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Abstract—We present a method for the construction of multiple levels of tetrahedral meshes approximating a trivariate scalar-valued
function at different levels of detail. Starting with an initial, high-resolution triangulation of a three-dimensional region, we construct
coarser representation levels by collapsing edges of the mesh. Each triangulation defines a linear spline function, where the function
values associated with the vertices are the spline coefficients. Error bounds are stored for individual tetrahedra and are updated as the
mesh is simplified. Two algorithms are presented that simplify the mesh within prescribed error bounds. Each algorithm treats
simplification on the mesh boundary. The result is a hierarchical data description suited for efficient visualization of large data sets at

varying levels of detail.

Index Terms—Mesh simplification, hierarchical representation, multiresolution method, scattered data, spline, tetrahedral mesh,

visualization.

1 INTRODUCTION

NE of the most critical research problems encountered

in the analysis and visualization of massive data sets is
the development of methods for storing, approximating,
and rendering large volumes of data efficiently. The
problem is to develop multiple approximations of the data
set, representing the data set a varying levels of accuracy. A
data hierarchy may consist of levels characterized by only a
few points, or by several million points, where each data set
captures, as much as possible, the features of the original
data. A hierarchical representation, or multiresolution
representation, allows the study of large-scale features by
considering a coarse data representation and the study of
small-scale features by considering a high-resolution data
representation.

Most scientific data sets are multivalued, meaning that
multiple dependent variables—e.g., velocity, pressure,
temperature, salinity, sound speed, chemical or nuclear
contamination, or even entire matrices (tensors)—are
associated with each grid point. The grids may represent
a surface or a volume in space and may belong to various
grid types: It may be structured, where, in the volumetric
case, the grid cell arrangement consists of hexahedral cells,
or it may be unstructured, with a cell arrangement consisting
of tetrahedra, hexahedral cells, or even combinations of
various types of cells. Extremely large data sets cannot be
analyzed or visualized in real time unless data reduction/
compression methods are used or extracted features are
rendered. :

In this paper, we focus on three-dimensional tetrahedral
meshes. These meshes provide the greatest flexibility and
are less restrictive than other mesh topologies. Cartesian,
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rectilinear, and curvilinear meshes can all be converted into
a tetrahedral mesh. Data structures, data traversal, and data
rendering for tetrahedral meshes are, in most cases, more
involved than for “more structured” representations.
Nevertheless, when visualizing very large data sets defined
over complex three-dimensional regions, it is more con-
venient to use tetrahedral meshes due to their ability to
better adapt to local features. It is also important to
investigate means for the representation of tetrahedral
meshes at various levels of detail for efficient rendering
and analysis.

Our method for the generation of hierarchies of tetra-
hedral meshes is based on collapsing edges that cause a
minimal increase of the error between the simplified mesh
and the original one. We bound the error between a
simplified mesh and the original mesh by calculating the
deviations in the linear spline approximations to the scalar
fields of the original mesh and the modified mesh. Error is
accumulated as a result of continued edge collapses, giving
us a bound on the maximal deviation of the simplified mesh
from the original.

We present two algorithms to implement this methodol-
ogy. The first algorithm orders the tetrahedra by the
predicted error caused by an edge collapse. Edges are then
collapsed one-by-one and the new ordering is updated to
reflect error bounds for the neighboring tetrahedra. The
second algorithm makes a pass through all tetrahedra and
utilizes a greedy strategy to choose edges for collapse.

The construction of multiple levels of tetrahedral meshes
is a preprocessing step for data visualization. In general,
speed is not the primary concern when constructing the
levels; it is more important that the resulting data format is
compact and allows for simple and efficient access during
the visualization process. Error bounds should be known
for each level as well.

In Section 2, we review mesh simplification algorithms
that relate to our work. In Section 3, we illustrate our

1077-2626/99/$10.00 © 1999 IEEE



TROTTS ET AL.: SIMPLIFICATION OF TETRAHEDRAL MESHES WITH ERROR BOUNDS 225

technique for triangle meshes in the plane. The main
principles become very clear from the discussion of the
planar case. In Section 4, we describe the extensions for
tetrahedral meshes. In Section 5, we describe two algo-
rithms for the simplification of tetrahedral meshes using the
error approximation techniques defined in Section 4.
Implementation issues are discussed in Section 6, and the
results of our algorithm are illustrated on a set of complex
examples in Section 7. Conclusions and future work are
discussed in Section 8.

2 RELATED WORK

Three classes of algorithms have been developed that
directly pertain to our work and that deal with triangle or
tetrahedral meshes: Algorithms that simplify a mesh by
removing vertices, algorithms that simplify a mesh by
removing edges, and algorithms that simplify a mesh by
removing higher-level simplices. All algorithms utilize an
“error estimation” strategy to determine an order for the
collapse operations.

Schroeder et al. [1] and Renze and Oliver [2] have
developed algorithms that simplify a mesh by removing
vertices. Vertices to be removed are identified through a
distance-to-simplex measure. Removing a vertex creates a
hole in the mesh that must be retriangulated, and several
strategies may be used: Schroeder et al. use a recursive
loop-splitting procedure to generate a triangulation of the
hole, while Renze and Oliver fill the hole by using an
unconstrained Delaunay triangulation algorithm.

