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Abstract. We discuss spline refinement methods that approximate multi-valued
data defined over one, two, and three dimensions. The input to our method is a
coarse decomposition of the compact domain of the function to be approximated
consisting of intervals (univariate case), triangles (bivariate case), and tetrahedra
(trivariate case). We first describe a best linear spline approximation scheme, un-
derstood in a least squares sense, and refine on initial mesh using repeated bisection
of simplices (intervals, triangles, or tetrahedra) of maximal error. We discuss three
enhancements that improve the performance and quality of our basic bisection ap-
proach. The enhancements we discuss are: (i) using a finite element approach that
only considers original data sites during subdivision, (ii) including first-derivative
information in the error functional and spline-coefficient computations, and (iii)
using quadratic (deformed, “curved”) rather than linear simplices to better ap-
proximate bivariate and trivariate data. We improve efficiency of our refinement
algorithms by subdividing multiple simplices simultaneously and by using a sparse-
matrix representation and system solver.

1 Introduction

Different methods are known and used for hierarchical representation of very
large data sets. Unfortunately, only a small number of these methods are
based on well developed mathematical theory. In the context of visualizing
very large data sets in two and three dimensions, it is imperative to develop
hierarchical data representations that allow us to visualize and analyze data
at various levels of detail. General and efficient algorithms are needed to
support the generation of hierarchical data representations and their appli-
cability for visualization.

Our discussion deals with the construction of hierarchies of triangula-
tions and spline approximations of functions. The main idea underlying the
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construction of our data hierarchy is repeated bisection of simplices (inter-
vals, triangles, or tetrahedra). Bisection is chosen for its simplicity and the
possibility to extend it to multiple dimensions easily. We construct an ap-
proximation hierarchy by repeatedly subdividing triangulations, “simplicial
domain decompositions”, and computing a best spline approximations. Our
initial approximation is based on a coarse triangulation of the domain of in-
terest, typically defined over the convex hull of all given data points/sites
if the function to be approximated is known only at a finite number of lo-
cations. We identify regions of large error and subdivide simplices in these
regions. These steps are required to perform our algorithm:

1. Initial approximation. Define a coarse initial triangulation of the do-
main of interest and compute the coefficients defining the best spline
approximation for this mesh.

2. Error estimation. Analyze the error of this approximation by com-
puting appropriate local and global error estimates relative to the input
function.

3. Refinement. Subdivide the simplex (or set of simplices) with the largest
local error estimate.

4. Computation of best approximation. Compute a new best linear
spline approximation based on the new mesh.

5. Iteration. Repeat steps 2, 3, and 4 until a certain approximation error
condition is met.

There are many hierarchical methods targeted at approximating large
data sets. For example, wavelet methods are described in [2], [13], and [29].
The work described in [29] has the advantage of supporting both lossless
and lossy compression. In general, wavelet methods work well for data lying
on uniform, rectilinear, and power-of-two grids and provide fast and highly
accurate compression.

Simplification methods using data elimination strategies are described
in [3], [4], [11], [12], [16], [20], and [21]. These methods are more general
than most wavelet methods since arbitrary input meshes can be converted
to a form treatable by each method. Refinement methods similar to the ones
we discuss here are described in [14], [17], and [27]. Most data-dependent
refinement methods can also be adapted to arbitrary meshes.

The method described in [7] performs an iterative “thinning step” based
on radial basis functions on scattered points while maintaining a Delaunay
triangulation. The results of [7] support the notion that data-dependent tri-
angulations better approximate functions in high-gradient regions.

Comparisons of wavelet, decimation, simplification, and data-dependent
methods, including the meshes discussed in [13], [16], [20], and [27], are pro-
vided in [19]. This survey discusses the many approaches to surface simplifi-
cation and also examines the complexity of some of the most commonly used
methods.
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The methods we discuss here apply to univariate, bivariate, and trivari-
ate data. The underlying principles of our approach become evident in our
discussion of the univariate case in Sect. 2. By discussing the univariate case
in detail, generalizations to the bivariate and trivariate cases are more easily
understood.

The hierarchies of approximations resulting from our methods can be
used for visualization. Common visualization methods – including contouring,
slicing, and volume visualization (i.e., ray-casting) – that can be applied to
our hierarchical approximations are described in [15], [22], [24], [25], and [28].

2 Best Linear Spline Approximation and the

Univariate Case

We begin the discussion with best linear spline approximation in the uni-
variate case. Our method requires a few notations from linear algebra and
approximation theory, and we discuss these briefly. We use the standard scalar
product 〈f, g〉 of two functions f(x) and g(x), defined over the interval [a, b],

〈f, g〉 =
b
∫

a

f(x)g(x)dx, (1)

and the standard L2 norm to measure a function f(x),

‖f‖ = 〈f, f〉
1/2

=

(

b
∫

a

(

f(x)
)2
dx

)1/2

. (2)

It is well known from approximation theory, see, for example, [5], that the
best approximation f(x) of a given function F (x), when approximating it by
a linear combination

f(x) =
n−1
∑

i=0

cifi(x) (3)

of independent functions f0(x), . . . , fn−1(x) (using fi as abbreviation for
fi(x)), is defined by the normal equations







〈f0, f0〉 . . . 〈fn−1, f0〉
...

...
〈f0, fn−1〉 . . . 〈fn−1, fn−1〉













c0
...

cn−1






=







〈F, f0〉
...

