
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)
O. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

Ray Casting Curved-Quadratic Elements

D. F. Wiley,1 H. R. Childs,2 B. Hamann,1 and K. I. Joy1

1 Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science,
University of California, Davis, CA 95616-8562, U.S.A;

email: {wiley, hamann, joy}@cs.ucdavis.edu
2 Lawrence Livermore National Laboratory, Mail Stop L-098,

7000 East Avenue, Livermore, CA 94550, U.S.A;
email: childs3@llnl.gov

Abstract
We present a method for ray casting curved-quadratic elements in 3D. The advantages of this approach is that a
curved element can be directly visualized. Conventionally, higher-order elements are tessellated with several linear
elements so that standard visualization techniques can be applied to the linear elements. Our method primarily
focuses on how to find an approximation to the intersection between a ray and a curved-quadratic element. Once
this approximation is found, conventional accumulation and color mapping techniques can be applied to the
approximation to produce a volumetric visualization of the element. A cutting plane implementation is also shown
that leverages the ray casting technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Raytracing

1. Introduction

Higher-order elements represent more complex regions than
linear elements since the overlying polynomial has a higher
degree. By having the overlying polynomial bear more of
the burden of representing a region, fewer higher-order ele-
ments are required—when compared to linear elements—to
represent the same region [WCH∗02].

The infusion of higher-order elements into mainstream vi-
sualization is hindered since they are more difficult to work
with than linear elements, not only in terms of visualization,
but also in terms of using them in, for example, finite element
analysis [CMP89]. Scientists want the advantages of higher-
order elements (fewer elements and better quality represen-
tation), but they struggle with the problems of more complex
mathematics, updating legacy simulation code to use higher-
order elements, and creating visualization techniques to view
this data.

We note two key properties of a higher-order element.
First, the overlying polynomial has a higher order than lin-
ear. Second, whether or not the edges of the element are lin-
early defined. A simple adaption from a linear element to a
higher-order element is to only raise the degree of the over-

lying polynomial. However, it is beneficial to also lift the
order of an element’s domain so that the edges of the ele-
ment can be aligned more appropriately with features in the
data, i.e., wing geometry in an air flow simulation. These el-
ements (those having higher-order edges) are called curved
higher-order elements. Figure 1 shows a curved quadratic
tetrahedron that has both a quadratically defined overlying
polynomial and quadratically defined edges.

Figure 1: Example of a curved quadratic tetrahedron having
ten control points; one for each corner and one at the mid-
point of each edge. (Interior parameter lines, on the faces,
are shown to indicate curvature.)

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

Figure 2: Ray casting of an MRI (magnetic resonance imag-
ing) data set of human head.

Some techniques for linear element visualization can be
modified slightly and applied to linear-edge higher-order el-
ements. Though in most cases, new techniques for visual-
ization must be developed, for example, extracting isosur-
faces directly from quadratic elements [WCG∗03]. To fur-
ther the available tools for visualizing higher-order elements,
we present a method for ray casting curved-quadratic ele-
ments. (Curved-quadratic elements are elements that have
both a quadratically defined polynomial as well as edges.)

A fundamental rendering technique for tetrahedral ele-
ments (and all other types of volumetric mesh elements)
is ray casting, see [Kau91, PPL∗99]. The basic idea is to
“shoot” rays—from a viewpoint to each pixel on an image
plane—into a mesh of tetrahedra and color each pixel by ac-
cumulating intersection segments that result from intersect-
ing the ray with elements in the mesh, see Figure 2. Many
implementations of ray casting sample the data being visu-
alized at discrete locations along the ray. This method works
well for linear-edge elements, since it is relatively easy to de-
termine where, inside an element, a sample point lies. Given
a linear mapping Tlinear from parameter space U to physical
space R for an element, one puts the point p ∈ R through
the inverse transform T−1

linear to find its parameter space tu-
ple u ∈ U. The function overlying the element is then evalu-
ated at u to provide the sample of the overlying polynomial.
When considering curved elements, however, determining a
parameter space coordinate is non-trivial, since it is difficult
to determine the inverse of a higher-order mapping.