Hoppe [3], [4] and Hoppe and Popovic [5] describe a
progressive-mesh representation of a triangle mesh. This is
a continuous-resolution representation based on an edge-
collapse operation. The data reduction problem is formu-
lated in terms of a global mesh optimization problem [6],
ordering the edges according to an energy minimization
function. Each edge is placed in a priority queue by the
expected energy cost of its collapse. As edges are collapsed,
the priorities of the edges in the neighborhood of the
transformation are recomputed and reinserted into the
queue. The result is an initial coarse representation of the
mesh and a linear list of edge-collapse operations, each of
which can be regenerated to produce finer representations
of the mesh. Other edge-collapse algorithms have been
described by Xia and Varshney [7], who use the constructed
hierarchy for view-dependent simplification and rendering
of models, and by Garland and Heckbert [8], who utilize
quadratic error metrics for efficient calculation of the
hierarchy.

Staadt and Gross [9] have extended the progressive mesh
algorithm of Hoppe [3] to tetrahedral meshes. They utilize a
“cost” function to determine a priority for the collapse
operations, which penalizes operations due to the shape of
the resulting tetrahedra, the changes in the volume of the
tetrahedra in the neighborhood of the collapse, and the
differences in scalar values along an edge. Each of these
quantities can be weighted separately to produce the final
cost function. An edge-length criterion can also be used in
the cost functions.

Cignoni et al. [10] treat the tetrahedral mesh problem by
using a top-down, Delaunay-based procedure to define a

tetrahedral mesh that represents a three-dimensional set of
points. The mesh is refined by selecting a data point whose
associated function value is poorly approximated by an
existing mesh and inserting this point into the mesh. The
mesh is modified locally to preserve the Delaunay property.
This algorithm has been generalized to include a decima-
tion strategy in [11]. Edges to be collapsed are selected by
analyzing the field gradient at each vertex p of the grid.
This value is calculated as a weighted average of the
gradients of all tetrahedra adjacent to p, where the weight
of tetrahedron 7' is given by the solid angle subtended by T
at p. The edges are then ordered according to the difference
between the gradients at the endpoints of the edge. Edges
with smaller differences are eliminated first.

Hamann [12], Hamann and Cheng [13], and Gieng et al.
[14], [15] have developed algorithms that simplify triangle
meshes by removing triangles. These algorithms order the
triangles using a weights based partially on the curvature of
a surface approximation, partially on the changes in the
topology of the mesh due to a triangle collapse, and
partially due to a predicted error estimate of a collapse
operation. Triangles are inserted into a priority queue and
removed iteratively. Modified triangles receive new
weights and are inserted back into the priority queue. By
selecting a number of triangles from the front of the queue
whose resulting collapse operations do not conflict, it is
possible to “parallelize” triangle removal.

Error approximation between meshes is addressed by
several researchers. Cohen et al. [16] utilize an edge
collapse-strategy to simplify polygonal models. They order
the edges by using the distances between corresponding
points of the mapping. Bajaj and Schikore [17] measure the
error of the scalar fields across the surface. Their method is
similar to that discussed in this paper, but it is surface
based. A similar technique is also by Hoppe [18] for the
error calculations in level-of-detail rendering of terrain
modeling. Klein et al. [19] calculate the Hausdorff distance
between two meshes.

This paper is an expansion of our work discussed in [20].
The general idea is to base tetrahedral collapse operations
on the deviation of the simplified scalar field from the
original field. If the deviation can be measured closely, the
complex weights of Hoppe et al. [6], Staadt and Gross [9],
and Gieng et al. [15] should not be necessary. A maximum
deviation bound is kept for each tetrahedron in the mesh.
This value, together with the predicted increase in the error
as a result of collapsing a tetrahedron, enables us to
determine which tetrahedron to collapse and to ensure that
the maximum deviation over the scalar field remains less
than a specified value. As the mesh is simplified the
maximum deviation is updated for each tetrahedron
affected by the collapse operations.

In our initial work [20], we collapsed individual
tetrahedra, collapsing three edges of the tetrahedron and
measuring the error induced by the collapse. In this paper,
we discuss an approach based on an edge-collapse strategy.
With this approach, we can provide precise error bounds on
the simplified mesh and we can simplify the discussion of
the decimation process by avoiding the complex topological
problems that result from the collapse of several edges
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constituting the collapse of a tetrahedron. This approach
allows us to extend our strategy to unstructured meshes
with complex boundaries. We also discuss a greedy
simplification strategy, which allows the edge-collapse
process to become much more efficient.

Our basic algorithm is a bottom-up approach that
produces a hierarchy of tetrahedral meshes, each of which
is guaranteed to be within a specific error from the original
mesh. The error calculations are local calculations, so the
algorithms are fairly efficient even on large meshes. The
algorithm can be configured to utilize only the original data
points, which allows us to represent the resulting hierarchy
compactly.

3 TRIANGLE MESH SIMPLIFICATION IN THE PLANE

To understand the collapsing of tetrahedra in a three-
dimensional mesh, it is useful to first study the collapsing of
triangles in a planar mesh. Assume we have a collection of
data points {vg,v1,v2,...,v,} in the plane and a set of
triangles {7, T, ..., T, } defining a triangulation of the data
points. We assume that the generated triangulation is fair,
i.e., the mesh is connected, each edge in the mesh is shared
by at most two triangles, and no triangle of the mesh
intersects with the interior of another triangle.