〈F, fn−1〉






. (4)

We can also write this linear system as M [n−1]c[n−1] = F [n−1]. This system is
easily solved when dealing with a set of mutually orthogonal and normalized
basis functions, i.e., in the case when 〈fi, fj〉 = δi,j (Kronecker delta). In this
case, only the diagonal entries of M [n−1] are non-zero and the coefficients ci
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Fig. 1. Basis functions fi, function F to be approximated, and approximation
f(x) = c0f0 + c1f1

are given by ci = 〈F, fi〉. For an arbitrary set of basis functions, one must
investigate a means for an efficient solution of the linear system define by 4.

Initially we approximate a given univariate function F by a single linear
spline segment by computing M [1]c[1] = F [1]. We assume, without loss of
generality, that F is defined over the interval [0, 1] and that the basis functions
are hat functions with the property fi(xj) = δi,j , see Fig. 1.

When using hat functions as basis functions, the only non-zero elements
of M [n−1], for a particular row i, are the elements 〈fi−1, fi〉, 〈fi, fi〉, and
〈fi+1, fi〉. These scalar products are given by

〈fi−1, fi〉 =
1

6
∆i−1 ,

〈fi, fi〉 =
1

3
(∆i−1 +∆i) , and

〈fi+1, fi〉 =
1

6
∆i , (5)

where ∆i = xi+1 − xi. Thus, M [n−1] is the tridiagonal matrix

M [n−1] =















2∆0 ∆0

∆0 2(∆0 +∆1) ∆1

∆1 2(∆1 +∆2) ∆2

. . .
. . .

. . .

∆n−2 ∆n−1















. (6)

Since it is necessary to re-compute the coefficients after each refinement due to
the global nature of the best approximation problem, one can take advantage
of efficient system solvers to solve this system in linear time, see, for example
[6].
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We want to compute a hierarchy of approximations of a function F by
refining the initial approximation by adding more basis functions – or, in
other words, by inserting more knots. We insert knots repeatedly until we
have an approximation whose global error is smaller than some threshold.
The error of the first approximation is defined as E [1] = ‖F − (c0f0 + c1f1)‖.
If this value is larger than a specified tolerance, we refine by inserting a knot
at x = 1

2 . The addition of this knot changes the basis function sequence and,
therefore, we must compute a new best linear spline approximation for the
new knot set by solving M [2]c[2] = F [2]; the error for this approximation is
E[2] = ‖F −

∑

2
i=0cifi‖. Should this new error still be too large, we refine the

approximation further. We need to define a criterion that determines which
segment to bisect. Local error estimates over each segment can be computed
easily, so this information can be used to decide which interval to subdivide,
in this case, either [0, 1

2 ] or [
1
2 , 1].

We can define a global error estimate for an approximation based on the
knot sequence 0 = x0 < x1 < x2 < . . . < xn−2 < xn−1 = 1. We define the
global error as

E[n−1] = ‖F −
∑n−1
i=0 cifi‖. (7)

In order to allow us to decide which segment to subdivide next, we define the
local error for an interval [xi, xi+1] as

e
[n−1]
i =

(

∫ xi+1

xi
(F − (cifi + ci+1fi+1))

2
dx
)1/2

, i = 0, . . . , n− 2 . (8)

We compute local errors for each of the segments and then bisect the
segment with the maximum local error estimate at each iteration. If the
maximum local error is not unique, it is sufficient to choose one segment ran-
domly for subdivision. (Alternatively, one could subdivide all segments with
the same maximum local error, thus leading to a unique solution). To improve
efficiency, it is reasonable to select the m segments with the m largest local
error estimates for subdivision. Such an approach seems to be more appro-
priate for very large data sets. An example of a hierarchical approximation
of a univariate function is shown in Fig. 2.

The scalar products 〈F, fi〉 and the error values E[n−1] and e
[n−1]
i are

computed by numerical integration. We use Romberg integration to perform
these steps, see [1] and [17].

3 The Bivariate Case

Given an initial best linear spline approximation based on a small number of
triangles, we compute the global error estimate for the approximation and,
should this error be too large, bisect the longest edge of the triangle with
maximal local error and insert a new knot at the midpoint of the longest
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Fig. 2. Five approximations of F (x) = 10x
(

x− 1
2

) (

x− 3
4

)

, x ∈ [0, 1]. The original
function is shown in the upper-left corner. Number of knots for approximations: 4,
6, 8, 14, and 19

edge of this triangle. If this edge is shared by another triangle, the neighboring
triangle is also split.

Refinement leads to insertion of additional knots at each iteration. Again,
we must re-compute spline coefficients after each knot insertion step due to
the global nature of the best approximation problem.

Concerning the construction of an approximation hierarchy for function
F (x, y), we begin with a coarse initial triangulation of the domain. In the case
of scattered data, a fitting step must be done to produce a smooth function
for which the approximation hierarchy is constructed. Localized versions of
Hardy’s multiquadric method, see [18], or surface reconstruction techniques,
similar to the one described in [9], can be used to yield smooth functions
interpolating given discrete data. A minimal coarse triangulation of the con-
vex hull of the scattered data sites suffices as an initial triangulation. Earlier
work concerning scattered data interpolation and approximation is described
in [10] and [23].

The approximation f(x, y) is constructed from the given function F (x, y),
the underlying triangulation, which is a set of vertices vi = [xi, yi]

T , i =
0, . . . , n, and hat basis functions fi = fi(x, y). The basis function fi – associ-
ated with vertex vi – has a value of one at vi and varies linearly to zero when
going from vi to all other vertices in the platelet of vi; fi is zero outside the
platelet of vi, see Fig. 3.