2. Element Definitions

The ray casting discussion in this paper is focused on
quadratic elements, though, the concepts presented can be
applied to elements having a higher order than quadratic. A
simplicial element in 2D has six associated knots—one knot
per corner and one knot per edge. For simplicity, only edge
knots that are positioned at the midpoint along the edges
of the standard simplex are considered. A quadratic poly-

nomial is associated with each element that represents the
dependent variable over the corresponding region in space.
Each quadratic basis polynomial is represented in Bernstein-
Bézier form, see [Far02].

The standard triangle TU in parameter space is the triangle

with corners (0,0)T, (1,0)T, and (0,1)T. A 2D quadratic
Bernstein-Bézier polynomial B2

i, j(u,v) (abbreviated B2
i, j), is

defined as

B2
i, j(u,v) =

2!
(2− i− j)!i! j!

(1−u− v)2−i− juiv j,

i, j ≥ 0, i+ j ≤ 2, (1)

and is associated with each corner and midpoint of each
edge. The six basis polynomials correspond to the six knots

ui, j = (ui, j,vi, j)T =
(

i
2 , j

2

)
, i, j ≥ 0, i+ j ≤ 2, in the stan-

dard triangle TU. Thus, a curved-quadratic triangle mapping
is defined as

T (u,v) =
2

∑
j=0

2− j

∑
i=0

ki, jB
2
i, j(u,v), (2)

where ki, j are the six control points of the triangle. (We occa-
sionally renumber the knots as k0, k1, . . ., k5 to correspond
to k0,0, k2,0, k0,2, k1,0, k0,1, k1,1, respectively.)

The curved-quadratic tetrahedron is a straightforward ex-
tension of the 2D case. A quadratic tetrahedron is defined by
ten knots—four corner knots and six edge knots. The stan-
dard tetrahedron TU in parameter space is the tetrahedron

with corners (0,0,0)T, (1,0,0)T, (0,1,0)T, and (0,0,1)T.
A 3D quadratic Bernstein-Bézier polynomial B2

i, j,k(u,v,w)
(abbreviated B2

i, j,k), is defined as

B2
i, j,k(u,v,w) =

2!
(2− i− j− k)!i! j!k!

(1−u− v−w)2−i− j−kuiv jwk,

i, j,k ≥ 0, i+ j + k ≤ 2, (3)

and is associated with each corner and midpoint of each
edge. The ten basis polynomials correspond to the ten knots

ui, j,k = (ui, j,k,vi, j,k,wi, j,k)
T =

(
i
2 , j

2 , k
2

)T
, i, j,k ≥ 0, i +

j+k ≤ 2 in parameter space. Thus, a curved-quadratic tetra-
hedral mapping is defined as

T (u,v,w) =
2

∑
k=0

2−k

∑
j=0

2−k− j

∑
i=0

ki, j,kB2
i, j,k(u,v,w), (4)

where ki, j,k are the ten control points of the tetrahedron. (We
occasionally renumber the knots as k0, k1, . . ., k9 to cor-
respond to k0,0,0, k2,0,0, k0,2,0, k0,0,2, k1,0,0, k0,1,0, k0,0,1,
k1,1,0, k1,0,1, k0,1,1, respectively.)

We use two notational variations of the mappings de-
scribed above. When we refer to T (u) we intend to use the
geometrical properties (i.e., physical location of the element
in space) of the mapping and when we refer to Tc(u) we are

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

only considering the coefficient, or functional, properties of
the mapping. This is important in the coming sections since
we compute and use approximations for both properties in-
dependently.

A linear edge mapping T (u) is constructed for an ele-
ment by using the standard linear mapping of a linear tri-
angle and tetrahedron having three and four control points,
respectively. The functional mapping T c(u), however, still
uses the quadratic definition as described by Equations (2)
and (4). This combination of linear-physical and quadratic-
functional mapping is called a linear-edge quadratic element.

3. Ray Casting Overview

While it is possible—and recommended—to discretely sam-
ple linear-edge quadratic elements along a ray (since a linear
mapping defines the transformation from parameter space to
physical space), a more cumbersome method of finding a
close approximation to the actual intersection—between a
ray and a quadratic element—is discussed as a foundation
for intersecting a ray with a curved-quadratic element. Thus,
the ray casting discussion for quadratic elements is limited to
this problem: intersecting a line with a quadratic and curved-
quadratic element. (This discussion assumes that the ele-
ments being visualized are valid and do not self-intersect.)