We call a triangle 7" a vertex neighbor of a vertex v if vis a
vertex of T' and T is an edge neighbor of an edge e if e is an
edge of 7. Each edge has at most two edge neighbors, while
each vertex may have any number of vertex neighbors. The
vertex neighbors of a triangle T consist of all triangles that
share a vertex with 7. The edge neighbors of T are the
triangles that share an edge with 7. The union of the vertex
neighbors of a triangle T is called the stencil of T, and the
union of the vertex neighbors of an edge e is called the
stencil of e. The stencil of an edge e contains those triangles
that are modified when e is collapsed, see Fig. 1. We also
define the extended stencil of an edge e to be the union of the
stencils of triangles T that are in the stencil of e, see Fig. 2.
This stencil defines the set of edges whose collapse affects
the stencil of e.

Given an edge e, with endpoints v; and v;, we collapse
the edge by removing the two triangles sharing the edge
and by collapsing v; and v to a new point v, see Fig. 3. The
points v; and v, are commonly called the parents of v in the
mesh hierarchy, while v is called the child of v; and v,. This
operation removes two triangles from the stencil of e and
stretches the remaining triangles of the stencil to contain the
new vertex v. As a special case, we can collapse an edge to
one of its end points. (The collapse operation does not
commute, i.e., collapsing v, to vy is different from collapsing
v to vy, see Fig. 4.)

3.1 Error Bounds

To calculate a bound for the error due to an edge collapse,
we assume that the triangle mesh approximates a scalar
field defined by a piecewise linear spline with individual
spline segments s = F(u,v,w), where (u,v,w) are the
barycentric coordinates of a point in a triangle. The spline
coefficients are the function values at the mesh vertices.
Each triangle 7' has an associated “maximal deviation”
er, which represents a bound on the deviation between the

Fig. 1. The stencil of an edge e; the shaded triangles all share a vertex

with e; a collapse of e impacts the triangles of the stencil e.

linear spline segment defined by 7" and the original linear
spline inside 7'. Original triangles have error values ey =0,
which is updated whenever a collapse is performed.

Suppose we have selected an edge e for collapse and v;
and v, are the end points of e. Let v be the new point to
which the edge will be collapsed. Suppose that the stencil of
e consists of k triangles 11,75, ..., T}, where Tj_; and T}, are
the edge neighbors of e. Then, as the edge is collapsed to v,
the triangles 77,73, ...,Ty—o are stretched to share v as a
common vertex, and Tj_; and 7, are eliminated. This
collapse operation creates a new set of triangles,
TC, TS, ..., TF ,, and defines a new linear spline FC over
the modified mesh, see Fig. 5.

For each stretched triangle 7, we calculate a bound on
the deviation between the two linear splines over T¢ by
considering the points where 7¢ and the triangles of the
stencil of T intersect, see Fig. 6.

Let ¢; and ¢y denote the vertices v; and v, and let
c3,C4,...,c; be the points where the stretched triangles
intersect the original triangles, see Fig. 7. For each of the ¢;,
we know that the induced linear spline F¢ cannot deviate
more than

|FC(¢;) — F(ci)| + max{er}

from the linear spline defined by the original triangles.
Here, the maximum is taken over the two triangles that are
the edge neighbors for the edge e that contains ¢;. This
means that, for each point ¢;, the deviation is bounded by
the difference between the two linear splines at ¢; plus the

Fig. 2. The extended stencil of an edge e; the shaded triangles all

contain edges whose collapse would affect the stencil of e.
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Fig. 3. Collapsing an edge in a mesh: The edge e is collapsed by moving »; and v, to a new vertex v; the two shaded triangles are eliminated and the

remaining triangles of the stencil of e are stretched.
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Fig. 4. The special case of collapsing an edge to one of its end points: The edge e is collapsed by moving v; to v,; the two shaded triangles are

eliminated, and the remaining triangles of the vertex neighborhood of v, are stretched.
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Fig. 5. Effect on the stencil of an edge e of a triangle 7" when e is collapsed: (a) the triangle T" and original mesh; (b) the triangulation after the collapse

of edge e.

maximum of the errors ey for the triangles that contain ¢; as

an edge point or vertex point.
Therefore, an error bound for the triangle TC can be

calculated by taking the maximum of this deviation
considering all points ¢; that are contained in the triangle,

ie.,
B(TC) = max{[FC(c,-) — F(c;)| + maxer}. (1)
We note that two of the stretched triangles will contain the

(eliminated) vertices ¢; or ¢ and, in these cases, the

maximum must also include the deviation between the

two linear splines at these points. Using this approximation,

we can calculate a new error bound for each triangle 7¢.
We define the “cost” of collapsing triangle 71" as

b7 i max B(TE)| - 1 B

where the minimum is taken over the three possible edge
collapses for 7' and the maximum is taken over the
stretched triangles formed by collapsing two edges of T.
The cost of collapsing 7' is the difference between a
predicted error bound for the region and the current error
bound of T.
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Fig. 6. Calculation of the error for a stretched triangle 7°. Triangle 7; becomes triangle T¢ via the collapse of edge o753 to v. A bound on the increase

in the deviation from the triangles Ty, T3, and T3 is the maximum of the deviations at the points ¢, c3, and c;.