Univariate error estimates are easily extended to the bivariate case. For-
mally, the bivariate global error is the same as in the univariate case (7), and
local errors for each triangle Tj are given by

e
[n−1]
j =

(

∫

Tj

(

F −
∑

3
k=1cj,kfj,k)

)2

dxdy

)
1
2

,
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Fig. 3. Platelets of vi and
vj and associated basis func-
tions. (Triangles in front have
been removed for clarity)

j = 0, . . . , nT − 1 , (9)

where nT is the number of triangles in a mesh and fj,k is the basis function
associated with the kth vertex of the jth triangle.

The bivariate case requires integration over triangles. For this purpose,
we make use of the change-of-variables theorem, which allows us to effectively
integrate functions over a triangle with vertices v0 = [x0, y0]

T , v1 = [x1, y1]
T ,

and v2 = [x2, y2]
T :

Change-of-variables theorem

Let R and R∗ be regions in the plane and let M :R∗ → R be a C1-continuous,
one-to-one mapping such thatM(R∗) = R. Then, for any bivariate integrable
function f , the equation

∫

R
f(x, y)dxdy =

∫

R∗
f (x(u, v), y(u, v)) J dudv (10)

holds, where J is the Jacobian of M ,

J = det

[

∂
∂ux(u, v)

∂
∂vx(u, v)

∂
∂uy(u, v)

∂
∂vy(u, v)

]

. (11)

Thus, to effectively compute integrals of functions over triangles we only
need to consider the linear transformation

[

x(u, v)
y(u, v)

]

=

[

x1 − x0 x2 − x0

y1 − y0 y2 − y0

] [

u

v

]

+

[

x0

y0

]

. (12)

This transformation maps the standard triangle T ∗ with vertices u0 =
[0, 0]T , u1 = [1, 0]T , and u2 = [0, 1]T in the uv-plane to the arbitrary triangle
T with vertices v0 = [x0, y0]

T , v1 = [x1, y1]
T , and v2 = [x2, y2]

T in the
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xy-plane. (Both triangles must be oriented counterclockwise.) For this linear
mapping, the change-of-variables theorem yields

∫

T

f(x, y)dxdy = J

∫ 1

v=0

∫ 1−v

u=0

f (x(u, v), y(u, v)) dudv, (13)

where the Jacobian is given by

J = det

[

x1 − x0 x2 − x0

y1 − y0 y2 − y0

]

. (14)

The only scalar products of basis function pairs one must consider in the
bivariate case are 〈N0, N0〉 and 〈N0, N1〉, where Ni(uj , vj) = δi,j is a linear
spline basis function defined over the standard triangle. (A scalar product
〈fi, fj〉 is only non-zero if the platelets of the vertices vi and vj intersect.)
The values of these two scalar products are

〈N0, N0〉 =

∫ 1

v=0

∫ 1−v

u=0

(1− u− v)2dudv =
1

12
and

〈N0, N1〉 =

∫ 1

v=0

∫ 1−v

u=0

(1− u− v)u dudv =
1

24
. (15)

Thus, the scalar product 〈fi, fi〉 is given by

〈fi, fi〉 =
∑ni−1
j=0

∫

Tj
fifi dxdy = 1

12

∑ni−1
j=0 Jj , (16)

where ni is the number of platelet triangles associated with vertex vi and
Jj is the Jacobian associated with the jth platelet triangle. The scalar prod-
uct 〈fi, fk〉 of two basis functions, whose associated vertices vi and vk are
connected by an edge, is given by

〈fi, fk〉 =
∑ni,k−1
j=0

∫

Tj
fifk dxdy = 1

24

∑ni,k−1
j=0 Jj , (17)

where ni,k is the number of platelet triangles shared by vertices vi and vk
and Jj is the Jacobian associated with the jth platelet triangle. An example
of a hierarchy of bivariate best linear spline approximations is shown in Fig.
4.

4 The Trivariate Case

The trivariate case is a straightforward generalization of the bivariate case.
The only notable difference from the bivariate case is the use of the change-
of-variables theorem. We consider the mapping of the standard tetrahedron

with vertices u0 = [0, 0, 0]T , u1 = [1, 0, 0]T , u2 = [0, 1, 0]T , and u3 =
[0, 0, 1]T in uvw-space to the tetrahedron with vertices v0 = [x0, y0, z0]

T ,
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Fig. 4. Four approximations of F (x, y) = 10x
(

x− 1
4

) (

x− 3
4

)

y2, x, y ∈ [0, 1]; the
origin is indicated by a pair of perpendicular line segments; number of knots for
approximations: 4, 15, 58, and 267; corresponding global error estimates: 0.1789,
0.0250, 0.0057, and 0.0011

v1 = [x1, y1, z1]
T , v2 = [x2, y2, z2]

T , and v3 = [x3, y3, z3]
T in xyz-space. The

resulting linear transformation is given by




x(u, v, w)
y(u, v, w)
z(u, v, w)



 =





x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0









u

v

w



+





x0

y0

z0



 . (18)

In this case, the change-of-variables theorem implies that
∫

T

f(x, y, z)dxdydz =

J

∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0

f (x(u, v, w), y(u, v, w), z(u, v, w)) dudvdw,(19)

where the Jacobian is given by

J = det





x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0



 . (20)

As in the bivariate case, we need to consider only the scalar products
of 〈N0, N0〉 and 〈N0, N1〉, where Ni(uj , vj , wj) = δi,j is a linear spline ba-
sis function over the standard tetrahedron. The values of these two scalar
products are

〈N0, N0〉 =

∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0

(1− u− v − w)2dudvdw =
1

60
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and

〈N0, N1〉 =

∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0

(1− u− v − w)u dudvdw =
1

120
. (21)

Thus, the scalar product 〈fi, fi〉 is given by

〈fi, fi〉 =
1
60

∑ni−1
j=0 Jj , (22)

where ni is the number of platelet tetrahedra associated with vertex vi and
Jj is the Jacobian associated with the jth platelet tetrahedron. The scalar
product 〈fi, fk〉 of two basis functions, whose associated vertices vi and vk
are connected by an edge, is given by

〈fi, fk〉 =
1

120

∑ni,k−1
j=0 Jj , (23)

where ni,k is the number of platelet tetrahedra shared by vertices vi and
vk and Jj is the Jacobian associated with the jth platelet tetrahedron. An
example of a hierarchy of trivariate best linear spline approximations is shown
in Fig. 5.

