watershed delineation adapted from terrain analysis are common (Hyyppä et al. 2001; Schardt 
et al. 2002; Ziegler et al. 2000). Geometric models of tree crown shapes have also been used to 
delineate individual trees in Airborne Laser Scanning (ALS) data. Abstract tree crown form was 
first described by Horn (1971). The Horn equation has been modified and adapted to tree crown 
measurement from aerial photography and LiDAR (Gong et al. 2002; Holmgren et al. 2003; 
Pollock 1996; Sheng et al. 2001; Wolf and Heipke 2007). Persson (2001) and Persson et al. 
(2002) used a second order polynomial to choose between multiple candidate trees selected by 
multi-scale LM filtering. Andersen et al. (2002) used the shape proposed by Sheng et al. (2001) 
to predict crown shape using parameters derived from Bayesian probability analysis of points 
trained by the likelihood of points penetrating into a tree canopy as a result of their scan angle. 
Popescu et al. (2003) used a fourth order polynomial to determine crown diameter after a 
variable shape/radius LM filter (Popescu et al. 2002) was used to detect trees. Wack et al. (2003) 
used a conic section to identify points belonging to distinct trees. Falkowski et al. (2006) used 
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Spatial Wave Analysis (SWA), measuring goodness-of-fit of a 2-dimensional Ricker wavelet to 
the CHM resulting in location, crown radius, and height of individual trees within the coverage 
area. Wolf and Heipke (2007), Heurich (2008), and Kaartinen et al. (2008) utilized a variation 
on Pollock (1996) crown shape to aggregate wrongly identified individual crowns from small 
scale LM filtering as in Persson (2001).  

2.2 RANSAC 

RANSAC (Fischler and Bolles 1981) is a paradigm for fitting experimental data to a 
mathematical model. With sufficient point coverage, objects within a LiDAR scene may be 
reconstructed by interpolating a surface from points. The RANSAC approach has notable 
advantages over other approaches to canopy model fitting as it iteratively determines the best set 
of points fitting a model within the point cloud.  It  has been applied to the detection of objects 
from point clouds (Bretar and Roux 2005; Fontanelli et al. 2007; Forlani et al. 2003, 2006; 
Reitberger et al. 2007, 2009; Schnabel et al. 2007; Tarsha-Kurdi et al. 2007). 

2.3 StarSac 

The StarSac (Shafii et al. 2009) program was developed using RANSAC and Oliver Kreylos’ 
Virtual Reality Toolkit (VRUI). We have revised StarSac and verify the results against those of 
a field survey. Unlike other projects, we use a modified version of RANSAC based upon a 
preliminary, fine scale local maxima filter to find tree canopies. 

3.  Methods 

3.1 Field data collection 

The forest consists of 4 tracts which were further divided into 21 stands ranging in size from 4 to 
40 ha. Stand inventory was taken for standing live greater than 15.24 cm Diameter at Breast 
Height (1.37 m) (DBH). The primary objective of the inventory was to estimate total biomass 
and by extension total forest carbon. The variable plot method outlined in Dilworth and Bell 
(1963) was used. A Basal Area Factor (BAF) was selected for each stand prior to sampling to 
produce an average of 6 to 8 “in” trees per plot. Plots were spaced across each tract on a 50m x 
100m grid. A total of 660 measure plots were installed.  

3.2 Regression models 

A regression model of the allometric relationship between height and DBH derived from field 
data was used to predict DBH from LiDAR derived tree heights. A general non-linear regression 
model for all species was used to establish DBH from height using measured trees from plots 
within the same stand. The equation used for regression analysis takes the standard form of:  
 

bHaDBH ∗=                                                                        (1) 
 

Where H is total tree height; a and b are spatially variable regression coefficients. ANAlysis Of 
VAriance (ANCOVA) was conducted to determine variation in regression coefficients among 
plots using the generalized linear model in the R statistical package (R Development Core Team 
2008).  
In Table 1, Model 1 establishes that the coefficients differ between stands, and Model 2 
establishes that the slopes differ between stands.  

 
Table 1: Analysis of deviance. Model 1: log(DBH) ~ stand + log(height), Model 2: log(DBH) ~ stand + 

stand * log(height). 
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Thus, regression coefficients were calculated for each stand and applied to the determination of 
DBH from LiDAR derived tree heights.  

