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Abstract

We present a method for the hierarchical approximation of functions in one, two, or three

variables based on the �nite element method (Ritz approximation). Starting with a set

of data sites with associated function, we �rst determine a smooth (scattered-data) inter-

polant. Next, we construct an initial triangulation by triangulating the region bounded

by the minimal subset of data sites de�ning the convex hull of all sites. We insert only

original data sites, thus reducing storage requirements. For each triangulation we solve a

minimization problem: computing the best linear spline approximation of the interpolant

of all data, based on a functional involving function values and �rst derivatives. The er-

ror of a best linear spline approximation is computed in a Sobolev-like norm, leading to

element-speci�c error values. We use these interval-/triangle-/tetrahedron-speci�c values

to identify the element to subdivide next. The subdivision of an element with largest error

value requires the re-computation of all spline coeÆcients due to the global nature of the

problem. We improve eÆciency by (i) subdividing multiple elements simultaneously and

(ii) by using a sparse-matrix representation and system solver.

Key words: Approximation; Finite element method; Grid generation; Multiresolution

y Center for Image Processing and Integrated Computing (CIPIC), Department of Com-
puter Science, University of California, Davis, CA 95616-8562, U.S.A.; e-mail: fwiley,
bertram, hamanng@cs.ucdavis.edu

� University of Kaiserslautern, Fachbereich Informatik, P.O. Box 3049, D-67653
Kaiserslautern, Germany.

1



method; Optimization; Ritz approximation; Scattered data; Spline; Triangulation; Un-

structured grid; Visualization.

1. Introduction

Di�erent methods are known and used for the hierarchical representation of very large data

sets. Few methods are based on a well developed mathematical theory. In the context of

visualizing very large data sets, it is imperative to develop hierarchical data representations

that allow us to visualize and analyze data at various levels of detail. General and eÆcient

methodologies are needed to support the generation of hierarchical data representations

and their applicability for the visualization process.

This paper deals with the construction of hierarchies of triangulations and best linear

spline approximations of functions. The main idea underlying the construction is the

method of �nite elements, see [Zienkiewicz & Taylor '00]. We minimize certain energy

functionals by solving a �nite-element problem for triangulated domains. We construct an

approximation hierarchy by repeatedly subdividing triangulations and computing a best

linear spline approximation for each one of them. Our initial approximation is based on a

subset of the given data sites de�ning the convex hull of all sites. We then identify regions

with relatively large error values and re�ne a triangulation by inserting more original data

sites into the vertex set.

We compute the coeÆcients for each approximation in a best-approximation sense.

Whenever we subdivide an interval (triangle, tetrahedron) one must compute new linear

spline coeÆcients for all vertices in a new triangulation due to the global nature of the
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minimization approach. It is possible to perform the necessary matrix inversions rather

eÆciently by using a sparse-matrix representation and system solver. We can further

improve the eÆciency of the �nite element approach by inserting multiple original data

sites simultaneously into an intermediate triangulation.

The generation of a hierarchy of data approximations is a pre-processing step for

subsequent data visualization and analysis. The goal is to be able to utilize the data

format describing a data hierarchy directly for the visualization process. Visualization

technology and systems are capable of rendering triangulation-based data rather eÆciently.

Considering the generation of a data-approximation hierarchy, speed is not the primary

concern; it is far more important to construct a hierarchy that can be stored compactly

and supports interactive data visualization and analysis. It is important that hierarchical

data approximations can handle arbitrarily complex regions and that error estimates are

known for all approximation levels. The main criteria that have inuenced our algorithm

design are: simplicity, generality (in a multi-variate sense), eÆciency, and compactness (in

the sense of storage). Computing a hierarchy of best linear spline approximations, based

on di�erent triangulations of only original data sites, seems to be a good approach in this

context.

Remark 1.1. We point out that, in many practical applications, the function to be

approximated is only known at a �nite number of random locations. If this is the case,

a �tting step must take place. A localized version of Hardy's multiquadric method, for

example, or a surface reconstruction technique similar to the one described in [Floater &

Reimers '01] can be used to yield a smooth function interpolating the given discrete data.
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We interpret this interpolant as the function for which an approximation hierarchy must be

constructed. For a survey on scattered-data approximation and interpolation techniques,

including a description of Hardy's multiquadric method, see [Franke '82] and [Nielson '93].

Over the past decade, various approaches supporting hierarchical data representa-

tions have been developed|and there is an increasing need for such representations.

Triangulation-based schemes are a good choice for the representation of data de�ned for

complicated regions in space. Triangulations o�er a large degree of exibility for discretiz-

ing space, and this is the main reason why we are using them.

Recent work on several related strategies exists. Wavelet techniques that produce

multiresolution meshes discussed in [Bonneau et al. '96], [Gross et al. '95], [Staadt et al.

'97], and [Nielson et al. '97a] are all limited to uniform grids while the latter is restricted

to spherical grids. Staadt's method has the advantage of supporting both lossy and lossless

compression or progressive and selective mesh re�nement. Bonneau's method permits the

user to choose between smooth and sharp approximation of discontinuities. This works

well for entirely smooth or discontinuous data, but does not work well for data containing

both types of regions.

[Cignoni et al. '94, '97], [Dyn et al. '90], [Gieng et al. '97, '98], [Hamann '94], [Hoppe

'96, '97], and [Trotts et al. '98, '99] use simpli�cation techniques, such as decimation and

thinning, to reduce the input mesh while respecting data values. These methods produce

multiresolution output that can often be progressively displayed. These methods are much

more applicable than most wavelet methods since arbitrary input meshes can be converted

to meet the requirements of the method.
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Re�nement techniques such as the ones described in [Grosso et al. '97], [Hamann

et al. '99], and [Rippa '92], describe data-dependent multiresolution methods that are

quite similar to the method we present here. These methods begin with a compact initial

triangulation of the convex hull of the data to be approximated and then iteratively re�ne

this mesh. These methods are generally applied to arbitrary meshes by converting any

given mesh to the speci�c mesh type required.

Much work was done on data-dependent methods. For example, [Agarwal & Desikan

'97] describe a method to approximate terrain data with a piecewise linear function pro-

ducing an �-approximation (an approximation within some tolerance �) in O(n2+a) time

where n is the number of knots and a is an arbitrarily small positive number. [Hamann

& Chen '94] and [Nadler '86] similarly produce piecewise linear functions to approximate

bivariate data.

[Floater & Iske '96a, '96b] describe multiresolution methods that are not data de-

pendent. These methods perform an iterative thinning step using radial basis functions

on scattered points while maintaining a Delaunay triangulation of the points throughout

the process. They propose several knot removal criteria that allow the user to balance

speed and approximation quality. [Dyn et al. '00] describes a data-dependent thinning

method similar to Floater & Iske's methods. Their results support the hypothesis that

data-dependent techniques concentrate simplices around high-gradient areas producing

higher-quality approximations.