5 Finite Element Enhancement

Often, the function being approximated is known only at a finite number
of locations. An enhancement to the method we have discussed in previous
sections is to take advantage of finitely specified, “discrete” data to save space
when storing a hierarchy of approximations. A sequence of knot insertions
could potentially reference original data sites rather than explicitly specifying
the exact location of each knot when performing edge bisection.

We incorporate the idea of utilizing only originally given data site into the
approximation method by modifying the initial input mesh and the bisection
step. The vertices in the initial input mesh must be a subset of the original
data sites. The convex hull of the data sites suffices for the construction
of an initial mesh. Regarding the subdivision steps, in the univariate case,
rather than selecting the exact midpoint of an interval subdivision, we select
the original data site nearest to the midpoint (while respecting the interval
extents) as the new knot. For bivariate and trivariate subdivision, we select
the nearest original data site (inside the simplex selected for subdivision)
to the midpoint of the longest edge. If the nearest original data site is not
unique, we choose one at random. A simplex is not subdivided if there are
no original data sites inside it. Care must by taken to ensure a valid mesh
since the “snapping” to original data sites can produce inside-out simplices,
see Fig. 6.
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Fig. 5. Three approximations of flame data; original data shown in the upper-
left corner (208000 sites). Number of knots for approximations: 68, 514, and 5145;
corresponding global error estimates: 0.12, 0.07, and 0.03

Fig. 6. Inside-out triangles are produced when snapping bisection vertex E to orig-
inal data site F
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Fig. 7. Demonstration of effect of
over- and under-shoots. The lighter
polygon shows the original function;
the darker polygon shows the approx-
imation

6 Incorporating First-derivative Information

When approximating discontinuous data, we have noticed problems with our
generated approximations, namely, “over-” and “under-shoots,” see Fig. 7 for
an example.
To solve this problem we include first-derivative information for spline con-
struction. In addition, we must then also include first-derivative information
in the error computations to help focus the refinement near discontinuous
regions and regions with high derivatives/gradients. No algorithmic changes
are made otherwise to the original bisection method. The refinement pro-
cess proceeds by starting with a coarse initial triangulation and iteratively
refining the simplices with maximal error.

6.1 The Univariate Case

To incorporate first-derivative information into the computations, a few
changes must be made. We re-define (1), the univariate scalar product 〈f, g〉
of two functions f(x) and g(x), defined over the interval [a, b], as

〈f, g〉 =
b
∫

a

w0f(x)g(x) + w1f
′(x)g′(x)dx, (24)

where the “weights” w0 and w1 are non-negative and sum to one. This new
scalar product defines a “Sobolev-like” L2 norm – denoted by ‖ ‖Sob – for a
function f(x), which replaces (2):

‖f‖Sob = 〈f, f〉
1/2 =

(

∫ b

a
w0 (f(x))

2
+ w1 (f

′(x))
2
dx
)1/2

. (25)

This norm allows us to measure the quality of an approximation f(x) of a
given function F (x) by considering the norm of D(x) = F (x)− f(x):

‖D‖Sob = 〈D,D〉1/2. (26)

We use this new measure to compute interval-specific error estimates. The
univariate global error (7) becomes

E =
∫ b

a
w0 (F (x)− f(x))

2
+ w1 (F

′(x)− f ′(x))
2
dx , (27)
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where F is the function to be approximated on the interval [a, b] by function
f . We want to minimize E, which is equivalent to minimizing

E =

∫ b

a

w0 (f(x))
2
+ w1 (f

′(x))
2

− 2 (w0F (x)f(x) + w1F
′(x)f ′(x)) dx

+

∫ b

a

w0 (F (x))
2
+ w1 (F

′(x))
2
, (28)

which, in matrix notation, reduces to

E =

∫ b

a

1

2
[f(x) f ′(x)]

[

2w0 0
0 2w1

] [

f(x)
f ′(x)

]

− [f(x) f ′(x)]

[

2w0F (x)
2w1F

′(x)

]

dx

=

∫ b

a

1

2
fTQf − fT ldx . (29)

Substituting (3) into (29) yields

E =
1

2
[c0 c1 . . . cn−1]







∫

q(f0, f0) · · ·
∫

q(f0, fn−1)
...

...
∫

q(fn−1, f0) · · ·
∫

q(fn−1, fn−1)













c0
...

cn−1







− [c0 c1 . . . cn−1]







∫

l(f0)
...