3.3  LiDAR data collection 

LiDAR data were collected for 1796 ha on March 17th, 2008, conducted with an Optech 3100 
sensor mounted in a Cessna Caravan 208B, with specifics shown in Table 2. Instrumentation 
was set to yield an average native pulse density of ≥ 6 pls/m2 over terrestrial surfaces. The 
TerraScan® software suite was used to classify ground and non-ground points (Soninen 2004). 
 

Table 2: Data Collection statistics. 
 

 
 
 
 
 
 
 

3.4 StarSac 

The current RANSAC algorithm is summarized in pseudo-code below, with references to 
sections that explains key parts of the algorithm in greater detail.  
1. For all locally maximal LiDAR points Maxi for i=1…n: (Section 3.4.1)  

(a) Find set of points around Maxi to create a fixed-size window.  

(b) For iterations j=1…T: (Section 3.4.2)  
i. Randomly select a subset of window points to create model Mj with 

Maxi as its peak, reject if shape is inappropriate. (Section 3.4.3)  

ii. Create consensus set Cj for Mj, determine radius. (Section 3.4.4)  

iii. If Mj has at most a (predefined) ratio of outliers to inliers, grade it and 

compare it with the best model bestM . Keep track of bestM . If no 

previous model was found then Mj is chosen as bestM  assuming that its 

ratio of outliers to inliers is appropriate. (Section 3.4.5)  
(c) If bestM  found, mark it.  

2. Visualize canopy-approximating models as shaded surfaces for delineation. (Figure 10) 
3. Calculate a height for each canopy-approximating model. (Section 3.4.6)  

3.4.1 Local Maxima 
Maximum points Maxi from first return points (classified as non-ground) are identified during 
pre-processing. Each maximum is selected based on the fact that it is higher than points inside of 

Model Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1 1362 200.63    
2 1342 179.68 20 20.95 0.0000 

Sensor Optech 3100 
Survey Altitude (AGL) 900 m 
Pulse Rate > 71 kHz 
Pulse Mode Single 
Mirror Scan Rate 52 Hz 
Field of View 28° (± from nadir) 
Overlap 100% (50% Side-lap) 
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a 1.5 m×1.5 m window centered on the maximum (see Figure 2). This small box is large enough 
to capture most peaks in our test data sets. 

 

  
Figure 2: An artificial sketch of a LiDAR point that has been identified as a maximum where each point is 
defined by the one-dimensional function f(x). The maximum is higher than the other points inside of the 

box indicated by the dashed lines. 

3.4.2 Number of Model Iterations 
We calculate the number of RANSAC iterations T according to Schnabel et al. (2007), based on 
the probability that an appropriate model is found. If a window consists of N points, k points are 
used to instantiate our model. A good consensus set (i.e., inliers) consists of at least c points. The 
probability of finding an appropriate model in a single pass is: 
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After picking s poor models, the probability of detecting an appropriate model is calculated by 
evaluating P(c,s): 

 
 scPscP ))(1(1),( −−=  (3) 
 
If we were to solve for s, we can calculate the number of candidates T required to detect shapes 
of size c with probability tpTcP ≥),( as: 
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The denominator of (4) can be approximated by the Taylor series 

))(()())(1ln( 2cPOcPcP +−=−  and (4) can be written as: 
 

 
)(
)1ln(

cP
pT t−−

≈  (5) 

 



SilviLaser 2011, October 16-19, 2011 – Hobart, AU 

6 

We use (5) to define our number of iterations per window. 

3.4.3 Model Creation 
Our algorithm is currently capable of fitting a single type of model to the points of our data set. 
This model may be defined as a paraboloid, cone or “shape-shifter” shape. Each shape has a 
parameter defining its central peak ),,( ccc zyx  (defined by iMax  used to create the current 
window) and one parameter which controls its appearance. The paraboloid is defined by 
Equation (6) and is shown in Figure 3.  
 
 ccc zyyxxayxf +−+−= ))()((),( 22  (6) 
 

  
 

 
 

 
 
 
 
 
 

                    (a) Paraboloid with α=0.0.         (b) Paraboloid with α=-1.0.     (c) Paraboloid with α=1.0. 
 

Figure 3: Renderings of the paraboloid with sample α values. Negative α values indicate a convex shape 
while positive α values indicate a concave shape. 