Additional work in the area of data-dependent triangulations, multiresolution, and

mesh decimation can be found in [Eck et al. '95] and [Xia & Varshney '96].
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We present a data-dependent re�nement method that captures the spirit of the pre-

vious work referenced above. Our method can be applied to arbitrary meshes and it can

be applied to multidimensional domains. An important contribution of our work is use of

�rst-derivative input to guide the approximation process. We use this information for error

calculation and to select simplices for re�nement as well as the production of the piecewise

linear spline coeÆcients. The use of this information improves the resulting approximation

by focusing the re�nement on high-gradient areas and by correcting over- and under-shoots

in the regions right next to discontinuities.

The approach we present in this paper applies to univariate, bivariate, and trivariate

data. The main principles of our approach become evident from an in-depth discussion

of the univariate case (Section 2). By providing an in-depth discussion of the univariate

case, the required generalizations to the bivariate and trivariate cases (Sections 3 and 4)

are more easily understood.

Eventually, we use the resulting hierarchical data representations for visualization.

We apply standard visualization techniques (slicing) to our data hierarchies, see Section 5.

Visualization methods are described in great detail in [Hagen et al. '93], [Kaufman '91],

[Nielson et al. '97b], [Nielson & Shriver '90], and [Rosenblum et al. '94].

2. The univariate case

We consider �rst-derivative information in our method as well as functional data to poten-

tially better represent data in high-gradient areas. Before describing our approximation

technique, we review some required de�nitions and terminology. Our approximation ap-

proach requires concepts from linear algebra and approximation theory that we discuss
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briey. We de�ne the inner product hf; gi of two functions f(x) and g(x), de�ned over the

interval [a; b], as

hf; gi =

bZ
a

w0f(x)g(x) + w1f
0(x)g0(x) dx: (1)

The \weights" w0 and w1 are user-speci�ed, non-negative, and sum to one. This inner

product de�nes a Sobolev-like L2 norm|that we denote by jj jjSob|for a function f(x):

jjf jjSob = hf; fi1=2 =

 bZ
a

w0

�
f(x)

�2
+ w1

�
f 0(x)

�2
dx

!1=2

: (2)

This norm allows us to measure the quality of an approximation f(x) to a given function

F (x), by considering the norm of D(x) = F (x)� f(x):

jjDjjSob = hD;Di1=2: (3)

We use this measure to compute interval-speci�c error values for the individual intervals

[xi; xi+1] with lengths 4i = xi+1� xi. For a subdivision step, we identify an interval with

maximal error and split it into two intervals. This error measure is appropriate because it

permits the addition of �rst-derivative information. This is important since scienti�c data

is often characterized by high gradients. By controlling �rst-derivative inuence with user-

speci�ed weights, it is possible to force mesh re�nement to be done in regions characterized

by high gradients.

This is an outline of the overall algorithm we use to compute multiple best linear

spline approximations in the univariate case:

I. Input. The input is a sequence of knots, x0 < � � � < xN , with associated

function values Fi, de�ning linear spline segments si(x) de�ned as
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si(x) = Fi
xi+1 � x

4i
+ Fi+1

x� xi
4i

; i = 0; � � � ; N � 1: (4)

We can construct a continuous interpolant F (x) from the given data by using,

for example, the piecewise linear spline implied by the given knot set and

function values.

II. First approximation. Compute a best linear spline approximation based on

only the two end knots and compute the error, based on equation (3). Should

the error value of this approximation be too large (larger than a user-speci�ed

tolerance) continue with step III, otherwise terminate.

III. Subdivision/knot selection. Identify an interval with maximal error and an

original data site that is closest to the midpoint of the chosen interval. Insert

this knot into the set of selected knots. (Alternatively, apply this strategy to

the k intervals with largest error values and subdivide them simultaneously.)

IV. Next approximation. Compute a new best linear spline approximation based

on the new knot set and order the spline segments according to the new interval-

speci�c error values. Terminate the subdivision process when the maximal

interval-speci�c error value is smaller than some user-speci�ed tolerance, oth-

erwise repeat steps III and IV.

V. Output. The output consists of subsets of the original knot set, de�ning the

various levels of a hierarchy of best linear spline approximations; we store each

best linear spline approximation as a set of spline coeÆcients.

We now discuss these steps in detail. The functional that we minimize in the univariate

case is given by the expression
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E =

bZ
a

w0

�
F (x)� f(x)

�2
+ w1

�
F 0(x)� f 0(x)

�2
dx; (5)

where F is the given function to be approximated on the interval [a; b] by the function f .

We assume that the \weights" wi are non-negative and sum to one. Thus, equation (5) is

equivalent to

E =

bZ
a

w0

�
f(x)

�2
+ w1

�
f 0(x)

�2 � 2
�
w0F (x)f(x) + w1F

0(x)f 0(x)
�
dx

+

bZ
a

w0

�
F (x)

�2
+ w1

�
F 0(x)

�2
dx: (6)

The minimization problem reduces to minimizing

E =

bZ
a

1

2
( f(x) f 0(x) )

�
2w0 0
0 2w1

��
f(x)
f 0(x)

�
� ( f(x) f 0(x) )

�
2w0F (x)
2w1F

0(x)

�
dx

=

bZ
a

1

2
fTQf � fT l dx: (7)

(The superscript \T" denotes the transpose operator.) We solve the minimization problem

by de�ning the approximation f to be the linear combination

f(x) = c0f0(x) + c1f1(x) + � � �+ cnfn(x) =
nX

i=0

ci fi(x); (8)

based on an associated knot sequence x0 < x1 < � � � < xn (x0 = a, xn = xN = b, n � N).

The basis function fi is the hat function de�ned over the interval [xi�1; xi+1] (outside of
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which it is zero) satisfying the property fi(xj) = Æi;j (Kronecker delta), see Fig. 1.

Fig. 1. Basis functions fi(x), function F (x), and approximation f(x).

Substituting equation (8) into equation (7) yields the matrix expression

E =
1

2
( c0 c1 : : : cn )

0
B@
R
q(f0; f0) : : :

R
q(f0; fn)

...
...R

q(fn; f0) : : :
R
q(fn; fn)

1
CA
0
@ c0

...
cn

1
A

� ( c0 c1 : : : cn )

0
B@
R
l(f0)
...R
l(fn)

1
CA (9)

=
1

2
cTAc� cT l;

where q(fi; fj) is quadratic and l(fi) linear in fi and fj and their derivatives. This energy

term E is minimal for the set of coeÆcients ci resulting from the Ritz equations, i.e., the

linear system of equations

Ac = l; (10)

see [Boehm & Prautzsch '93]. The elements ai;j of the symmetric, positive de�nite matrix

A are given by

ai;j = w0

bZ
a

fi(x)fj(x) dx + w1

bZ
a

fi
0(x)fj

0(x) dx; i; j = 0; � � � ; n; (11)
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and the elements li of the column vector l are given by

li = w0

bZ
a

F (x)fi(x) dx + w1

bZ
a

F 0(x)fi
0(x) dx; i = 0; � � � ; n: (12)

The integral expressions required to compute the elements of the matrix A are provided

in the Appendix, Section A.1. The matrix A is a tridiagonal matrix, given by a weighted

sum of two tridiagonal matrices, A0 and A1:

A =
1

6

�
w0 A0 + w1 A1

�
: (13)

The matrices A0 and A1 are given by

A0 =

0
BBBBBBB@

240 40

40 2
�40 +41

� 41

. . .
. . .