∫

l(fn−1)






dx

=
1

2
cTAc− cT l , (30)

where q(fi, fj) is quadratic and l(fi) is linear in fi, fj , and their derivatives.
The “energy” E is minimal for the set of coefficients ci resulting from the
Ritz equations, i.e., the linear system

Ac = l , (31)

see [1]. The elements ai,j of the symmetric, positive definite matrix A are
given by

ai,j = w0

∫ b

a

fi(x)fj(x)dx+ w1

∫ b

a

f ′i(x)f
′
j(x)dx ,

i, j = 0, . . . , n− 1 , (32)

and the elements li of the column vector l are given by

li = w0

∫ b

a

F (x)fi(x)dx+ w1

∫ b

a

F ′(x)f ′i(x)dx ,

i = 0, . . . , n− 1 . (33)
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Integral values required to compute the matrix elements ai,j are
∫ x1

x0

(f0(x))
2
dx =

1

3
∆0 , (34a)

∫ xn

xn−1

(fn(x))
2
dx =

1

3
∆n−1 , (34b)

∫ xi+1

xi−1

(fi(x))
2
dx =

1

3
(∆i−1 +∆i) , i = 1, . . . , n− 1 , and (34c)

∫ xi+1

xi

fi(x)fi+1(x)dx =
1

6
∆i , i = 0, . . . , n− 1 . (34d)

Terms involving the first derivative are
∫ x1

x0

(f ′0(x))
2
dx =

1

∆0
, (35a)

∫ xn

xn−1

(f ′n(x))
2
dx =

1

∆n−1
, (35b)

∫ xi+1

xi−1

(f ′i(x))
2
dx =

1

∆i−1
+

1

∆i
, i = 1, . . . , n− 1 , and (35c)

∫ xi+1

xi

f ′i(x)f
′
i+1(x)dx = −

1

∆i
, i = 0, . . . , n− 1 . (35d)

Thus, the matrix A is a tridiagonal matrix, given as a “weighted sum” of two
tridiagonal matrices, A0 and A1:

A =
1

6
(w0A0 + w1A1) , (36)

where the matrices A0 and A1 are given by

A0 =















2∆0 ∆0

∆0 2(∆0 +∆1) ∆1

. . .
. . .

. . .

∆n−2 2(∆n−2 +∆n−1) ∆n−1

∆n−1 2∆n−1















, and (37a)

A1 = 6

















1
∆0

1
∆0

−1
∆0

∆0+∆1

∆0∆1

−1
∆1

. . .
. . .

. . .
−1
∆n−2

∆n−2+∆n−1

∆n−2∆n−1

−1
∆n−1

−1
∆n−1

1
∆n−1

















. (37b)

An example of a univariate approximation using first-derivative informa-
tion is shown in Fig. 8. In this example, the function F (x) = sin(4πx2) was
sampled at eight uniformly spaced locations in the interval [0, 1], defining a
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piecewise linear spline F (x), for which the approximations were constructed.
It is apparent how the first derivative affects the over- and under-shoots. As
more relative weight is assigned to the first derivative, the approximation
becomes much better.

Fig. 8. Four approximations of F (x) = sin(4πx2) using eight uniformly spaced
knots with varying weights (w0, w1) given by (1.0, 0.0), (0.99, 0.01), (0.98, 0.02),
and (0.97, 0.03) (from upper-left to lower-right corner); the lighter polygon shows
the original function (polygon); the darker polygon is the approximation

6.2 The Bivariate Case

Using a generalization of (26), the error functional we want to minimize in
the bivariate case is

E =

∫

T

w0,0 (F (x, y)− f(x, y))
2
+ w1,0 (Fx(x, y)− fx(x, y))

2

+ w0,1 (Fy(x, y)− fy(x, y))
2
dxdy , (38)

where Fx denotes the partial derivative of F with respect to x, fx denotes
the partial derivative of f with respect to x, etc. We want to minimize E,
which corresponds, in matrix notation, to minimizing

E =

∫

T

1

2
[f(x, y) fx(x, y) fy(x, y)]





2w0,0 0 0
0 2w1,0 0
0 0 2w0,1









f(x, y)
fx(x, y)
fy(x, y)





− [f(x, y) fx(x, y) fy(x, y)]





2w0,0F (x, y)
2w1,0Fx(x, y)
2w0,1Fy(x, y)



 dxdy . (39)
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Substituting (3) into (39) yields, formally, the same equation one obtains
in the univariate case. Regarding (31), the elements ai,j of the symmetric,
positive definite matrix A are given by

ai,j = w0,0

∫

T

fi(x, y)fj(x, y)dxdy + w1,0

∫

T

fix(x, y)fjx(x, y)dxdy ,

+ w0,1

∫

T

fiy(x, y)fjy(x)dxdy , i, j = 0, . . . , n− 1 , (40)

where fix denotes the partial derivative of basis function fi with respect to
x, etc. The elements li of the column vector l are given by

li = w0,0

∫

T

F (x, y)fi(x, y)dxdy + w1,0

∫

T

Fx(x, y)fix(x, y)dxdy ,

+ w0,1

∫

T

Fy(x, y)fiy(x, y)dxdy , i = 0, . . . , n− 1 . (41)

Integral values required to compute the matrix elements ai,j are

∫

Ti

(fi(x, y))
2
dxdy =

1

12

ni−1
∑

j=0

|Ji| , (42)

where ni is the number of platelet triangles, Ti, associated with vertex vi and
Ji is the Jacobian, given by (14), associated with the jth platelet triangle.
Two basis functions fi(x, y) and fj(x, y) whose associated vertices vi and vj
are connected by an edge imply the non-zero integral value

∫

Ti,j

fi(x, y)fj(x, y)dxdy =
1

24

ni,j−1
∑

k=0

|Jk| , (43)

where Ti,j is the set of triangles in common between the platelets of vi and
vj . The linear polynomial interpolating the values one, zero, and zero at
the vertices [x0, y0]

T , [x1, y1]
T , and [x2, y2]

T , respectively, has the partial
derivatives

fx(x, y) = −
1

J
det

[

1 y1

1 y2

]