3.2 Boundary Preservation

The boundary of a triangular mesh is given by the set of all
edges belonging to exactly one triangle. It is desirable to
preserve this boundary as much as possible while collap-
sing edges. Given an edge e, selected for collapse, we check
the following:

e If e has a single vertex v on the boundary, then the
edge can only be collapsed to v. Collapsing to any
other point on the edge would compromise the
boundary, see Fig. 8.

e If e has two vertices v; and v5 on the boundary, then
the edge may be collapsed only if the change in the
boundary is less than a prescribed threshold.

Each of these cases restricts the number of possible edge
collapse operations for a triangle T'. In some cases, only one
or two edges of a boundary triangle 7' may be collapsible. In

Fig. 7. Contributors to the error bound. The location of the eliminated
vertex v; is c1; ¢y is the location of the eliminated vertex v,; and the
points ¢;, i = 3, ..., 7, are the intersection points of the stretched triangles
and the triangles of the previous mesh. A bound on the error increase for
each stretched triangle can be calculated by finding the deviations in the
two linear splines at the points ¢ and adding these values to the
maximum of the errors over the original triangles at these points.

general, if 7" has an edge with a vertex v on the boundary,
then the edge must be collapsed to v. If we collapse to any
other point on the edge, the boundary would be destroyed.

These conditions ensure that we do not compromise the
quality of the boundary and this approach works well for
triangular meshes whose boundaries are squares or
rectangles. In general, a boundary-preserving scheme
should work for an arbitrary boundary and should allow
the boundary to be compromised within a certain tolerance.

To accomplish this, we add an “exceptional” point v,
the vertex-at-infinity, to the mesh and connect this point to
each vertex on the boundary. Triangles having among their
vertices are called exceptional triangles. With the addition
of the exceptional triangles, we can treat the mesh as a
“closed” triangulation and, thus, we can define complete
stencils on the boundary. With these additional triangles,
the boundary can be defined as the set of edges e such that
one of the two edge neighbors of ¢ is an exceptional triangle.
We remove exceptional triangles from the mesh by
collapsing the boundary edges. The edges of the triangles
having vy, as an endpoint are not collapsed.

The error bound associated with an exceptional triangle
T is the maximum deviation of the boundary edge of T
from the actual boundary of the original mesh, measured by
the Hausdorff distance [19]. If we collapse an edge on the
boundary, as shown in Fig. 9, we update the exceptional
triangles associated Hausdorff distances—the distance of
the simplified boundary from the from the original. This
allows us to specify a threshold that implies a maximal
deviation of the boundary of a simplified mesh from the
boundary of the original mesh.

3.3 Outline of the Overall Algorithm

We describe a simple algorithm that incorporates the above
techniques to simplify a planar mesh of triangles. Suppose
we are given a set of vertices {vg, v, v, ..., v,} in the plane
and a triangulation defined by the set of triangles
{To,Th, ..., T;,.}. Each triangle T is assigned an error measure
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Fig. 8. Collapsing edges that affect the boundary: The requirements ensure that a boundary edge can be collapsed as necessary, but that interior
edges containing boundary points can only be collapsed in one direction. Case (a) shows the original mesh, case (b) illustrates the mesh if an interior
edge is collapsed, and case (c) illustrates the collapse of the interior edge to the vertex on the boundary. In case (b), the geometry of the mesh

boundary is destroyed.
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Fig. 9. When collapsing edges on the boundary, two triangles are eliminated from the mesh: one exceptional triangle and one mesh triangle. The
remaining exceptional triangles include the new vertex v and the errors of the exceptional triangles are updated to specify the Hausdorff distance of

the simplified mesh from the original one.

er, initially set to zero. The value ey represents a bound on
the difference between the linear polynomial defined by a

triangle 7" and the linear spline defined by the initial mesh.
For each triangle T in the mesh and each edge e; of T, we

calculate an edge weight §; which reflects the “predicted
error,” i.e., the maximal deviation that would result when
collapsing edge e; of the triangle, as defined by (2). We
define the weight of T to be the accumulated error er
(initially zero) plus the minimum of the calculated edge
deviations (min; §;), and we place the triangles in a priority
queue ordered by increasing values of er + min; 6;. Thus,
the first triangle removed from the queue should have the
least effect on the change in the linear spline after the
collapse operation.

Next, we select a maximum error € threshold for which
one wishes a mesh to be generated, and iteratively perform
the following steps:

Remove a triangle 7" from the queue;

e if er+6r > ¢ then the triangles in the queue
represent the simplified mesh;
o if ep +6r <¢ then

- collapse the edge e; that yields the minimal §;
for T, and remove the edge neighbors of e; from
the queue;

- recalculate e;¢ and 6;c for each triangle T that
is stretched as a result of the collapse, and
reposition it in the queue;

- recalculate 67 for each triangle T in the stencil of
a stretched triangle 7°¢;

The last step is necessary to keep the queue in the correct
order. Once a triangle is stretched, the cost of collapsing a

neighboring triangle may change.

4 TETRAHEDRAL MESHES

We now generalize these principles to tetrahedral
meshes. We assume that we have a set of vertices
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Fig. 10. A piecewise-linear example: The values of the scalar field are

only rendered on the boundary of the grid.

{Vo0, Vo, V1, V2, ..., Up } in three-dimensional space and a set of
tetrahedra {7},T},...,T,} defining a triangulation of the
vertex set. The triangulation defined by these tetrahedra is
closed: Boundary tetrahedra share a face with a tetrahedron
that contains the vertex-at-infinity .