Ray casting is easily implemented by sampling the data
set being visualized uniformly along a ray. For each sample
point, one finds the element it lies in and then evaluates the
polynomial overlying the containing element at that point to
provide the sample. For a rectilinear grid, it is trivial to find
the voxel (element) in which a sample point lies, and also
to find the parameter-space (barycentric) coordinates of that
point with respect to that element. These parameter space
coordinates are needed to evaluate the polynomial defined
over the containing element.

In the case of curved-quadratic tetrahedra, it is difficult
to determine which element (in a mesh of curved-quadratic
tetrahedra) contains a sample point. Even if it were known
which curved-quadratic tetrahedron contained the point, it is
difficult to obtain the parameter-space coordinates for that
point with respect to the containing curved element, since its
domain is defined by a curved mapping.

To provide samples along a ray, it is easier to intersect a
line with the faces of a curved-quadratic tetrahedron to find
the intersection segments that lie inside the tetrahedron. In
physical space, these segments are straight lines, since they
follow the ray. However, looking at these segments in pa-
rameter space shows that they curve through the standard
tetrahedron.

A method to construct a quadratic curve that approxi-
mates the intersection segment as it curves through param-
eter space is described in the following sections. Using this
curve, one can sample along the curve to provide parameter-
space coordinates that are used to sample the polynomial

defined over the curved tetrahedron. To reduce the time re-
quired to sample the polynomial defined over the curved el-
ement, an additional quadratic curve is found that approx-
imates the polynomial overlying the intersection segment.
Thus, two approximations C(u) and Cc(u) are constructed.
C(u) represents the intersection segment in parameter space
and Cc(u) represents the functional over that segment. Once
Cc(u) is computed, C(u) is discarded since only the func-
tional information is needed along the ray.

4. Linear-edge Quadratic Elements

Finding the intersection of a line with a quadratic element
is more complicated than with a linear element. The goal is
to find a representation Cc(t) : U −→ C of the polynomial
defined over the intersection segment. To better understand
the 3D problem, the intersection between a line l(s) : U −→
R

2 and a linear-edge quadratic triangle T (u,v) : U
2 −→ R

2

is studied first.

4.1. The 2D Case

A quadratic curve Cc(t) is used to approximate the poly-
nomial defined over the intersection segment. The curve
Cc(t) : U −→ C, having three coefficients ci, 0 ≤ i ≤ 2, dis-
tributed uniformly across its domain t ∈ [0,1], is defined as

Cc(t) =
2

∑
i=0

ciB
2
i (t), (5)

where B2
i is the univariate nth-degree Bernstein polynomial

Bn
i (u) for n = 2, defined as

Bn
i (u) =

n!
(n− i)!i!

(1−u)n−iui. (6)

There are two steps to finding an approximation to the in-
tersection. First, intersect l(s) with the boundary of T (u,v).
(This intersection is easily computed, since the boundaries
are linearly defined in physical space.) There are three pos-
sibilities when intersecting a line with a triangle:

1. No intersection. The line does not intersect the triangle.
Thus, this triangle does not contribute any information.

2. One intersection. The line intersects one of the corner
knots, however, since such a small portion of the triangle
intersects the ray, it does not contribute any information.

3. Two intersections. The line intersects two of the three
boundary edges, forming one segment. This type of in-
tersection is the only one that contributes information to
the ray. (This includes the case when an edge is collinear
with l(s).)

Thus, there are at most two intersection points a =
(xa,ya)T = T (ua) and b = (xb,yb)

T = T (ub), see Figure 3,
where ua and ub are the parameter space tuples of a and b,
respectively, which are found by using the inverse of T , such
that ua = T−1(a) and ub = T−1(b). Second, fit Cc(t) to the

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

Figure 3: Intersection of line l(s) with linear-edge quadratic
triangle T (u,v) at points a and b.

polynomial defined over T (abbreviated as Tc) sampled at
locations

{
ua,

ua+ub
2 ,ub

}
. The approximation curve Cc(t)

is required to interpolate the endpoint values T c(ua) and
T c(ub) so that neighboring-element intersections are at least
C0-continuous. Thus, c0 = T c(ua), c2 = T c(ub), and c1—

constrained by having Cc
(

1
2

)
= T c(ua+ub

2

)
—is defined as

c1 = 2 T c
(ua +ub

2

)
− T c(ua)+T c(ub)

2
. (7)

In the case where a quadratic approximation does not pro-
duce an accurate enough representation of the intersection,
one can alternatively use a rational-quadratic or a higher-
order curve—such as cubic or quartic—to represent the
polynomial defined over an intersection segment.

