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1 Introduction

Cognitive load, understood as the amount of working memory resources dedicated
to a specific task, determines a person’s problem solving ability in terms of
effectiveness and efficiency [18]. Best task performance is achieved based on a
balanced, productive cognitive load level that avoids mental “under-challenge and
over-challenge”. A software system that is able to dynamically adapt task difficulty
based on a person’s experienced cognitive load in real time can have great impact
on a variety of applications, e.g., learning, driving, and high-performance working
environments such as that of pilots.

Many methods have been used to measure cognitive load, such as subjective
self-reported measures and analytical approaches [2, 7], and objective psycho-
physiological measures, e.g., electroencephalography (EEG), functional magnetic
resonance imaging (fMRI), heart rate, blood pressure, skin temperature, and eye
activity [21]. Many of these methods have the disadvantage of being intrusive
and depending on non-portable equipment. This has been tested only in con-
trolled laboratory settings, and they require complex data analysis. Considering
these limitations and the increasing accuracy and affordability of eye tracking
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systems, analysis of pupillometry data for extracting cognitive features has become
increasingly feasible and common. The possibility of turning a smartphone, a
tablet, or a webcam into an eye tracker emphasizes its real-world and real-time
applicability [11, 17].

While task-evoked pupillary response (TEPR) was found to be a reliable measure
directly corresponding to working memory [6], it does not distinguish between
pupillary reflex reactions to light changes and reactions induced by cognitive effort.
The only published algorithm that claimed to successfully separate light reflexes
from dilation reflexes is the index of pupillary activity (IPA). The IPA was published
broadly and openly, in contrast to the patented index of cognitive activity (ICA) that
was used in a wide range of studies.

We present a validation of the IPA by applying it to an experiment with
finely granulated levels of difficulty of cognitive tasks and compare the results
with traditional TEPR metrics, namely the percentage change of pupil diameter
(PCPD). First, we analyze a participant’s performance for the different levels of task
difficulty. Specific hypotheses and expectations have guided our efforts. We expect
reaction times to increase and accuracy to decrease with increasing difficulty. Next,
we calculate the PCPD and analyze its peaks and magnitudes. We expect both the
peaks and magnitudes to increase with increasing difficulty. Finally, we calculate
the IPA for each trial, expecting it to also increase with increasing difficulty level. In
conclusion, we discuss limitations of the proposed method and provide incentives
for future work.

2 Background and Related Work

2.1 TEPR

The correlation between pupil diameter and problem difficulty has already been
noted in the 60s [8]. In short-term memory tasks, it was observed that the pupil
dilated during the presentation phase and constricted during the recall phase. The
peak pupil diameters were found to be directly related to the number of items
presented [10]. Other studies found the raw pupil diameter to be not comparable
across participants and proposed the PCPD as a metric of interest [9, 12]. It is
computed in regard of a certain baseline, typically an average value over a given
amount of seconds of pupil diameter data measured before the experiment.

The main problem with this measure is that the changes in pupil size for the
most part cannot definitely be attributed to either lighting conditions or actual
cognitive effort. It was found that changes in pupil diameter size evoked by light
reflexes can be described as large (up to a few millimeters), while those evoked by
cognitive activity happen to be relatively small (usually between 0.1 and 0.5 mm)
and rapid [1]. Those are however very loose ranges and cannot be directly applied
to reliably distinguish the cause of the pupillary reflex.
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2.2 ICA and IPA

In the early 2000s, Marshall developed the ICA that seems to be able to distinguish
the pupillary reflexes [13]. The ICA uses wavelet analysis to compute the rate of
occurrences of abrupt discontinuities in the pupil diameter signal. The assumption
is that low IPA values (i.e., few abrupt discontinuities per time period) reflect little
cognitive effort, while high values indicate strong cognitive effort. Although the
algorithm itself is proprietary and its implementation is undisclosed, it has been
used in a variety of studies and is claimed to be reliable across sampling rates and
different hardware platforms [3, 4, 20].