. . .

. . .
. . .

. . .

4n�2 2
�4n�2 +4n�1

� 4n�1

4n�1 24n�1

1
CCCCCCCA

and (14a)

A1 = 6

0
BBBBBBBBB@

1
40

�1
40

�1
40

40+41

4041

�1
41

. . .
. . .

. . .

. . .
. . .

. . .
�1

4n�2

4n�2+4n�1

4n�24n�1

�1
4n�1

�1
4n�1

1
4n�1

1
CCCCCCCCCA
: (14b)

The right-hand side of equation (10) is given by

l = w0 l0 + w1 l1

= w0

0
BBBBBBBBBBBBBB@

x1R
x0

F (x)f0(x) dx

x2R
x0

F (x)f1(x) dx

...
xnR

xn�2

F (x)fn�1(x) dx

xnR
xn�1

F (x)fn(x) dx

1
CCCCCCCCCCCCCCA

+ w1

0
BBBBBBBBBBBBBB@

x1R
x0

F 0(x)f0
0(x) dx

x2R
x0

F 0(x)f1
0(x) dx

...
xnR

xn�2

F 0(x)fn�1
0(x) dx

xnR
xn�1

F 0(x)fn
0(x) dx

1
CCCCCCCCCCCCCCA

: (15)

11



Remark 2.1. The function F (x) is a smooth interpolant constructed from the given

set of knots and function values. We use numerical integration, Romberg integration, to

closely approximate the integral values in equation (15), see [Boehm & Prautzsch '93] and

[Hamann et al. '99].

3. The bivariate case

In the bivariate case, we have to approximate a given function F (x; y) by a piecewise

linear spline function de�ned for a speci�c set of vertices (we use the terms vertex and knot

interchangeably since in our case vertices always correspond directly to knots and vice

versa) vi = (xi; yi)
T with an associated triangulation T 1. The basis function fi = fi(x; y)

associated with vertex vi is the linear spline function whose function value is one at vi

and zero at all other vertices, i.e., the basis function fi that varies linearly between zero

and one over all triangles de�ning vi's platelet and is zero outside the platelet, see Fig. 2.
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Fig. 2. Platelets of vi and vj and associated basis functions.

1We use the following notation: T denotes the set of all triangles (tetrahedra) in a
triangulation; Ti denotes the set of triangles (tetrahedra) sharing the vertex vi as a common
vertex (= platelet of vi); and Ti;j denotes the set of triangles (tetrahedra) belonging to the
platelets of both vi and vj . (There must be an edge vivj for the set Ti;j not to be empty.)
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This is an outline of the algorithm we use to compute multiple best linear spline

approximations in the bivariate case:

I. Input. The input is a set of vertices, (xi; yi)
T , i = 0; � � � ; N , with associated

function values Fi, de�ning linear spline segments sj(x; y) over each triangle

de�ned as

sj(x; y) =
3X

k=1

Fj;k fj;k(x; y); j = 0; � � � ; NT ; (16)

where NT +1 is the number of triangles in the triangulation and fj;k(x; y) is the

hat function associated with the kth vertex of the jth triangle. (This notation

does not mean that we consider discontinuous spline functions. The function

value/linear spline coeÆcient associated with a vertex in the triangulation is

the same for all the triangles sharing this vertex.) We construct the piecewise

linear interpolant F (x; y) de�ned by the set of vertices, associated function

values, and underlying triangulation.

II. First approximation. Compute the best linear spline approximation for a

triangulation of the minimal set of vertices de�ning the convex hull of the set of

all original data sites. Compute the best linear spline for this triangulation and

compute error values that are triangle-speci�c. Should the error value of this

approximation be too large (larger than a user-speci�ed tolerance) continue

with step III, otherwise terminate.

III. Subdivision. Inside a triangle T with maximal error, identify the original data

site that is closest to the midpoint of the longest edge of T. (Arbitrarily choose

an edge when multiple edges have the same maximal edge length.) Bisect the

13



triangles that share the chosen longest edge at the selected knot. This is illus-

trated in Fig. 3.

IV. Next approximation. Compute a new best linear spline approximation based

on the new set of vertices and new triangulation and order the triangular spline

segments according to the new triangle-speci�c error values. Terminate when

the maximal triangle-speci�c error value is smaller than some user-speci�ed

tolerance, otherwise repeat steps III and IV. (If the tolerance is zero, the linear

spline constructed in the last step will, in general, be based on the set of all

original data sites|but may not be triangulated in the same way.)

V. Output. The output consists of subsets of the original data sites, de�ning

the various levels of a hierarchy of best linear spline approximations. For each

best linear spline approximation we store a di�erent set of spline coeÆcients.

Furthermore, we need to store the triangulations de�ning each level.

Regarding step III, one could alternatively identify the k triangles with largest error values

and subdivide them simultaneously.
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Fig. 3. Triangle bisection, using as split vertex an original data site closest to
midpoint of longest edge (broken lines indicating new edges).

The functional that we minimize in the bivariate case is

E =

Z
T

w0;0

�
F (x; y)� f(x; y)

�2
+ w1;0

�
Fx(x; y)� fx(x; y)

�2
+ w0;1

�
Fy(x; y)� fy(x; y)

�2
dx dy; (17)

where Fx denotes the partial derivative of F with respect to x, fx denotes the partial

derivative of f with respect to x, etc. The given function F must be approximated over

the region whose boundary is the original vertex set's convex hull. The \weights" wi;j are

non-negative and sum to one. The minimization problem reduces to minimizing

E =

Z
T

1

2
( f(x; y) fx(x; y) fy(x; y) )

0
@ 2w0;0 0 0

0 2w1;0 0
0 0 2w0;1

1
A
0
@ f(x; y)
fx(x; y)
fy(x; y)

1
A

� ( f(x; y) fx(x; y) fy(x; y) )

0
@ 2w0;0F (x; y)
2w1;0Fx(x; y)
2w0;1Fy(x; y)

1
A dx dy: (18)

We de�ne an approximation f to be the linear combination

f(x; y) = c0f0(x; y) + c1f1(x; y) + � � �+ cnfn(x; y) =
nX

i=0

ci fi(x; y); (19)
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based on selected vertices vi and an associated triangulation. Substituting equation (19)

into equation (18) yields, formally, the same equation one obtains for the univariate case.