Similarly to the planar case, we define the vertex
neighbors of a point v to be the set of tetrahedra 7' that
share v as a vertex. The edge neighbors of an edge e are
defined to be the set of tetrahedra that share e as an edge. In
addition, we define the face neighbors of a face f to be the
two tetrahedra in the mesh that share the face f. We also
define, in an analogous fashion, the vertex neighbors, edge
neighbors, and face neighbors of a tetrahedron. A tetra-
hedron has four face neighbors, but it can have any number
of edge and vertex neighbors. The stencils of a tetrahedron
T, a face f, and an edge ¢, and the extended stencil of an
edge e are defined similarly to the planar case.

We collapse a tetrahedron T by collapsing one of its
edges. Given an edge e, with end points v; and vy, we
collapse the edge to a new point v by removing all edge
neighbors of the edge e, stretching the remaining elements
of the stencil of e to share v as a vertex. This operation
removes several tetrahedra from the mesh. On the
boundary, it may be necessary to collapse a tetrahedron to
one of the two vertices of the edge e.

We ensure that the collapse operation does not produce
intersecting tetrahedra by comparing the signs on the
volumes of the original and stretched tetrahedra. If
collapsing an edge of a tetrahedron T leads to a change in
sign of the volume of the affected tetrahedra, we label the
edge as “noncollapsible.”

41 Error Bounds

To bound the error, we assume the tetrahedral mesh
represents a linear spline defined by individual spline
segments s = F(u,v,w,t), where (u,v,w,t) are the bary-
centric coordinates of a point inside a tetrahedron. The
spline coefficients of F are the function values at the mesh

Fig. 11. The underlying tetrahedral mesh for the function shown in
Fig. 10. The field contains 2,058 tetrahedra. The edges are colored
according to the values of the scalar field.

vertices. Each tetrahedron T has an associated error bound
er, which represents a bound on the deviation between the
linear spline segment defined by 7" and the linear spline of
the original tetrahedral mesh in the area of 7. An original
tetrahedron T has an error value of ¢ = 0 and this value is
updated whenever a collapse is performed.

If FC is the piecewise linear function induced by a
collapse operation, we can bound the error over a stretched
tetrahedron 7°¢ similarly to (1), i.e.,

B(T°) = max{|F°(c;) — F(ci)| + max{er}}, 3)

where the points c; are the intersection points of the edges
of the stretched tetrahedron 7¢ and the faces of the
tetrahedra in the previous mesh, the intersection points of
the faces of 7¢, and the edges of the tetrahedra in the
previous mesh, and the eliminated vertices of the collapsed
edge. The maximum is taken over all tetrahedra that contain
¢; as an edge point or a vertex. We define the cost of
collapsing a tetrahedron T as

b7 = min [m;fi,x B(TJ.C)] — ep, (4)

where the minimum is taken over all possible edges of a
tetrahedron 7', and the maximum value is taken over the
tetrahedra stretched by collapsing the six edges of 7. This
value is the difference between a prediéted error bound for
the region and the error bound of 7.

4.2 Boundary Preservation

The boundary surface of a tetrahedral mesh is given by the
set of all faces belonging to exactly one tetrahedron. It is
desirable to preserve this boundary surface as much as
possible. Some data sets have rectangular boxes that
represent the boundaries of their convex hulls, while most
have boundaries that are much more complex. Given an
edge ¢, selected for collapse, we apply the following tests:
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Fig. 12. The reduced tetrahedral mesh resulting from the application of
Algorithm 1 to the linear scale field of Fig. 10. This mesh contains 115
tetrahedra and represents the scalar field exactly.

e If e has a single vertex v on the boundary, then the
edge can only be collapsed to v. Collapsing to any
other point on the edge will compromise the
boundary.

e If e has two vertices v; and v; on the boundary, then
the edge may be collapsed only if the change to the
boundary is less than a prescribed error bound.

Each of these cases restricts the number of possible edge
‘collapse operations for tetrahedra that have vertices on the
boundary. In some cases, only one or two edges of 7' may be
collapsible. In general, if T has an edge with a single vertex
v on the boundary, then the edge must be collapsed to v. If
we collapsed to the other vertex, the boundary would be
destroyed.

As in the planar case, we add an “exceptional” point v,
the vertex-at-infinity, to the mesh and connect this point to
each face on the boundary. With the addition of the
resulting “exceptional” tetrahedra we can treat the mesh
as a “closed” triangulation and, thus, we can define
complete stencils on the boundary. With these additional
tetrahedra, the boundary can be defined as the set of faces f
such that one of the two. face neighbors of f is an
exceptional tetrahedron. Exceptional tetrahedra can only
be removed from the mesh by collapsing the boundary
edges. Edges of exceptional tetrahedra having v, as an
endpoint are not collapsed.

The error bound associated with an exceptional tetra-
hedron 7T is the maximum deviation of the simplified
boundary from the original boundary of the original mesh,
measured by the Hausdorff distance [19]. If we collapse an
edge on the boundary, we update the exceptional tetra-
hedra’s associated Hausdorff distance. If the prescribed
error threshold on the boundary is zero, then the algorithm
will only collapse edges where the boundary is planar.