Since there is no independent verification of the ICA, another research group has
developed their own version of the algorithm, using clues in different papers and
the patent manuscript: the IPA [5]. The IPA uses discrete wavelet transformation—
similar to the ICA—but differs in the choice of wavelet, thresholding approach,
and extrema detection method. The algorithm itself is disclosed in the paper,
making it possible for other researchers to reproduce every step of it. A multi-level
wavelet decomposition with a Symlet-16 mother wavelet is used to separate low-
frequency components (level-1 detail coefficients), corresponding to light reflexes,
and high-frequency components (level-2 detail coefficients), triggered by cognitive
activity. The modulus maxima are used to find local extrema in the level-2
coefficients. Those maxima are then compared to a so-called universal threshold,
denoted by σ

√
(2 log n). All maxima above this threshold are considered an abrupt

discontinuity.

3 Method

3.1 Study Design

The present study was a within-subjects eye tracking experiment based on a simple
memory span task. Memory span tasks are used to determine a user’s working
memory capacity (WMC). With each new trial, the participant is presented with an
increasing number of items and then asked to recall them. The WMC is the longest
number of sequential items that the user can correctly recall. For a typical young
adult, the WMC is 7 ± 2 [15]. In our adapted version, the number of digits was
not successively increased but randomized. We were not so much interested in the
participant’s WMC but rather in inducing different levels of intrinsic cognitive load
that somewhat reflect non-ideal real-world conditions.

The independent variable is the number of digits presented—which represents
the inherent task difficulty for the trial. The dependent variables are reaction time,
answer correctness, and the pupil diameters measured during the whole experiment.
From the signal of the latter, we calculated PCPD as well as IPA values for each
trial.
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3.2 Participants

The study was conducted as part of a HCI lecture with a sample of 34 international
students. Data of 4 participants had to be discarded due to difficulties with eye
tracker calibration, giving a final sample size of N = 30 (16 female, 14 male)
with age ranging from 22 to 45 (μ = 26± 4).

3.3 Apparatus

The laboratory was setup in a clean and neutral office with two windows covered
by roller blind, and two double flux fluorescent ceiling lights. The inside lighting
condition fluctuated between 160 and 192 Lux during the experiment period of two
weeks, depending on the weather. A PupilLabs Pupil Core eye tracking system
was used to acquire pupillometry data for both eyes at a rate of 120 Hz. The
corresponding Pupil Capture software as well as a specially developed JavaFX
application was executed on a customary windows machine with a 1080p monitor
and standard mouse and keyboard. Brightness and contrast of the display were
constant.

3.4 Procedure

After filling out a simple demographic questionnaire, the participant was asked to
put on the head-mounted eye tracker. We then started a marker-based calibration
sequence since it yielded the best confidence values of the system. Once the
confidence level was stable and high enough, the actual digit span task was started.
Instead of being asked to recall the digits, the participant was shown a composite
number sequence with the same number of digits. This composite sequence could
contain built-in errors; hence, the participant was asked whether it corresponds
exactly to the single digits that were shown before. The answer was given by
pressing the left arrow key for no, the right arrow key for yes, respectively. The
participant had the opportunity to get acquainted with the task by performing six
training trials with 3 to 5 digits. The training was followed by five blocks of 24
trials each, with sequences of 3 to 10 digits, resulting in a total of 120 trials per
participant (15 for each difficulty level). Each block took around 3.6± 0.3 minutes
to complete. The participants were encouraged to take a short break after each block.
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4 Results

4.1 Analyses

Since the relationship of the difficulty levels cannot be assumed to be linear, but
definitely to be monotonic, Spearman’s rank coefficient ρ was used to calculate
correlation. In addition, repeated measures of analyses of variance (ANOVA) were
used to find significant effects. Cohen’s parameter d was calculated to assess the
effect sizes and variation between-group means, emphasizing respective signifi-
cance through pairwise T-tests. Descriptive statistics for all dependent variables are
summarized in Table 1, while effect size and significance are shown in Table 2.
All training data were excluded from the analyses. All analyses were conducted in
Python, more specifically Pandas and Pingouin.

4.2 Task Performance

Task performance was measured in terms of reaction time and answer correct-
ness/accuracy. Reaction time was expected to increase with increased task difficulty,
while correctness was expected to decrease with increased task difficulty, i.e., the
presumption was that more difficult tasks would take more time to complete and
were more likely to be answered wrongly. Our analyses confirmed this presumption.
Figure 1 shows a clear linear trend for both observations.