In the bivariate case, the elements ai;j of the symmetric, positive de�nite matrix A|see

equation (10)|are given by

ai;j = w0;0

Z
T

fi(x; y)fj(x; y) dx dy + w1;0

Z
T

fix(x; y)fjx(x; y) dx dy

+ w0;1

Z
T

fiy(x; y)fjy(x; y) dx dy; i; j = 0; � � � ; n; (20)

and the elements li of the column vector l|see equation (10)| are given by

li = w0;0

Z
T

F (x; y)fi(x; y) dx dy + w1;0

Z
T

Fx(x; y)fix(x; y) dx dy

+ w0;1

Z
T

Fy(x; y)fiy(x; y) dx dy; i = 0; � � � ; n: (21)

The integral expressions required to compute the elements of the matrix A in the bivariate

case are provided in the Appendix, Section A.2.

Remark 3.1. The function F (x; y) is a smooth (scattered-data) interpolant constructed

from the given set of vertices and function values. Again, we use Romberg integration (for

triangulated domains) to approximate the integrals of the column vector l.

4. The trivariate case

The trivariate case is a rather straightforward generalization of the bivariate case. We

only describe the main di�erences between the bivariate and the trivariate case. This is

an outline of our algorithm in the trivariate case:
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I. Input. The input is a set of vertices, (xi; yi; zi)
T , i = 0; � � � ; N , with asso-

ciated function values Fi, de�ning linear spline segments sj(x; y; z) over each

tetrahedron de�ned as

sj(x; y; z) =
4X

k=1

Fj;k fj;k(x; y; z); j = 0; � � � ; NT ; (22)

where NT +1 is the number of tetrahedra in the triangulation and fj;k(x; y; z)

the hat function associated with the kth vertex of the jth tetrahedron. (This

notation does not mean that we consider discontinuous spline functions. The

function value/linear spline coeÆcient associated with a vertex in the triangu-

lation is the same for all the tetrahedra sharing this vertex.) We �rst construct

the piecewise linear interpolant F (x; y; z) de�ned by the set of vertices, associ-

ated function values, and underlying triangulation.

II. First approximation. Compute the best linear spline approximation for a

triangulation of the minimal set of vertices whose convex hull is the same as the

convex hull of the set of all original data sites. Compute the best linear spline

for this triangulation and compute error values that are tetrahedron-speci�c.

Should the maximum of the tetrahedron-speci�c error values, all computed

according to the generalization of equation (3), be too large (larger than a

user-speci�ed tolerance) continue with step III, otherwise terminate.
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III. Subdivision. Inside a tetrahedron T with maximal error, identify the original

data site that is closest to the midpoint of the longest edge of T. (Arbitrarily

choose an edge when multiple edges have the same maximal edge length.)

Bisect the tetrahedra that share the chosen longest edge. This is illustrated in

Fig. 4.

IV. Next approximation. Compute a new best linear spline approximation based

on the new set of vertices and new triangulation and order the tetrahedral spline

segments according to the new tetrahedron-speci�c error values. Terminate

when the maximal tetrahedron-speci�c error value is smaller than some user-

speci�ed tolerance, otherwise repeat steps III and IV. (If the tolerance is zero,

the linear spline constructed in the last step will, in general, be based on the

set of all original data sites|but may not be triangulated in the same way.)

V. Output. The output consists of subsets of the original data sites, de�ning

the various levels of a hierarchy of best linear spline approximations. For each

best linear spline approximation we store a di�erent set of spline coeÆcients.

Furthermore, we need to store the triangulations de�ning each level.

Alternatively, one could, in step III, identify the k tetrahedra with largest error values and

subdivide them simultaneously.
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Fig. 4. Bisection of two tetrahedra, using as split vertex an original data site closest
to midpoint of longest edge (broken lines indicating new edges).

The functional that we minimize in the trivariate case is given by

E =

Z
T

X
i;j;k�0
i+j+k�1

 
@i+j+k

@xi@yj@zk
F (x; y; z)� @i+j+k

@xi@yj@zk
f(x; y; z)

!2

dx dy dz: (23)

The given function F must be approximated over the region whose boundary is the original

vertex set's convex hull. The \weights" wi;j;k are non-negative and sum to one. The

minimization problem reduces to minimizing

E =

Z
T

1

2
( f(x; y; z) fx(x; y; z) fy(x; y; z) fz(x; y; z) )

0
B@
2w0;0;0 0 0 0

0 2w1;0;0 0
0 0 2w0;1;0 0
0 0 0 2w0;0;1 0

1
CA
0
B@

f(x; y; z)
fx(x; y; z)
fy(x; y; z)
fz(x; y; z)

1
CA

� � f(x; y; z) fx(x; y; z) fy(x; y; z) fz(x; y; z)
�

(24)0
B@

2w0;0;0F (x; y; z)
2w1;0;0Fx(x; y; z)
2w0;1;0Fy(x; y; z)
2w0;0;1Fz(x; y; z)

1
CA dx dy dz:
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We de�ne an approximation f to be the linear combination

f(x; y; z) =
nX

i=0

ci fi(x; y; z); (25)

based on selected vertices vi and an associated triangulation. Substituting equation (25)

into equation (24) yields, formally, the same equation one obtains for the univariate and

bivariate cases. In the trivariate case, the elements ai;j of the matrix A|see equation

(10)|are given by

ai;j = w0;0;0

Z
T

fi(x; y; z)fj(x; y; z) dx dy dz

+ w1;0;0

Z
T

fix(x; y; z)fjx(x; y; z) dx dy dz

+ w0;1;0

Z
T

fiy(x; y; z)fjy(x; y; z) dx dy dz (26)

+ w0;0;1

Z
T

fiz(x; y; z)fjz(x; y; z) dx dy dz; i; j = 0; � � � ; n;

and the elements li of the column vector l|see equation (10)| are given by

li = w0;0;0

Z
T

F (x; y; z)fi(x; y; z) dx dy dz

+ w1;0;0

Z
T

Fx(x; y; z)fix(x; y; z) dx dy dz

+ w0;1;0

Z
T

Fy(x; y; z)fiy(x; y; z) dx dy dz (27)

+ w0;0;1

Z
T

Fz(x; y; z)fiz(x; y; z) dx dy dz; i = 0; � � � ; n:

The integral expressions required to compute the elements of the matrix A in the trivariate

case are provided in the Appendix, Section A.3.
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Remark 4.1. We use Romberg integration (for tetrahedral domains) to compute the

integrals of the column vector l, see [Hamann et al. '99].