=
y1 − y2

J
and (44a)

fy(x, y) = −
1

J
det

[

x1 1
x2 1

]

=
x2 − x1

J
. (44b)

Integrals involving these partial derivatives are

∫

Ti

(fix(x, y))
2
dxdy =

1

2

ni−1
∑

j=0

1

|Jj |
det2

[

1 yj,1
1 yj,2

]

and (45a)

∫

Ti

(fiy(x, y))
2
dxdy =

1

2

ni−1
∑

j=0

1

|Jj |
det2

[

xj,1 1
xj,2 1

]

, (45b)
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where [xj,0, yj,0]
T , [xj,1, yj,1]

T , and [xj,2, yj,2]
T are the counterclockwise-

ordered vertices of the ni platelet triangles associated with vertex vi, see
Fig. 9.

Fig. 9. Indexing scheme for platelet
vertices relative to vi in bivariate case
(neighboring triangles oriented coun-
terclockwise)

Other required values are

∫

Ti,j

fix(x, y)fjx(x, y)dxdy (46a)

=
1

2

ni,j−1
∑

k=0

1

|Jk|
det

[

1 yk,1
1 yk,2

]

det

[

1 yk,0
1 yk,1

]

and (46b)

∫

Ti,j

fiy(x, y)fjy(x, y)dxdy (46c)

=
1

2

ni,j−1
∑

k=0

1

|Jk|
det

[

xk,1 1
xk,2 1

]

det

[

xk,0 1
xk,1 1

]

, (46d)

where ni,j is the number of common platelet triangles and [xk,0, yk,0]
T ,

[xk,1, yk,1]
T , and [xk,2, yk,2]

T are the vertices of a common triangle of the
platelets of vi and vj , see Fig. 10.

Fig. 10. Indexing scheme
for platelet vertices relative
to vi and vj in bivariate
case (neighboring triangles
oriented counterclockwise)
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An example of a bivariate approximation using first-derivative informa-
tion is shown in Fig. 11. A checkerboard function was digitized to a 100×100
grid to which a linear spline was fit. The approximations were computed
for this spline using the first-derivative information and the finite-element
approach described in Sect. 5. It is obvious in this example that the first
derivative affects the over- and under-shoots significantly. As more weight
is added to the first-derivative information, the better the approximation
becomes.

Fig. 11. Four approximations of bivariate checkerboard function with varying
weights (w0,0, w1,0, w0,1): (1, 0, 0),

(

3
4
, 1

8
, 1

8

)

,
(

1
2
, 1

4
, 1

4

)

, and
(

1
4
, 3

8
, 3

8

)

, from upper-
left to lower-right corner; number of knots varies between 5000 and 6000

6.3 The Trivariate Case

The error functional we minimize in the trivariate setting is given by

E =

∫

T

∑

i, j, k ≥ 0

i + j + k ≤ 1

(

∂i+j+k

∂xi∂yj∂zk
(F (x, y, z)− f(x, y, z))

)2

dxdydz , (47)
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which, in matrix notation, corresponds to minimizing

E =

∫

T

1

2
[f(x, y, z) fx(x, y, z) fy(x, y, z) fz(x, y, z)]









2w0,0,0 0 0 0
0 2w1,0,0 0 0
0 0 2w0,1,0 0
0 0 0 2w0,0,1

















f(x, y, z)
fx(x, y, z)
fy(x, y, z)
fz(x, y, z)









− [f(x, y, z) fx(x, y, z) fy(x, y, z) fz(x, y, z)]








2w0,0,0F (x, y, z)
2w1,0,0Fx(x, y, z)
2w0,1,0Fy(x, y, z)
2w0,0,1Fz(x, y, z)









dxdydz . (48)

Substituting (3) into (48) yields, formally, the same equations one obtains for
the univariate and bivariate cases. Regarding (31), the elements ai,j of the
symmetric, positive definite matrix A are given by

ai,j = w0,0,0

∫

T

fi(x, y, z)fj(x, y, z)dxdydz

+ w1,0,0

∫

T

fix(x, y, z)fjx(x, y, z)dxdydz

+ w0,1,0

∫

T

fiy(x, y, z)fjy(x, y, z)dxdydz

+ w0,0,1

∫

T

fiz(x, y, z)fjz(x, y, z)dxdydz ,

i, j = 0, . . . , n− 1 . (49)

The elements li of the column vector l are given by

li = w0,0,0

∫

T

F (x, y, z)fj(x, y, z)dxdydz

+ w1,0,0

∫

T

Fx(x, y, z)fjx(x, y, z)dxdydz

+ w0,1,0

∫

T

Fy(x, y, z)fjy(x, y, z)dxdydz

+ w0,0,1

∫

T

Fz(x, y, z)fjz(x, y, z)dxdydz ,

i, j = 0, . . . , n− 1 . (50)

Integral values required to compute the matrix elements ai,j are

∫

Ti

(fi(x, y, z))
2
dxdydz =

1

60

ni−1
∑

j=0

|Ji| , (51)
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where ni is the number of platelet tetrahedra, Ti, associated with vertex vi
and Ji is the Jacobian, given by (20), associated with the jth platelet tetra-
hedron. Two basis functions fi(x, y) and fj(x, y) whose associated vertices
vi and vj are connected by an edge imply the non-zero integral value

∫

Ti,j

fi(x, y, z)fj(x, y, z)dxdydz =
1

120

ni,j−1
∑

k=0

|Jk| , (52)

where Ti,j is the set of tetrahedra in common between the platelets of vi
and vj . The linear polynomial interpolating the values one, zero, zero, and
zero at the vertices [x0, y0, z0]