The correlation between task difficulty and reaction time was moderately positive
(0.54, p < .001), and the one between task difficulty and answer correctness was
weakly negative (−0.22, p < .001).

ANOVA revealed significant effects of both: task difficulty having impact on
reaction time, F(7,203) = 69.62, p < .001, η2 = 0.706, and on correctness,
F(7,203) = 23.67, p < .001, η2 = 0.449. This proves both our hypotheses

Table 1 Statistic results for dependent variables of the experiment; effect of different task
difficulty levels

Reaction time Accuracy PCPD peak, Magnitude IPA
Digits μ and σ (s) μ and σ (%) μ and σ (%) μ and σ (%) μ and σ (Hz)

3 1.25± 0.60 97.3± 16.1 3.3± 11.8 12.9± 5.8 1.134± .378

4 1.37± 0.70 96.2± 19.1 3.4± 11.6 13.4± 6.7 1.155± .350

5 1.74± 0.92 93.5± 24.6 3.9± 11.5 14.2± 6.5 1.199± .360

6 2.00± 1.23 90.6± 29.1 3.6± 13.3 15.1± 9.8 1.183± .351

7 2.56± 1.53 87.1± 33.5 4.6± 12.8 15.9± 8.1 1.216± .346

8 2.75± 1.75 82.4± 38.1 4.2± 11.6 15.4± 6.1 1.239± .352

9 3.11± 2.18 80.6± 39.5 4.9± 12.5 16.7± 7.7 1.222± .331

10 3.00± 2.06 75.3± 43.1 4.8± 12.1 16.8± 7.4 1.236± .336
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Table 2 Effect sizes and significance between task difficulty level groups

Reaction time Accuracy PCPD peak, Magnitude IPA

Pair d p d p d p d p d p

(3,4) .074 *** −.034 – .009 – .062 – .061 –

(4,5) .229 *** −.082 ** .044 – .101 ** .126 **

(5,6) .156 *** −.088 ** −.021 – .126 ** −.049 –

(6,7) .343 *** −.111 ** .076 – .109 * .096 *

(7,8) .114 ** −.138 ** −.031 – −.072 * −.065 –

(8,9) .225 *** −.053 – .062 – .168 *** −.050 –

(9,10) −.064 – −.169 *** −.015 – .008 – .040 –

Significance: *p < .05, **p < .01, ***p < .001
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Fig. 1 Average reaction times and answer correctness per number of digits

regarding task performance, i.e., reaction time increases and accuracy decreases
with increasing difficulty.

Table 2 shows that the effects of task difficulty levels on reaction time are highly
significant, except for the differences between 7 and 8 digits (being significant) and
between 9 and 10 digits (not being significant). Concerning answer correctness, the
difference between 9 and 10 digits is the only highly significant one. All others are
significant, except for the differences between 8 and 9 digits and between 3 and 4
digits. Even though the effect sizes are not large, these results support our paradigm
of performing testing with finely granulated task difficulty levels.

4.3 Pupil Dilation

We used the median pupil diameter of the training sequence as baseline for
calculating the PCPD. PCPD values for each trial were aggregated to the actual
variables of interest, i.e., pupil dilation peaks and magnitudes between pupil dilation
valleys and peaks. Figure 2 illustrates the average values for the two metrics
considered. The trends of both graphs match our expectations.
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Fig. 2 Average PCPD peaks and valley-to-peak magnitudes per number of digits

The correlation between PCPD peaks and task difficulty was weakly positive
(0.059, p < .001), with a significant effect F(7,203) = 4.144, p < .001, η2 =
0.125. This proves our first TEPR-related hypothesis that PCPD peaks increase with
task difficulty. However, pairwise T-tests revealed that none of the between-groups
effects were significant.

The second correlation of interest is the correlation between PCPD valley-to-
peak magnitudes and task difficulty. This one is stronger, but it is also only weakly
positive (0.225, p < .001). ANOVA revealed a significant effect: F(7,203) =
22.645, p < .001, η2 = 0.438. This result proves our second TEPR-related
hypothesis that PCPD valley-to-peak magnitudes increase with task difficulty.
Regarding the effects between difficulty level groups, 5 out of 7 pairs showed a
significant effect of at least p < .05, see Table 2. The only pairs that showed no
significant effect were between 3 and 4 digits and between 9 and 10 digits.