5. Examples

In this section, we present results for univariate, bivariate, and trivariate functions. We

choose [0; 1], [0; 1]� [0; 1], and [0; 1]� [0; 1]� [0; 1] as domains for the univariate, bivariate,

and trivariate test functions, respectively. We evaluate the test functions on a uniform,

rectilinear grid, with resolution 100 in each dimension, de�ning the discrete input to our

approximation method. We use the following initial triangulations that we re�ne iteratively

by point insertion: (i) In the univariate case, we start with the interval [0; 1]; (ii) in the

bivariate case, we de�ne the initial triangulation by splitting the unit square into the two

triangles obtained by connecting (0; 0)T and (1; 1)T ; and (iii) in the trivariate case, we

split the unit cube into the �ve tetrahedra, as shown in Fig. 5.

Tables 1 and 2 list, for various bivariate and trivariate test functions, the error values2,

the time it took with our particular implementation to generate the listed hierarchy levels,

and the number of knots (in square brackets) for each level.

The univariate example was generated by sampling at uniformly spaced knot locations

and then approximating the implied linear spline. The number of sample locations is equal

to the number of knots used to generate the approximations. Concerning bivariate and

2The element-speci�c error values are based on the norm jj jjSob|as de�ned by equations
(1){(3)|and its generalizations to the bivariate and trivariate cases. The computing
times listed were obtained on a Pentium III, 500MHz graphics workstation with 512MB
of memory.
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trivariate examples, our construction follows Sections 3 and 4.

1
1
1
( )

0
0
0
( )

Fig. 5. Initial triangulation in trivariate case: unit cube split into �ve tetrahedra.

Fig. 6. Original test images: 2D (bivariate) checker board (151x151 pixels)
and UC Davis logo (121x121 pixels).
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Table 1. Computing times, errors, and numbers of knots (in square brackets) for bivariate
functions. Error values are based on function value and �rst derivative.3

10x
�
x� 1

4

��
x� 3

4

�
y2

�����12 sin�4�x2� cos�2�y2�
����� 2D checker board

����� UC Davis logo

[� 131s for 50 levels]

����� [� 211s for 50 levels]

����� [� 188s for 50 levels]

����� [� 722s for 50 levels]

� Case 1: w0;0 = 1, w1;0 = 0, w0;1 = 0

0:38203[30] 187:681[30] 22:6008[261] 602:010[274]
0:15217[64] 078:699[60] 14:0151[517] 416:203[551]
0:09498[135] 010:299[126] 07:3432[1250] 248:964[1125]
0:08111[255] 003:762[238] 05:7065[2556] 138:907[2769]
0:07320[494] 001:999[546] 05:5198[5251] 109:316[5721]
0:06857[1165] 001:658[1291] � �
0:06647[2351] 001:547[2612] � �
0:06492[4004] 001:492[5327] � �

� Case 2: w0;0 =
3
4 , w1;0 =

1
8 , w0;1 =

1
8

0:46595[30] 148:612[29] 19:6899[309] 569:125[274]
0:28869[64] 053:518[63] 15:0050[517] 465:922[463]
0:25598[135] 010:835[134] 10:8139[1249] 310:202[1127]
0:24329[255] 007:461[254] 09:2595[2557] 243:782[2317]
0:23671[494] 006:189[491] 09:1743[5255] 208:509[5738]
0:22981[1160] 005:634[1372] � �
0:22863[2339] 005:531[2767] � �
0:22780[3982] 005:502[4714] � �

� Case 3: w0;0 =
1
2 , w1;0 =

1
4 , w0;1 =

1
4

0:62466[29] 97:524[29] 20:2099[290] 538:967[274]
0:45324[62] 42:130[63] 16:3124[579] 471:593[463]
0:41496[128] 13:253[133] 13:7895[1402] 373:310[1131]
0:39901[239] 10:954[252] 12:5213[2874] 327:849[2327]
0:39481[462] 10:045[486] 12:5026[5875] 301:407[5763]
0:39007[1085] 09:577[1356] � �
0:38989[2184] 09:497[2733] � �
0:38983[3717] 09:491[4656] � �

3 We de�ne the error as E =
bR
a

w0;0

�
F (x; y)� f(x; y)

�2
+ w1;0

�
Fx(x; y)� fx(x; y)

�2
+

w0;1

�
Fy(x; y) � fy(x; y)

�2
dxdy, where F (x; y) is the function to be approximated and

f(x; y) is the approximant. A dash symbol indicates that a �nal error condition is satis�ed.
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Table 2. Computing times, errors, and numbers of knots (in square brackets) for trivariate
functions. Error values are based on function values and �rst derivative.4

10x
�
x� 1

4

��
x� 3

4

� �����sin�10�x2� cos�5�y2�
����� 3D checker board

����� Flame
y2
p
z

����� sin2
�
2�z

������
�����

[� 20m for 25 levels]

����� [� 15m for 23 levels]

����� [� 13m for 25 levels]

����� [� 2.2h for 27 levels]

� Case 1: w0;0;0 = 1, w1;0;0 = 0, w0;1;0 = 0, w0;0;1 = 0

216:16[56] 21199:0[60] 14139:7[53] 5370:9[68]
027:70[224] 17846:9[294] 07940:8[236] 2728:2[271]
013:84[599] 14643:1[622] 05145:3[700] 1829:5[883]
010:19[1773] 10303:6[1369] 02823:7[2284] 1275:4[3068]
� � � 0941:6[10198]

� Case 2: w0;0;0 =
3
4 , w1;0;0 =

1
12 , w0;1;0 =

1
12 , w0;0;1 =

1
12

153:98[56] 15884:8[59] 10015:5[53] 3556:0[72]
024:71[235] 14296:9[281] 06309:0[232] 2401:9[206]
012:98[635] 11543:2[584] 04057:1[681] 1666:6[667]
010:31[1892] 07957:6[1288] 02833:1[1495] 1119:9[3523]
� � � 0945:8[11293]

� Case 3: w0;0;0 =
1
2 , w1;0;0 =

1
6 , w0;1;0 =

1
6 , w0;0;1 =

1
6

117:45[55] 10677:1[59] 7833:5[48] 2718:6[72]
020:66[230] 09933:3[281] 4765:3[203] 1876:3[207]
012:98[610] 07780:0[582] 2714:5[876] 1433:7[678]
011:41[1249] � 1694:4[2916] 1090:5[3605]

4We de�ne the error as E =
bR
a

w0;0;0

�
F (x; y; z) � f(x; y; z)

�2
+ w1;0;0

�
Fx(x; y; z) �

fx(x; y; z)
�2

+ w0;1;0

�
Fy(x; y; z) � fy(x; y; z)

�2
+ w0;0;1

�
Fz(x; y; z) � fz(x; y; z)

�2
dxdydz,

where F (x; y; z) is the function to be approximated and f(x; y; z) is the approximant.
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Figs. 7{13 show approximations for analytically de�ned univariate, bivariate, and

trivariate functions; digital photographs; and sampled scalar �elds over trivariate domains

(ame). Concerning the generation of the triangulation levels in the bivariate and trivariate

cases, we have inserted multiple knots simultaneously by identifying the approximately 10%

elements with largest error values and subdividing them in one step.