T , [x1, y1, z1]
T , [x2, y2, z2]

T , and [x3, y3, z3]
T ,

respectively, has the partial derivatives

fx(x, y, z) = −
1

J
det





1 y1 z1
1 y2 z2
1 y3 z3



 , (53a)

fy(x, y, z) = −
1

J
det





x1 1 z1
x2 1 z2
x3 1 z3



 , and (53b)

fz(x, y, z) = −
1

J
det





x1 y1 1
x2 y2 1
x3 y3 1



 . (53c)

Integrals involving these partial derivatives are

∫

Ti

(fix(x, y, z))
2
dxdydz =

1

6

ni−1
∑

j=0

1

|Jj |
det2





1 yj,1 zj,1
1 yj,2 zj,2
1 yj,3 zj,3



 , (54a)

∫

Ti

(fiy(x, y, z))
2
dxdydz =

1

6

ni−1
∑

j=0

1

|Jj |
det2





xj,1 1 zj,1
xj,2 1 zj,2
xj,3 1 zj,3



 , and (54b)

∫

Ti

(fiz(x, y, z))
2
dxdydz =

1

6

ni−1
∑

j=0

1

|Jj |
det2





xj,1 yj,1 1
xj,2 yj,2 1
xj,3 yj,3 1



 , (54c)

where the vertices [xj,1, yj,1, zj,1]
T , [xj,2, yj,2, zj,2]

T , and [xj,3, yj,3, zj,3]
T de-

note the boundary vertices of the faces of the platelet tetrahedra associated
with vertex [xi, yi, zi]

T . Other required values are
∫

Ti,j

fix(x, y, z)fjx(x, y, z)dxdydz

=
1

6

ni,j−1
∑

k=0

1

|Jk|
det





1 yk,1 zk,1
1 yk,2 zk,2
1 yk,3 zk,3



 det





1 yk,0 zk,0
1 yk,3 zk,3
1 yk,2 zk,2



 , (55a)

∫

Ti,j

fiy(x, y, z)fjy(x, y, z)dxdydz
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=
1

6

ni,j−1
∑

k=0

1

|Jk|
det





xk,1 1 zk,1
xk,2 1 zk,2
xk,3 1 zk,3



 det





xk,0 1 zk,0
xk,3 1 zk,3
xk,2 1 zk,2



 , and (55b)

∫

Ti,j

fiz(x, y, z)fjz(x, y, z)dxdydz

=
1

6

ni,j−1
∑

k=0

1

|Jk|
det





xk,1 yk,1 1
xk,2 yk,2 1
xk,3 yk,3 1



 det





xk,0 yk,0 1
xk,3 yk,3 1
xk,2 yk,2 1



 , (55c)

where ni,j is the number of common platelet tetrahedra and [xk,0, yk,0, zk,0]
T ,

[xk,1, yk,1, zk,1]
T , [xk,2, yk,2, zk,2]

T , and [xk,3, yk,3, zk,3]
T are the vertices of a

common tetrahedron of the platelets of vi and vj .

An example of a trivariate approximation using first-derivative informa-
tion is shown in Fig. 12. A checkerboard function (the trivariate generalization
of the bivariate function) was digitized to a 100 × 100 × 100 grid to which
a linear spline was fit. The approximations were computed for this spline.
Again, the use of first derivative affects approximation quality substantially.
Fig. 12 shows a flat-shaded slice through the approximations. As more weight
is added to the first derivative, the discontinuities (abrupt changes from zero
to one and vice versa) are captured much better.

Fig. 12. Four approximations of trivariate checkerboard function with varying
weights (w0,0,0, w1,0,0, w0,1,0, w0,0,1): (1, 0, 0, 0),

(

3
4
, 1

12
, 1

12
, 1

12

)

,
(

1
2
, 1

6
, 1

6
, 1

6

)

, and
(

1
4
, 3

12
, 3

12
, 3

12

)

, from upper-left to lower-right corner; number of knots varies be-
tween 1400 and 3000
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7 Quadratic Simplices

As an alternative to using linear simplices, we show how to use curved sim-

plices to better approximate data. Most scientific data sets contain disconti-
nuities – such as a car body geometry or a pressure field discontinuity – that
can often be represented much better with curved elements. Discontinuous
data sets can often be approximated better by dividing their domains into
several smaller domains with curved boundaries. A combination of geome-
try/boundary and dependent field variable discontinuities can be treated in
an integrated fashion. The discussion in this section only treats the bivariate
and trivariate cases.

The algorithms that we have described in the previous sections still apply:
we begin with a coarse initial triangulation, which may now contain curved
simplices, and repeatedly refine this mesh until a global error tolerance is
met.

7.1 Mapping the standard simplex

In the bivariate case, we map the standard triangle, see Sect. 3, to a curved tri-
angular region in physical space by mapping the six knots ui = [ui,j , vi,j ]

T =
(

i
2 ,
j
2

)

, i, j ≥ 0, i + j ≤ 2 (abbreviated in multi-index notation as |i| = 2)
in parameter space to six corresponding vertices xi = [xi,j , yi,j ]

T in physical
space, using a quadratic mapping. The quadratic mapping, using Bernstein-
Bézier polynomials B2

i
(u) as basis functions, see [8] and [26], is given by

x(u) =

[

x(u, v)
y(u, v)

]

=
∑

|i|=2

biB
2
i (u) =

[
∑

|i|=2 ci,jB
2
i,j(u, v)

∑

|i|=2 di,jB
2
i,j(u, v)

]

(56)