Care must be taken to accurately integrate the boundary
simplification steps with the general mesh simplification

Fig. 13. The reduced tetrahedral mesh resulting from the application of
Algorithm 2 to the linear scalar field of Fig. 10. This mesh contains 69
tetrahedra and represents the scalar field exactly.

algorithm, as the error values have a different meaning. In
the case of the internal tetrahedra of the mesh, the error is
based upon the change in the scalar values. However, in the
case of the boundary, the error is based upon the Hausdorff
distance. In each case, our algorithms consider the error of
the internal tetrahedra and select edges for collapse. If the
selected edge e is on the boundary, then we consider the
Hausdorff distance criteria contained in the exceptional
tetrahedra that contain the edge e. The edge is collapsed
only if the error threshold for the boundary and the error
threshold for the internal tetrahedra are not exceeded.

5 ALGORITHMS FOR MESH SIMPLIFICATION

We present two different algorithms that can be used to
simplify a mesh. The first, similar to that presented in
Section 3.3, utilizes a priority queue and the error prediction
mechanism. The second algorithm uses a greedy strategy
and makes a pass through the complete tetrahedral mesh,
attempting collapse operations for each tetrahedron. Each
error resulting from a collapse operation is compared to an
error threshold and the collapse is retained if the approxi-
mated error is less than the threshold value.

The input to each algorithm consists of two error values,
¢ and ep. The value € represents the maximum allowable
error in the interior of the mesh (the deviation of the linear
splines), and ¢p represents the maximum allowable devia-
tion on the boundary of the mesh (the Hausdorff distance).
Each tetrahedron in the interior of the mesh stores an error
value that is compared against ¢ and each exceptional
tetrahedron (containing the vertex v,,) stores an error value
that is compared against ep. For simplicity, we describe the
algorithms referring to the single global error threshold e.
The boundary threshold ey only is considered if the
collapsed edge is on the boundary.
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TABLE 1
Data Set Algorithm | Internal | Boundary | Tetrahedra | Percent | Simplification
Error Tol. | Error Tol. | Remaining | Remaining | Time (Total)

Piecewise-Linear 1 0.0001 0.0 115 5.58% 35.0 min.
Piecewise-Linear 2 0.0001 0.0 69 3.35% 3.4 min.
Blobby 2 0.02 0.01 6,166 36.1% 85.6 min.
Blunt Fin 2 0.0001 0.0 419,297 93.2% 684 min.
Blunt Fin & 0.001 0.0 297,237 66.1% 1,243 min.
Blunt Fin 2 0.01 0.0 160,948 35.8% 1,866 min.
Blunt Fin 2 0.1 0.0 72,362 16.1% 2,557 min.

5.1 Algorithm 1

Algorithm 1 is based on a priority queue, where the
tetrahedra are ordered by their influence on the error. For
each tetrahedron T, we calculate 67, as defined in (4),
reflecting the predicted error increase resulting from
collapsing an edge of the tetrahedron. To specify 67, we
must calculate the cost of collapsing each edge of the
tetrahedron and select that edge that yields the minimum
error. We insert tetrahedra in a priority queue that is

ordered by increasing ez + 67 values.
Having selected a maximum error threshold € used to

terminate the algorithm, we iterate over the following steps:
remove a tetrahedron T' from the queue;

e if ey + 67 > ¢, then the set of tetrahedra in the queue
represents the simplified mesh;
o if ey + 6r <e¢ then

- collapse the selected edge e of the tetrahedron T’
and eliminate the edge neighbors of 7' from the
priority queue;
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Fig. 14. The boundary of the blobby data set together with its tetrahedra.
The data set was initially generated as a rectilinear data set. The
boundary of the set was generated by eliminating all tetrahedra whose
scalar values were zero at the vertices. The data set contains 17,076
tetrahedra.

- recalculate e7¢ and ;¢ for each tetrahedron 7€
in the stencil of e—these are the tetrahedra
modified by the collapse operation;

- recalculate §7, for each tetrahedron 7% in the
extended stencil of e—the error bounds of
these tetrahedra have been changed by the
collapse of e;

Three methods can be implemented that utilize the
collapse operation to generate sets of meshes
Mo, My, ... M, approximating the original mesh at multi-
ple levels of resolution:

I. Let the initial mesh be M. Choose a sequence of
error bounds € <€ < ... <¢,. Select tetrahedra
from the queue, collapse the tetrahedra, and reinsert
the stretched tetrahedra into the queue until the
tetrahedron 7' at the front of the queue violates the
condition er + &7 < €. The set of tetrahedra in the
priority queue define the mesh M;.

Using the mesh M, collapse the tetrahedra in the
queue until the tetrahedron 7' at the front of the
queue violates the condition er + 67 < €,. The set of
tetrahedra in the queue defines the mesh M,.

The algorithm terminates when mesh M, is
generated.

2. Specify a number (or a percentage) of tetrahedra to
be collapsed in each step. The intermediate meshes
are defined by those tetrahedra remaining in the

Fig. 15. An isosurface of the original blobby data set.
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Fig. 16. The simplified blobby data set. This data set contains 6,166
tetrahedra or 36.1 percent of the original number. We note that some
boundary simplification has taken place.

queue after each step. The error for each mesh is
stored.

3. Similarly to Gieng et al. [15], remove a set of
tetrahedra from the queue and collapse them in
parallel. The only restriction is that the stencils of the
tetrahedra to be collapsed in parallel must not
intersect.