Figs. 7, 8, and 11 demonstrate how varying weights a�ect the quality of the approx-

imation for the univariate, bivariate, and trivariate case, respectively. In each of these

�gures, it is possible to see the over- and under-shoots in areas where the �rst-derivative

weights are not suÆciently large enough to reduce them. Figs. 7 and 8 show \peaks" and

\valleys" where the over- and under-shoots occur (near the high-gradient areas). Light and

dark regions near the high-gradient areas in Fig. 11 show the over- and under-shoots. We

have rendered the trivariate checker board function by \cutting" through the underlying

tetrahedral mesh.

Fig. 9 shows how varying weights a�ect the quality of the approximation for Franke's

function, commonly used for testing scattered-data approximation schemes. This function

is de�ned as

f(x; y) = 0:75e�0:25(9x�2)
2
� 0:25(9y�2)2 + 0:75e�(9x�2)

2=49 � (9y�2)2=10

+ 0:5e�0:25(9x�7)
2
� 0:25(9y�3)2 � 0:2e�(9x�4)

2
� (9y�7)2 : (28)

In this example, a Delaunay triangulation was constructed for the function from 2000 ran-

dom sample points. The triangulation (i.e., the linear spline) was digitized to a 1000x1000

uniform grid before being processed. The upper-left image shows a rendering of the origi-

nal data. The pair of perpendicular line segments in the approximations denote the origin.
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Computation times ranged from four to 14 seconds, for 28 levels.

Fig. 12 demonstrates how varying weights a�ect the quality of the approximation

for the ame data set (40 � 40 � 20 = 32000 normalized function values on a rectilinear

grid). Element-speci�c error values computed with respect to the original discrete data

set. Computation times ranged from 39 minutes to 51 minutes, for 27 levels. An image of

a cutting plane through the original data set is centered above the group of four varying

weight images in the �gure.

Fig. 13 demonstrates how varying weights a�ect the quality of approximations of a

Golden Gate Bridge photograph (889� 557 = 495173 RGB pixels distributed uniformly in

x- and y-direction). Each color component (red, green, and blue) was treated independently

from the other two components. Error values were determined by averaging the three color

component speci�c error values, resulting in a single error value. Computation times ranged

from 27 minutes to 42 minutes, for 55 levels.

Remark 5.1. We note that the described algorithm is computationally quite expensive,

both with respect to time and space requirements. This is primarily due to the fact that one

has to perform numerical integration and solve sparse linear equation systems to generate

the approximation hierarchy. We have implemented our algorithm on a Pentium III,

500MHz graphics workstation with 512MB of memory. The constructions of the hierarchies

for the most complicated trivariate examples, which consist of several thousand knots at

the highest levels of resolution, require several minutes of computation. We believe that

this is acceptable: interactive visualization of very large data sets is only possible if a

pre-computed hierarchy is available at the time of rendering and data exploration. Fig. 14
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shows running times for one bivariate and one trivariate function.

Examining the error and knot relationship shown in Tables 1 and 2 reveals various

characteristics of the method. Initially, as expected, there is a large approximation error

when using a relatively small number of knots (i.e., less than 1% of the number of original

sites). This large error is quickly reduced as the number of knots approaches 1% of the

number of original sites. Tables 1, 2, and the run time data shown in Fig. 14 lead to the

following observation: when the number of knots is less than 1% of the original sites, the

amount of computation time needed to reduce the error from E to E=2 is roughly twice the

amount of time that was necessary to reduce the initial mesh error E0 to E. However, as

the number of knots increases beyond 1%, the error reduction rate decreases signi�cantly.

Considering the bivariate function shown in Fig. 14, we observed the following behavior:

when the number of knots being used is greater than 1%, the amount of time necessary to

reduce an error E to 0:94E is roughly three times the amount of time that was necessary to

reduce the initial mesh error E0 to E. Considering the trivariate function shown in Fig. 14,

we observed the following behavior: when the number of knots being used is greater than

1%, the amount of time necessary to reduce an error E to 0:75E is roughly three times

the amount of time that was necessary to reduce the initial mesh error E0 to E.
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Fig. 7. Function sin(4�x2) using eight uniformly spaced knots with varying
weights (w0, w1): (1.0, 0.0), (0.99, 0.01), (0.98, 0.02), and (0.97, 0.03) |
from upper-left to lower-right corner. The lighter polygon is the original

function; the darker polygon is the approximation.
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Fig. 8. 2D (bivariate) checker board function using between 5000 and 6000 knots with
varying weights (w0;0, w1;0, w0;1): (1, 0, 0) and

�
1
4 ,

3
8 ,

3
8

�
| from top to bottom.
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Fig. 9. Franke's function using varying weights (w0;0, w1;0, w0;1) for three approxi-
mations: (1, 0, 0),

�
1
2 ,

1
4 ,

1
4

�
, and

�
1
4 ,

3
8 ,

3
8

�
| from upper-right to lower-right

corner; number of vertices: 132, 132, and 129; errors: 13.68, 13.43, and 13.50.
The upper-left image shows the original data (2000 vertices).
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Fig. 10. Three mutually perpendicular cutting planes through 3D (trivariate) checker
board function using varying weights (w0;0;0, w1;0;0, w0;1;0, w0;0;1): (1, 0, 0, 0),�

3
4 ,

1
12 ,

1
12 ,

1
12

�
,
�
1
2 ,

1
6 ,

1
6 ,

1
6

�
, and

�
1
4 ,

3
12 ,

3
12 ,

3
12

�
| from left to right.

Fig. 11. Magni�cations of four approximations for function shown in Fig. 10.
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Fig. 12. One cutting plane through ame data set using varying weights (w0;0;0,
w1;0;0, w0;1;0, w0;0;1) for four approximations: (1, 0, 0, 0),

�
3
4 ,

1
12 ,

1
12 ,

1
12

�
,�

1
2 ,

1
6 ,

1
6 ,

1
6

�
, and

�
1
4 ,

3
12 ,

3
12 ,

3
12

�
| from upper-left to lower-right corner;

number of vertices: 3127, 2859, 3432, and 3529; errors: 217.48, 233.77,
215.51, and 198.02. The top image shows the original data (32000 vertices).
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Fig. 13. Golden Gate Bridge approximations using varying weights (w0;0, w1;0, w0;1):
(1, 0, 0) and

�
1
4 ,

3
8 ,

3
8

�
| from top to bottom; number of vertices: 14776 and

14548; errors: 1274.38 and 1081.66. The top image
shows the original data (495173 vertices).
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Fig. 14. Running times for bivariate function 10x
�
x� 1

4

��
x� 3

4

�
y2 and

trivariate function 10x
�
x� 1

4

��
x� 3

4

�
y2
p
z using weights (w0;0, w1;0, w0;1) =

(1, 0, 0) and (w0;0;0, w1;0;0, w0;1;0, w0;0;1) = (1, 0, 0, 0), respectively.
(These running times are representative for all functions tested. Times
were obtained on a Pentium III, 500MHz graphics workstation with

512MB of memory.)
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6. Conclusions and future work

We have presented a method for the generation of multiple best linear spline approxi-

mations based on a triangulation-based �nite element approach. The approach is sim-

ple, and the bisection paradigm applies to simplicial decompositions of space in arbitrary

dimensions. One should view the construction of a hierarchy of approximations as a

pre-processing step for data visualization and analysis. From this point of view, the con-

struction does not necessarily have to be an extremely eÆcient operation; an algorithm

computing a data hierarchy serves its primary purpose as long as the resulting data hierar-

chy is compact, requires a simple data format, and can be used by standard visualization

technology. We have presented a method that satis�es these conditions.