If the α parameter is positive, the paraboloid is concave; if it is negative, it is convex. The cone 
is defined by Equation (7) and depicted in Figure 4.  
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                            (a) Cone with α=0.1.                                             (b) Cone with  α=0.5. 

 
Figure 4: Renderings of the cone using various values of α. The cone broadens as one increases α. 

For the cone, α is always positive and causes the cone to broaden as it increases. Convex shapes 
resemble canopies; concave is seen as “inappropriate.” 
The shape-shifter (Equation 8) represents an interpolation between a cone and paraboloid. If α is 
zero, the shape is similar to a cone; if it is one, it resembles a paraboloid (Figure 5).  
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ccccc zyyxxayyxxyxf +−+−∗−+−+−∗−= ))()(()0.1())()((),( 2222α  (8) 
 
 
 
 
 
 
 
 
 

 
             (a) Shape-shifter with α=-1.0.           (b) Shape-shifter with α=0.0.   (c) Shape-shifter with α=1.0. 

Figure 5: Renderings of the shape-shifter (8) using various values of α. The valid range for α is 0-1.0, as 
an α value of -1.0 creates an unusual shape as shown in Figure 5. 

3.4.4 Consensus Set 
Each model’s consensus set Cj is created by selecting points inside of the window which are 
identified as inliers. We assemble this set by first computing the f(x, y) value for each window 
point and comparing that value with the point’s z coordinate. If the different is smaller than a 
pre-defined error metric ε, the point is added to Cj.  

After Cj is created, one can then calculate the radius by calculating the (two-
dimensional, (x, y)) distance between the model’s central peak and consensus point furthest from 
the peak. 

3.4.5 Model Grading 
In order to compare against other models, each model is graded by the number of inliers. The 
model with the best grade (most inliers) is identified in each window. 

3.4.6 Tree height 
To calculate the height for each tree, we use Hardy’s multiquadric method (Hardy 1971) to 
reconstruct the ground surface beneath the tree crown. It is created by solving a system of n 
linear equations with n unknowns using ground points ),,( iii zyx  where i=1,…,n, defined as 
follows: 
 

 nizyyxxc iijiji

n

j
,,1,)()(( 22

1
…==−+−∑

=

 (9) 

 
The quadric term ci influences the shape of Equation (9). We then subtract the elevation 

of the hardy surface at the (x, y) location of the crown apex from the height (z-coordinate) of the 
crown apex.  

3.5  LiDAR inventory 

StarSac was run in a batch process over all LiDAR data in stands where field data was collected. 
The classified LAS files were subset into blocks containing ≈150,000 points. Each block was 
further subset into ground-only points and points classified as first return and vegetation. LiDAR 
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data was processed using the LibLAS (Loskot 2008) command line tools and application 
programming interface (API). StarSac output was collected in a PostgreSQL (The PostgreSQL 
Global Development Group 2005) relational database with the PostGIS (Holl and Plum 2009) 
spatial object extensions.  

To test the accuracy of the tree identification method outlined above, “in” trees were 
identified from the LiDAR-derived trees based upon DBH, BAF, and distance to the nearest plot 
center used in the field inventory. Stand-specific, non-linear regression coefficients derived from 
field data were used to regress LiDAR-derived tree height to tree DBH. Once DBH was 
modeled, the status of all trees with regard to the BAF was assessed based upon the distance 
between the tree and the plot center. The maximum distance from a plot center that a tree with 
given DBH could be, is given as:  

 

 110980* −⎟
⎠

⎞
⎜
⎝

⎛=
BAF

dr  (10) 

 
where r is the plot radius (ft) for a given DBH (d in ft), and BAF (ft2ac-1) (See Dilworth and Bell 
(1963) for further explanation). Thus:  
 
 treeplotplottreetreetree ryxyxB >−= ),(),( if 0  

 treeplotplottreetreetree ryxyxB ≤−= ),(),( if 1  (11) 
 
where the binary value of treeB  identifies a tree as “in” or “out.” 

4.  Results 

4.1  Field inventory 

The BAF selected for each plot resulted in between 5 and 8 trees per plot. Basal area ranges 
between 36 m2ha-1 to 74 m2ha-1 and generally varies with DBHq though with greater magnitude.  