The resulting sequence of meshes can be used for
“smooth” transitions (geomorphs) between mesh
levels.

This algorithm attempts to select the tetrahedron and
edge that produces the minimal increase in error at each
step. A problem with the algorithm is that the increase in
error must be calculated a priori. This causes the initial
setup step to be computationally intensive, as the error
calculations can be time-consuming; most of these calcula-
tions, in the end, are not necessary. When we collapse an
edge of a tetrahedron, all the edge neighbors are removed
from the mesh. For each of these neighbors, the calculation
of 67 is only used in the initial ordering.

5.2 Algorithm 2

Algorithm 1 is a robust simplification algorithm, but is time-
intensive. To improve the efficiency of the algorithm, we
use a greedy strategy which examines each tetrahedron T
individually. Algorithm 2 attempts the collapse of an edge
of T and accepts the collapse if the resulting error is within
the required tolerance and rejects the collapse otherwise.

For a mesh M, we make passes through the tetrahedra of
the mesh, collapsing edges if the error bound is not
exceeded. We continue to process tetrahedra in this way
until we cannot guarantee that further collapse operations
will exceed the error bound. Algorithm 2 proceeds as
follows:

Given a mesh M and an error tolerance ¢, perform the
following steps:

1. Select a tetrahedron T of mesh M and an edge e of
T;

2. Attempt to collapse e; if the collapse induces an error
threshold below ¢, accept the collapse, and remove
the tetrahedron 7' and all edge neighbors of e from
the mesh;

Fig. 17. An isosurface of the simplified data set using the same isovalue

as in Fig. 15.

3. A successful collapse modifies some tetrahedra in
the stencil of the collapsed edge e—for each
modified tetrahedron T¢, calculate the error change
and add this to the accumulated error ez, for this
tetrahedron;

4. Continue until the simplified mesh cannot be
collapsed any further without increasing the error
above e.

This algorithm selects an edge of an arbitrary tetrahe-
dron and attempts to collapse it. If the collapse results in a
mesh with an error below the threshold, it is accepted and
the process continues. This approach avoids the complex ér
calculations for tetrahedra of Algorithm 1. Here, the ér
calculations are not necessary. Thus, we save the a priori
calculation of the &r values for all tetrahedra in the mesh
and save the calculation of 6; for those tetrahedra in the
extended stencil of a collapsed edge e.

We can use this algorithm to produce a sequence of
meshes. The input is a sequence of error tolerances
€, < € < ...< ¢, and the algorithm generates a sequence
of meshes My, M, ..., M,,. Here, M, is the original mesh,
and each mesh M; has a deviation from the original mesh
that is less than ¢;. If we add the condition that an edge e is
rejected for collapse if the stencil of e overlaps with the
extended stencils of previously collapsed edges in the mesh,
then the sequence of meshes will the property that the mesh
M, can be constructed from mesh M; by collapsing a set
of edges in a geometrically continuous fashion, see Gieng et
al. [15].

However, we can improve this algorithm by saving the
induced error change ér when a tetrahedron collapse is
attempted. Given an initial error bound ¢, we can use the
greedy strategy to choose tetrahedra and edges for collapse.
If we find that a collapse is not successful, i.e., the resulting
error of collapsing any edge of the tetrahedron is greater
than ¢, then we retain 87 for this tetrahedron. In subsequent
passes through the mesh, the &7 values provide estimates of
the cost of collapsing this tetrahedron. If the sum of the
estimated cost and the accumulated error is greater than the
prescribed bound, we do not attempt to collapse T' If the
tetrahedron is stretched by another collapse operation, the
estimate is eliminated and we must attempt the collapse
operation to determine the “collapsibility” of T'.
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Fig. 18. Isosurfaces of the blunt-fin data set. (a) was generated from the original data set. (b)-(d) were generated from simplified data sets containing

93 percent, 35 percent, and 16 percent of the number of tetrahedra in the original data set.

After the initial pass through the mesh, we can insert the
tetrahedra into a priority queue ordered by increasing
values of 67. On subsequent passes through the mesh, we
utilize the ordering in the queue to determine a sequence of
tetrahedra to be examined. If, for a tetrahedron 7' in the
queue, the predicted increase in error causes the total error
to exceed the threshold, we can terminate the search for
new collapses and move to the next mesh level.

6 IMPLEMENTATION ISSUES

We have implemented the two algorithms using a simple
data structure for tetrahedral meshes. We store a list of
vertices and a list of tetrahedra. Each tetrahedron contains
links to the four vertices of the tetrahedron and the four face
neighbors. Calculating the vertex neighbors, the edge
neighbors, and the face neighbors of a tetrahedron is
straightforward using this data structure. Each tetrahedron
T carries an error bound ey and a predicted deviation é7.

We have found that care must be taken to ensure that the
topology of the mesh is not compromised. Locally, an edge
collapse can cause a tetrahedron in the stencil of the edge to
flip, causing the the tetrahedra to intersect in this area. We
detect these changes by examining the signs of the volumes
of the tetrahedra in the stencil of the collapsed edge. If, due
to the collapse of the edge, the volume of such a tetrahedron
changes sign, then the collapse is rejected.