Regarding Fig. 9, while each of the three approximations accurately approximates

Franke's function with relatively few knots there is little di�erence when using varying

non-zero weights for �rst-derivative information in the approximation. This is because

the function is considered \smooth" by our method since there are no discontinuities.

When approximating highly discontinuous data, our method captures discontinuities bet-

ter when considering �rst-derivative information compared to not using the information.

The result is a concentration of simplices near discontinuities and correction of over- and

under-shoots. For in�nitely di�erentiable functions, such as Franke's function, and other

\smooth" data our method performs well, though, �rst-derivative information only slightly

improves approximation quality.

Considering the extremely large data set sizes produced by state-of-the-art numerical

simulations and imaging devices, we plan to improve the eÆciency of our approach and
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generalize the approach to allow more general mesh re�nement, including the consideration

of knots that are not part of a original discrete data set. We have not yet studied the

theoretical aspects concerning the approximation properties of our scheme, e.g., the rate

of decay of the global error measure for certain classes of functions. This interesting and

challenging work remains to be done.

It is possible to reduce storage requirements by storing the insertion order of sites

rather than an explicit representation. In this case, the overall site storage requirements

for a hierarchy are equal to those of the highest level of resolution. Connectivity information

can be stored as well to eliminate the need for re-calculating the connectivity during site

insertion.

It is possible to store the coeÆcients of each level, resulting in a storage that is nearly

twice the size of the highest level of resolution. An alternative is to calculate di�erences

from one level to another for the coeÆcients. These di�erences would require less precision

to store and could be quantized to signi�cantly reduce storage.

In general, it is not possible to store an entire hierarchy in main computer memory,

and it is therefore necessary to store the hierarchy in a �le format that supports easy

and eÆcient access. We believe that an optimal format to store a data hierarchy depends

on the particular visualization and analysis algorithms that are utilized. An optimal �le

format is application-dependent, and one should design it on a case-to-case basis.

Much of the work referenced in the Introduction considers a local minimization prob-

lem. Better approximations are achieved when using a global minimization approach, as

used in our method. The global nature of our method seemingly increases the amount
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of computation required; but, it is possible to treat the generated linear systems highly

eÆciently. The addition of �rst-derivative information, a more general concept for data-

dependent triangulation and approximation, improves approximation quality in a more

adaptive fashion. The user can vary the weighting of �rst-derivative information for the

problem at hand to achieve better results.

The most time-sensitive portion of the method is integrating over the simplices. Inte-

gration occurs in both the computation of the right-hand-side of the linear system and in

the error computation. Each of these steps accounts for nearly 50% of the total running

time. Since integration over the simplices can be performed independently, these two steps

can easily be parallelized. When solving the linear system, the second most time critical

step, one can take advantage of sparse-system solvers. During each iteration, our system

only changes \locally," which allows us to use so-called updating schemes. [Du� et al. '86]

describe a partitioning scheme for system updating where new matrix entries are appended

to the previous matrices. A topic of future research might be to extend such an updating

scheme to our setting.

Comparison to existing models should include close inspection to the handling of

both smooth and discontinuous regions. Our method handles both types of regions (in-

dependently and concurrently). Because of the �rst-derivative contribution our method

handles discontinuities well. It might be possible to extend and improve other types of

approximation methods by incorporating derivative information.

The selection of \good" weights for the functionals to be minimized depends generally

on the function to be approximated. It is a topic of future research to determine whether
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or not it is possible (and how) to automatically determine the \optimal" weights for a

particular input function.
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APPENDIX

A.1. Formulae for the univariate case

The integral values required to compute the matrix elements ai;j in the univariate case are

x1Z
x0

�
f0(x)

�2
dx =

1

3
40; (29a)
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xnZ
xn�1

�
fn(x)

�2
dx =

1

3
4n�1; (29b)

xi+1Z
xi�1

�
fi(x)

�2
dx =

1

3

�4i�1 +4i

�
; i = 1; � � � ; n� 1; and (29c)

xi+1Z
xi

fi(x)fi+1(x) dx =
1

6
4i; i = 0; � � � ; n� 1: (29d)

The terms involving the �rst derivatives are
x1Z

x0

�
f0
0(x)

�2
dx =

1

40
; (30a)

xnZ
xn�1

�
fn

0(x)
�2

dx =
1

4n�1
; (30b)

xi+1Z
xi�1

�
fi
0(x)

�2
dx =

1

4i�1
+

1

4i
; i = 1; � � � ; n� 1; and (30c)

xi+1Z
xi

fi
0(x)fi+1

0(x) dx = � 1

4i
; i = 0; � � � ; n� 1: (30d)

A.2. Formulae for the bivariate case

The following integral expressions are required to compute the individual matrix elements

ai;j in the bivariate case: Z
Ti

�
fi(x; y)

�2
dx dy =

1

12

niX
j=0

jJj j; (31)

where ni+1 is the number of platelet triangles in the triangle set Ti (= platelet) associated

with vertex vi, and Jj is the Jacobian associated with the jth platelet triangle. The

Jacobian J of a triangle with vertices (x0; y0)
T , (x1; y1)

T and (x2; y2)
T|which should be

ordered counterclockwise to ensure consistency|is given by

J = det

�
x1 � x0 x2 � x0
y1 � y0 y2 � y0

�
: (32)
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(The platelet of triangles associated with vertex vi is the set of triangles Ti = fTj j j =

0; � � � ; nig, and Tj denotes an individual triangle.) Two basis functions fi(x; y) and fj(x; y)

whose associated vertices vi and vj are connected by an edge in the triangulation imply

the non-zero integral value

Z
Ti;j

fi(x; y)fj(x; y) dx dy =
1

24

ni;jX
k=0

jJkj; (33)

where the set Ti;j = fTk j k = 0; � � � ; ni;jg is the set of triangles belonging to both vi's

and vj 's platelets. (There can be at most two triangles belonging to both vi's and vj 's

platelets in the bivariate case.)