4.1.1  Regression models 
The LiDAR methods employed here do not differentiate between species, thus regression 
coefficients were developed using all trees within a given stand. Figure 6 shows the general 
relationship between DBH and height by species in a 2D histogram. Visual inspection of Figure 
7 indicates similarity between species, justifying the application of an approach that is not 
capable of differentiating between species, such as the StarSac method employed here. 

Figures 8 and 9 represent the results of the regression of DBH and height for all field 
measured trees and for all measured trees and by stand respectively.  
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Figure 6: Two dimensional histogram. df, Douglas fir;gf, Grand; mp, big-leaf maple; ra, Red alder; rc, 

Western red cedar; rw, Coast redwood; ss, Sitka spruce; to, Tan oak; wh, Western hemlock. 
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Figure 7: Average DBH within height bins. df, Douglas fir;gf, Grand; mp, big-leaf maple; ra, Red alder; 

rc, Western red cedar; rw, Coast redwood; ss, Sitka spruce; to, Tan oak; wh, Western hemlock. 



SilviLaser 2011, October 16-19, 2011 – Hobart, AU 

11 

 
Figure 8: Height-DBH regression for all trees. 
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Figure 9: Height-DBH regression by stand. df, Douglas fir;gf, Grand; mp, big-leaf maple; ra, Red alder; 

rc, Western red cedar; rw, Coast redwood; ss, Sitka spruce; to, Tan oak; wh, Western hemlock. 

4.2  LiDAR analysis 

Individual tree identification using the RANSAC method was effective in most cases. Visual 
inspection of the consensus sets (Figure 10) identified was used extensively in testing the impact 
of changes to the approach.  
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(a) Raw LiDAR points. 

  
(b) Raw LiDAR points with consensus sets and maximum points. 

  
(c) Raw LiDAR points with rendered graphs. 

Figure 10: An example of three-dimensional graphs that depict the models used to identify the canopies in 
StarSac. Each graph is created by using the model’s equation and radius. The raw LiDAR rendering is 

showing in Figure 10(a). In Figure 10(b), central peak points are rendered as thick, cyan points and 
consensus set points are colored red. The resulting graphs of the canopies are shown in Figure 10(c). 
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4.3  LiDAR inventory 

The LiDAR inventory method was compared with field methods for the determination of basal 
area. Stand-aggregated basal area estimates were derived using the basal area calculated for each 
plot. Figures 11 and 12 show the basal area and tree count comparison between methods.  

  
Figure 11: Average plot basal area comparison between LiDAR and field methods with 95% confidence 

interval whiskers. 
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Figure 12: Average plot tree count comparison between LiDAR and field methods with 95% confidence 

interval whiskers. 
Figure 13 indicates that the LiDAR method results in greater basal area estimation in the 50 cm 
to 125 cm DBH range while field methods estimate greater basal area in the 12 cm to 50 cm and 
150 cm to 350 cm ranges.   
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Figure 13: Density plot of basal area by DBH histogram bins for LiDAR and field methods. 

The results show strong agreement in many stands while a few stands show some disparity. In 
general, field methods resulted in a higher tree count and greater basal area.  

Table 3 shows tree count/plot averaged across all plots. While there are significant 
differences in the count and basal area between the LiDAR and field methods for given stands, 
the combined statistics indicate that the results of field and LiDAR methods are within a RMSD 
of less than 3.5 m2ha-1 (see Table 4).  
 

Table 3: Average plot tree count and basal area for all plots. 
 

LiDAR count Field  count (average) LiDAR basal area, 
m2ha-1 

(average) Field basal area, 
m2ha-1 

6.64 7.17 57.07 60.33 
 

 
Table 4: Paired t test and RMSD for tree count and basal area for all plots.. 

 
df Tree count t Tree count P BAa t BAa P Count RMSD BAa RMSD 

301 -1.807 0.072 -1.278 0.202 0.530 3.261 
a basal area 
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Paired t test between LiDAR and field methods indicate that the means for all paired plots were 
not significantly different for tree counts (P=0.072) or basal area (P=0.202). 

4.4  Factors affecting agreement between LiDAR and field measures 

While overall differences between the methods are not significant, there is obviously some 
variation between the means for LiDAR and field methods for both tree count and basal area 
(Figures 12 and 11). As the van Eck forest stands were classified by canopy density and other 
factors, we can assess the impact of these generalized stand characteristics on the differences 
between the two measurement methods. This is accomplished using ANalysis Of VAriance 
(ANOVA) for the regression of the stand characteristics (predictor) and the log-transformed 
ratio of basal area estimates (response) from the two basal area estimation methods (Equation 
(12 in Wilkinson-Rogers notation). 
 