Care must also be taken when collapsing tetrahedra on
the boundary of a mesh. If the maximum error bounds are

too large, inconsistencies and intersections on the boundary
may occur. Staadt and Gross [9] discuss these artifacts for
the general case. We do the following: If the boundary error
tolerance is set to zero, the degeneracies cannot occur (as
long as we monitor the volume of the stretched tetrahedra
as discussed in the paragraph above). With a zero boundary
tolerance, collapse operations on the boundary would only

take place on the portions of the boundary that are planar.

7 RESULTS

Results of our work are shown in Figs. 10, 11,12, 13, 14,15,
16, 17, 18, 19. We have generated examples for three data
sets: a simple piecewise-linear function, a simple blobby
model, and the blunt-fin. We utilized both Algorithm 1 and
Algorithm 2 for the linear function to ‘demonstrate the
speed of Algorithm 2. We found for the blobby model and
for the blunt-fin that Algorithm 1 was not competitive and

so the results are given only for Algorithm 2.
Our first example is shown in Figs. 10, 11, 12, 13. Fig. 10

shows a piecewise-linear scalar field over a cube containing
2,058 tetrahedra. Each voxel of the original 7 x 7 x 7 data
set is initially split into six tetrahedra, see [21]. The

piecewise-linear function is defined by
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Fig. 19. The boundary surface of the blunt-fin data set. (a) was generated from the original data set. (b)-(d) were generated from the simplified data
sets of Fig. 18. The boundary error tolerance was zero. Note that the simplification only takes place on those areas of the boundary that lie on a

plane.
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Fig. 11 shows the underlying tetrahedral mesh for this
example.

Simplifying the mesh with Algorithm 1, and any small
user-specified error threshold, yields the mesh shown in
Fig. 12, which contains 115 tetrahedra and still represents
the scalar field exactly. (We note that 15 tetrahedra would
be optimal.) Simplifying the mesh with Algorithm 2, and
any small error threshold, yields the mesh shown in Fig. 13.
The resulting mesh contains 69 tetrahedra and represents
the scalar field exactly.

The statistics for the operation of Algorithm 1 and

Algorithm 2 are reported in Table 1.
Our second example is the isosurface represented by a

blobby model, see Wyvill et al. [22]. This model is
represented by a number of positive and negative blobby
elements (negative to create the holes) using a linear
superposition of functions of the form

, 2 :
C(r) = —49(7‘R)6+179(7'R)4—229(TR) a1 %f 0<nr< R
0 if <7,

where R is the radius of the blob and r is the distance of the
point from the center of the blob.

We first created a rectilinear data set surrounding the
blobby model and sampled the blobby data set at the
vertices of the rectilinear set. To represent an interesting
boundary case, we then removed the tetrahedra that
contained only zero values of the function. The resulting
data set contains 17,076 tetrahedra and is shown in Fig. 14.
An isosurface generated from the data set is shown in
Fig, 15.

We applied Algorithm 2 to this data set, using an error
threshold of ¢ =0.1 and a boundary error threshold of
eg = 0.1. The results are shown in Fig. 16 and Fig. 17. After
simplification, the data set contains 6,803 tetrahedra.

The third example is the well-known blunt-fin data set.
This curvilinear scalar field has been generated from the
original blunt-fin vector field by using the magnitude of the
velocity vector at each grid point. To generate the
tetrahedral grid, each grid cell was split into six tetrahedra.
We utilized Algorithm 2 to simplify the data set with
increasing error tolerances on the interior of the mesh, and a
zero error tolerance on the mesh boundary.

Fig. 18 illustrates an isosurface generated for various
levels of simplification. The original blunt-fin data set was
used to generate the isosurface shown in Fig. 18a. This data
set contains 449,748 tetrahedra. The data set used for the
isosurface shown in Fig. 18b was generated with a error
tolerance of 0.0001 and contains 419,297 tetrahedra. The
data set used for the isosurface shown in Fig. 18c was
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generated with a error tolerance of 0.01 and contains
160,948 tetrahedra. The data set used for the isosurface
shown in Fig. 18d was generated with an error tolerance of
0.1 and contains 72,362 tetrahedra. This data set contains
only 16.1 percent of the number of the tetrahedra in the
original data set.

Fig. 19 illustrates the boundary of the blunt-fin data set
and the tetrahedra of the mesh for each of the respective
error tolerances shown in Fig. 18. With the zero boundary
tolerance, we see that boundary edge collapses only occur
in areas where the boundary surface is planar.

Table 1 gives the statistics for the operation of the
algorithms on each of the data sets. The images were all
generated on an SGI Onyx 2, with 512 MB of RAM, using a
single 195 Mz R10000 processor.

8 CONCLUSIONS

We have presented a method for the simplification of
tetrahedral meshes approximating a trivariate function. The
simplification of a mesh is based on a tetrahedral collapse
algorithm and local error calculations that ensure that the
mesh remains within a user-specified tolerance of the
original one. Several methods can be applied to generate
various mesh hierarchies to be used for level-of-detail
visualization. This is a powerful tool for the hierarchical
representation of massive three-dimensional data sets
defined on arbitrary grid structures.

We plan to generalize our approach to allow more
flexible placement of vertices when collapsing tetrahedra
and to compute the linear spline coefficients in an optimal
way for each triangulation level, see [23]. Furthermore, we
intend to extend and apply our algorithm to vector fields
and time-varying fields. We also can extend this algorithm
to include sign information in the error bound, which has
been done previously for surface meshes by Bajaj and
Schikore [17].
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