The linear polynomial interpolating the values one, zero, and zero at the vertices

(x0; y0)
T , (x1; y1)

T , and (x2; y2)
T , respectively, has the partial derivatives

fx(x; y) = � 1

J
det

�
1 y1
1 y2

�
=

y1 � y2
J

and (34a)

fy(x; y) = � 1

J
det

�
x1 1
x2 1

�
=

x2 � x1
J

: (34b)

Integrals involving these partial derivatives are:

Z
Ti

�
fix(x; y)

�2
dx dy =

1

2

niX
j=0

1

jJj j det
2

�
1 yj;1
1 yj;2

�
and (35a)

Z
Ti

�
fiy(x; y)

�2
dx dy =

1

2

niX
j=0

1

jJj j det
2

�
xj;1 1
xj;2 1

�
; (35b)

where (xj;0; yj;0)
T , (xj;1; yj;1)

T , and (xj;2; yj;2)
T are the (preferably) counterclockwise-

ordered vertices of the ni + 1 platelet triangles associated with vi, see Fig. 15.
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Fig. 15. Indexing scheme for platelet vertices in bivariate case
(neighboring triangles oriented counterclockwise).

Other required values areZ
Ti;j

fix(x; y)fjx(x; y) dx dy =
1

2

ni;jX
k=0

1

jJkj det
�
1 yk;1
1 yk;2

�
det

�
1 yk;0
1 yk;1

�
and(36a)

Z
Ti;j

fiy(x; y)fjy(x; y) dx dy =
1

2

ni;jX
k=0

1

jJkj det
�
xk;1 1
xk;2 1

�
det

�
xk;0 1
xk;1 1

�
; (36b)

where (xk;0; yk;0)
T , (xk;1; yk;1)

T , and (xk;2; yk;2)
T are the vertices of a triangle being a

common triangle of vi's and vj 's platelets. The number of common triangles, which is at

most two, is given by ni;j + 1. Fig. 16 illustrates our indexing scheme.

Fig. 16. Indexing scheme for intersecting platelets (bivariate case).
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A.3. Formulae for the trivariate case

The following integral expressions are required to compute the individual matrix elements

ai;j in the trivariate case:

Z
Ti

�
fi(x; y; z)

�2
dx dy dz =

1

60

niX
j=0

jJjj; (37)

where ni+1 is the number of platelet tetrahedra in the tetrahedra set Ti (= platelet) asso-

ciated with vertex vi, and Jj is the Jacobian associated with the jth platelet tetrahedron.

The Jacobian J of a tetrahedron with vertices (x0; y0; z0)
T , (x1; y1; z1)

T , (x2; y2; z2)
T , and

(x3; y3; z3)
T is given by

J = det

0
@x1 � x0 x2 � x0 x3 � x0

y1 � y0 y2 � y0 y3 � y0
z1 � z0 z2 � z0 z3 � z0

1
A : (38)

(The platelet of tetrahedra associated with vertex vi is the set of tetrahedra Ti = fTj j j =

0; � � � ; nig, and Tj denotes an individual tetrahedron.) Two basis functions fi(x; y; z) and

fj(x; y; z) whose associated vertices vi and vj are connected by an edge in the triangulation

imply the non-zero integral value

Z
Ti;j

fi(x; y; z)fj(x; y; z) dx dy dz =
1

120

ni;jX
k=0

jJkj; (39)

where the set Ti;j = fTk j k = 0; � � � ; ni;jg is the set of tetrahedra belonging to both vi's

and vj 's platelets.

The linear polynomial interpolating the values one, zero, zero, and zero at the ver-

tices (x0; y0; z0)
T , (x1; y1; z1)

T , (x2; y2; z2)
T , and (x3; y3; z3)

T , respectively, has the partial

derivatives

fx(x; y; z) = � 1

J
det

0
@ 1 y1 z1
1 y2 z2
1 y3 z3

1
A ; (40a)
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fy(x; y; z) = � 1

J
det

0
@x1 1 z1
x2 1 z2
x3 1 z3

1
A ; and (40b)

fz(x; y; z) = � 1

J
det

0
@x1 y1 1
x2 y2 1
x3 y3 1

1
A : (40c)

Integrals involving these partial derivatives are

Z
Ti

�
fix(x; y; z)

�2
dx dy dz =

1

6

niX
j=0

1

jJj j det
2

0
@ 1 yj;1 zj;1
1 yj;2 zj;2
1 yj;3 zj;3

1
A ; (41a)

Z
Ti

�
fiy(x; y; z)

�2
dx dy dz =

1

6

niX
j=0

1

jJj j det
2

0
@xj;1 1 zj;1
xj;2 1 zj;2
xj;3 1 zj;3

1
A ; and (41b)

Z
Ti

�
fiz(x; y; z)

�2
dx dy dz =

1

6

niX
j=0

1

jJj j det
2

0
@xj;1 yj;1 1
xj;2 yj;2 1
xj;3 yj;3 1

1
A ; (41c)

where the points (xj;1; yj;1; zj;1)
T , (xj;2; yj;2; zj;2)

T , and (xj;3; yj;3; zj;3)
T denote the bound-

ary vertices of the faces of the platelet tetrahedra associated with vertex (xi; yi; zi)
T , see

Fig. 17.

Fig. 17. Indexing scheme for platelet vertices (trivariate case).
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Other required equations are

Z
Ti;j

fix(x; y; z)fjx(x; y; z) dx dy dz

=
1

6

ni;jX
k=0

1

jJkj det
0
@ 1 yk;1 zk;1
1 yk;2 zk;2
1 yk;3 zk;3

1
A det

0
@ 1 yk;0 zk;0
1 yk;3 zk;3
1 yk;2 zk;2

1
A ; (42a)

Z
Ti;j

fiy(x; y; z)fjy(x; y; z) dx dy dz

=
1

6

ni;jX
k=0

1

jJkj det
0
@xk;1 1 zk;1
xk;2 1 zk;2
xk;3 1 zk;3

1
A det

0
@xk;0 1 zk;0
xk;3 1 zk;3
xk;2 1 zk;2

1
A ; and (42b)

Z
Ti;j

fiz(x; y; z)fjz(x; y; z) dx dy dz

=
1

6

ni;jX
k=0

1

jJkj det
0
@xk;1 yk;1 1
xk;2 yk;2 1
xk;3 yk;3 1

1
A det

0
@xk;0 yk;0 1
xk;3 yk;3 1
xk;2 yk;2 1

1
A ; (42c)

where (xk;0; yk;0; zk;0)
T , (xk;1; yk;1; zk;1)

T , (xk;2; yk;2; zk;2)
T , and (xk;3; yk;3; zk;3)

T are the

vertices of a tetrahedron being a common tetrahedron of vi's and vj 's platelets. The

number of common tetrahedra is ni;j + 1. Fig. 18 illustrates our indexing scheme.

Fig. 18. Intersecting platelets (trivariate case).
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