4.4 Abrupt Discontinuities

Our next goal was aimed at determining whether the same behavior holds for the
more sensitive metric that is said to distinguish between pupil dilation reflex and
light reflex, the IPA. We calculated IPA values for every commenced second of a
trial and averaged values.

Figure 3 shows that the correlation between IPA and task difficulty is indeed
weakly positive (0.105, p < .001) with a significant effect (F7,203 = 16.327, p <

.001, η2 = 0.36). Table 2 reveals, however, that only two effects of difficulty level
differences are significant, the one between 4 and 5 digits and the one between 6 and
7 digits with the latter only being p < .05. Nevertheless, the general significance
for the effect of task difficulty on IPA, shown by the ANOVA, is not questioned.

The second plot in Fig. 3 shows another interesting detail about the IPA.
Following cognitive load theory, the highest experienced cognitive load should
occur during the stimulus presentation phase and the lowest during pauses, while the



1094 P. Weber et al.

1.20

1.22

1.24

1.26

1.18

1.16

1.12

1.14

1.25

1.30
Trial Phase

Presentation
Recall
Pause

1.20

1.10

1.15

In
de

x 
of

 P
up

ill
ar

y 
A

ct
iv

ity
 (

IP
A

)

In
de

x 
of

 P
up

ill
ar

y 
A

ct
iv

ity
 (

IP
A

)

1.05

3 4 5 6
Number of Digits

7 8 9 10 3 4 5 6
Number of Digits

7 8 9 10

Fig. 3 Average IPA per number of digits and trial phase

mental load experienced during the recall phase should not have a direct correlation
to the task difficulty but should follow the same trend as the task inherent difficulty;
therefore, the mental load should be low for simple tasks and increase significantly
with higher difficulty levels [19]. This behavior—together with the weak positive
correlation between IPA and PCPD magnitude (0.112, p < .001)—confirms our
last hypothesis that the IPA is an indicator for cognitive load that increases with task
difficulty.

5 Conclusions

The results of our statistical analyses validate our specific hypotheses, as stated
in the Introduction. We have shown that finely granulated difficulty settings can
have significant impact on task performance. We have shown that impact on task
performance is reflected in the magnitude of pupil dilation amplitudes. Finally, we
have ascertained that this behavior is also substantiated by the values calculated
with the relatively new IPA algorithm. Our experiments have demonstrated that
the IPA correlates with traditional TEPR metrics, even in finely granulated task
difficulty settings. While the authors differentiated between three difficulty settings
and found no significant effect between the easy and control tasks, we found two
significant effects that occurred when increasing the number sequence by just one
digit, additionally to the general significant effect of task difficulty on IPA revealed
by ANOVA. Effect size and significance levels for the different difficulty levels were
not as high for measured IPA data relative to measured TEPR data. In summary, our
findings validate the IPA. However, we found the unmodified IPA algorithm to be
sensitive to sampling rate and signal length, resulting in very different recognized
discontinuity counts. The chosen symlet-16 mother wavelet therefore seems not to
be universally applicable; hence, our IPA values differ from the ranges reported by
the authors.
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These findings underline the need for further investigation to ensure smooth
utilization of the IPA. Our experimental design considered only one task, i.e., the
digit span task. Since the digits were all shown at the center of the screen, we did
not consider eye tracking measures such as fixation and saccade. We have not yet
analyzed eye blink frequency and latency. The authors of the IPA removed all data
points in a 200 ms window before the start and after the end of a detected blink.
Our method, in contrast, uses cubic spline interpolation to reconstruct the signal
(see [14]). While the cubic spline approach seems to work well, it would seem of
interest to determine how well it performs in a more realistic experimental setting.

Concerning possible future research directions, it would certainly be useful to
further examine the validity of the IPA through a battery of tests. Unlike the ICA
there is the possibility to do so independently. Users of the IPA would benefit
from a large-scale comparison of different sample rates, wavelets, and coefficient
resolutions, possibly resulting in proper usage guidelines. The algorithm also
remains to be tested under varying light conditions, like it was done for the ICA [16],
as well as under different tasks and modalities. It may also be of interest how the
measured cognitive load value relates to the relative performance of individuals.
These various research directions must be supported by the results of other valid
cognitive feature extraction methods.
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