 
⎥
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⎤

⎢
⎢
⎣
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⎟
⎠

⎞
⎜
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⎝

⎛
cc

f

l ityCanopyDensDBH
BA
BAlm ~log                                   (12) 

 
A two-way ANOVA reveals that neither the interaction of canopy cover and DBH, or 

DBH alone has significant effects, but that canopy cover does have an impact upon the variation 
between measures (Table 5). A one-way ANOVA (Table 6) reveals that the variance in 
estimated basal area between methods is significant in stands classified in the 40-60% canopy 
coverage range. Levene’s test reveals that the variance is homogeneous between canopy cover 
levels (Table 7), validating the assumptions in the one-way test.  

 
Table 5: Two-way ANOVA test for the influence of canopy cover and DBH classification on variance 

between estimation methods. 
 

 Df Sum Sq Mean Sq F value Pr(>F) 
dbhmid 1 0.00 0.00 0.00 0.9972 
densmid 1 5.81 5.81 8.59 0.0036 
dbhmid:densmid 1 0.95 0.95 1.41 0.2361 
Residuals 298 201.39 0.68   

 
Table 6: One-way ANOVA test for the influence of canopy cover on variance between estimation 

methods. 
 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.1984 0.1390 -1.43 0.1547 
densmid50 -0.7076 0.2949 -2.40 0.0170 
densmid70 0.0702 0.1482 0.47 0.6359 

 
Table 7: Levene’s test of one-way ANOVA residuals from the influence of canopy cover on differences 

between basal area measures. 
 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.6413 0.0879 7.29 0.0000 
densmid50 -0.0336 0.1865 -0.18 0.8571 
densmid70 -0.0074 0.0937 -0.08 0.9375 
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Figure 14 shows the effect of canopy density on tree count and basal area estimation by 
LiDAR and Field methods. Mid-density stands (40%-60%) show significant variation in basal 
area estimates.  

 
  

Figure 14: Variation between LiDAR and field based tree count and basal area estimates by percent 
canopy cover classes. Box extends from the lower to upper quartile values of the data, with a line at the 

median. 
Diameter classes did not strongly influence differences in tree counts or basal area 

estimation by the two methods (Table 5). Figure 15 shows the variability between methods 
across the range of DBH classes. Figure 15 suggests that variation between basal area methods is 
greatest in the 0 cm to 20 cm DBH and 61 cm to 81 cm DBH classes.  
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Figure 15: Variation between LiDAR and field based tree count and basal area estimates by diameter 
classification. Box extend from the lower to upper quartile values of the data, with a line at the median. 

5.  Conclusions, Future Research 
This research gives insight into forest inventory from aerial LiDAR data across forest stands that 
are heterogeneous with regard to management history, species mix, and site characteristics. Tree 
detection and height estimation is accomplished without the use of regression models. The 
replication of a variable plot method was used so that results of field and LiDAR methods are 
comparable. The comparisons in Section 4 indicate that the tree identification and delineation-
based LiDAR inventory method, applied to dense, mixed-species stands on variable terrain, 
yields similar tree count and basal area estimates to the field inventory method. The small 
difference between average basal area estimated by the two methods indicates that though some 
trees are not identified using the LiDAR method, they tend to be smaller trees and contribute 
less to the aggregate statistics.  
The following summarizes the distinct contributions that this research makes.  
• RANSAC approach to individual tree crown fitting reduces the need for extensive field 

data collection to parameterize detection.  
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• Geometric crown shape enables the identification of a range of crown shapes without 
unnecessary computation in structurally and ecologically diverse forest types.  

• Local Maxima pre-filtering before RANSAC reduces unnecessary model testing.  
• Detection is conducted on point data reducing the potential for compounding errors from 

gridded data analysis.  
There exist multiple directions for future research. We intend on refining the RANSAC 

method such that LM filtering may be eliminated from the algorithm and the sub-canopy 
vegetation characteristics can be assessed as well. Additionally, we will investigate ways to 
incorporate methods identified in (Schnabel et al. 2007) for preliminary selection of model 
parameters using point normals. We hope to improve StarSac so that it may provide information 
about a range of structural measures relating to habitat, fire behavior, and forest health. 
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