In the same manner, we define the mapping of the standard tetrahedron,
described in Sect. 4, to a curved tetrahedron in physical space, mapping ten
knots ui = [ui,j,k, vi,j,k, wi,j,k]

T =
(

i
2 ,
j
2 ,
k
2

)

, |i| = 2 in parameter space, to
ten corresponding vertices xi = [xi,j,k, yi,j,k, zi,j,k]

T in physical space. The
quadratic mapping in the trivariate case is given by

x(u) =





x(u, v, w)
y(u, v, w)
z(u, v, w)



 =
∑

|i|=2

biB
2
i (u)

=





∑

|i|=2 ci,j,kB
2
i,j,k(u, v, w)

∑

|i|=2 di,j,kB
2
i,j,k(u, v, w)

∑

|i|=2 ei,j,kB
2
i,j,k(u, v, w)



 . (57)

7.2 Initial Simplicial Decomposition

The original grid, its boundaries, and possibly known locations of field dis-
continuities (in the dependent field variables) influence how we construct an
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initial simplicial decomposition. We consider domain boundaries and known
discontinuities of interest to define a set of vertices and a set of edges (pos-
sibly curved) connecting these vertices. (We do not discuss in this paper
how to obtain these vertices or edges.) With this information, one can define
the unique fields and sub-regions in the overall domain that are bounded by
these edges. If the edges specified are linear spline curves, a quadratic curve
fitting step must take place to approximate the linear segments by quadratic
curves. Each of the sub-domains, bounded by curved edges, can then be trian-
gulated to form an initial mesh, see Fig. 13. Approximation is then performed
for each sub-domain independently. It is possible that (quadratic) simplices
share knot/vertex locations on field boundaries. In this case, since an ap-
proximation is computed independently for each sub-domain, there exist two
separate coefficients for the same location.

Fig. 13. Decomposition of do-
main around a wing us-
ing bivariate curved simplices.
There are two distinct fields
defined by the vertices and
edges in this example: the field
left of the discontinuity and
the field right of the discon-
tinuity

Bisection of curved edges of mesh simplices is performed in a manner
similar to the linear case: we bisect at the midpoint of the arc and insert a
knot at this location. The finite-element approach based on a Sobolev-like
norm can be applied, as described in Sect. 5.

7.3 Best Approximation for Quadratic Simplices

We denote basis functions associated with simplex vertex vi by fi(x). The
basis function corresponding to edge ej of a simplex is denoted by gj(x).
The best approximation is denoted by f(x), and we write it as a linear
combination of the basis functions associated with the simplex corners and
edges. Assuming that there are n distinct corner vertices and m distinct
edges, we can write the best approximation as

f(x) =
n−1
∑

i=0

cifi(x) +
m−1
∑

j=0

djgj(x). (58)
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In matrix form, the normal equations are




















〈f0, f0〉 · · · 〈f0, fn−1〉 〈f0, g0〉 · · · 〈f0, gm−1〉
...

...
...

...
〈fn−1, f0〉 · · · 〈fn−1, fn−1〉 〈fn−1, g0〉 · · · 〈fn−1, gm−1〉
〈g0, f0〉 · · · 〈g0, fn−1〉 〈g0, g0〉 · · · 〈g0, gm−1〉

...
...

...
...

〈gm−1, f0〉 · · · 〈gm−1, fn−1〉 〈gm−1, g0〉 · · · 〈gm−1, gm−1〉









































c0
...

cn−1

d0

...
dm−1





















=





















〈F, f0〉
...

〈F, fn−1〉
〈F, g0〉

...
〈F, gm−1〉





















. (59)

The Bernstein-Bézier quadratic basis functions are defined as

B2
i (u) =

2!

(2− i− j)!i!j!
(1− u− v)2−i−juivj and (60a)

B2
i (u) =

2!

(2− i− j − k)!i!j!k!
(1− u− v − w)2−i−j−kuivjwk (60b)

in the bivariate and trivariate cases, respectively. Again, we can use of the
change-of-variables theorem and implement error estimates as described in
Sects. 3 and 4 to compute a best approximation. The needed inner products,
defined over the standard simplex in parameter space, are given by

〈Bi,j , Bk,l〉 =
1

180

















6 3 1 3 1 1
3 4 3 2 2 1
1 3 6 1 3 1
3 2 1 4 2 3
1 2 3 2 4 3
1 1 1 3 3 6

















(61)

in the bivariate case, and

〈Bi,j,k, Bl,m,n〉 =
1

1260

































6 3 1 3 1 1 3 1 1 1
3 4 3 2 2 1 2 2 1 1
1 3 6 1 3 1 1 3 1 1
3 2 1 4 2 3 2 1 2 1
1 2 3 2 4 3 1 2 2 1
1 1 1 3 3 6 1 1 3 1
3 2 1 2 1 1 4 2 2 3
1 2 3 1 2 1 2 4 2 3
1 1 1 2 2 3 2 2 4 3
1 1 1 1 1 1 3 3 3 6

































(62)
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in the trivariate case.

8 Conclusions and Future Work

We have discussed a best linear spline approximation scheme and several
enhancements to improve and generalize. To adapt our method to multi-
valued data, one can, at each iteration, approximate each dependent variable
separately.

In terms of computational efficiency, large linear systems are produced
when dealing with vary large data sets. This is manageable, since the resulting
systems are sparse and can easily be treated with sparse-system solvers.

Investigating the effectiveness of curved elements for approximating data
is a topic of our current research. With the use of curved elements growing, we
believe that using curved elements in approximations, and supporting them
directly during rendering, will become an important visualization research
area.
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