4.2. The 3D Case

Ray casting a linear-edge quadratic tetrahedron is a straight-
forward extension of the 2D case. The only difference is the
intersection points a and b are found by intersecting line l(s)
with the planar faces of a quadratic tetrahedron T (u,v,w). As
in the 2D case, there can be at most two intersection points,
thus, only one intersection segment per ray. The approxima-
tion curve Cc(t) is computed using the same method as in
the 2D case.

5. Curved-quadratic Elements

Ray casting curved elements is more difficult than ray cast-
ing linear-edge elements, since 1) there can be more than
one intersection segment per element and 2) it is difficult to
represent the polynomial overlying the intersection segment.
The method to intersect a line with a curved-quadratic ele-
ment is first discussed in the 2D case and then extended to
the 3D case.

5.1. The 2D Case

A line l(s) : U −→ R
2 intersects the boundary of a curved-

quadratic triangle T (u,v) : U
2 −→ R

2 in at most six lo-

cations (not considering degenerate cases). The goal is to
find segments—between intersection points—that lie inside
T (u,v). To compute the intersections between l(s) and the
boundary edges of T (u,v) one must intersect l(s) with three
quadratic curves—the boundary edges of T (u,v). One might
consider finding the inverse l−1(t) : U −→ U

2 of l(s) based
on the mapping T (u,v). In this case, l−1(t) could then be in-
tersected with the standard triangle in parameter space, see
Figure 4. It is possible to find a closed form representation
of the inverse of T (u,v) in 2D, however, since T (u,v) is not
always bijective, there may exist none, more than one, or
imaginary solutions for a given point. In 3D it is not possi-
ble to find a closed form representation. Thus, a method that
is extensible to higher dimensions is desired. The method

Figure 4: Transformation of line l(s) in xy-space to l−1(t)
in uv-space by the inverse transformation of the curved-
quadratic triangle T (u,v).

to find an approximation C(t) to l−1(s) based on a curved-
quadratic mapping T (u,v) has four steps:

1. Intersect l(s) with the three boundary curves of T (u,v)
to produce a set of N intersection points pm =
(xm,ym)T, 0 ≤ m ≤ N −1.

2. Reorder the points pm sequentially based upon the dis-
tance from the viewpoint.

3. Form intersection segments from sequentially adjacent
pairs of points.

4. Discard invalid segments by testing whether the segment
is inside or outside of the triangle T (u,v).

Each of these four steps is described in detail in the follow-
ing paragraphs.

Step 1 The intersection of line l(s) with quadratic curve
Qe(t)—representing edge e of curved-quadratic triangle
T (u,v)—can be computed analytically or iteratively, see
[BP93]. (An iterative method is more stable than an analyti-
cal method and the speed of the iterative method (i.e., num-
ber of iterations used) is inversely proportional to the accu-
racy of the result.) Using the analytical approach, assuming
Qe(t) is in the form

Q(t) = r0t2 + r1t + r2, (8)

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

and l(s) is in the form

l(s) = q0 +q1s, (9)

where ri = (xr
i ,y

r
i)

T, 0 ≤ i ≤ 2, and q j = (xq
j ,y

q
j)

T, 0 ≤ j ≤
1, the intersections of Q(t) and l(s) are given by the roots of

0 = (xr
0yq

1 − yr
0xq

1)t
2 +

(xr
1yq

1 − yr
1xq

1)t +

xr
2yq

1 + xq
1yq

0 − xq
0yq

1 − xq
1yr

2 (10)

and

s(t) =
(xr

0yr
1 − yr

0xr
1)t + yr

0xq
0 + yr

2xr
0 − yr

0xr
2 − yq

0xr
0

xr
0yq

1 − yr
0xq

1
. (11)

Thus, there are two solution pairs {(ti,si)}, 0 ≤ i ≤ 1, where
si = s(ti). Points not satisfying the constraint 0 ≤ ti ≤ 1 lie
outside of the curved triangle and are discarded.

Step 2 Labeling the intersection points pm based upon their
distance from the viewpoint orders the points. This ordering
is important, since only points that are adjacent sequentially
can form an intersection segment. Since the parameter val-
ues si that result during Step 1 are directly related to the dis-
tance from the viewpoint, this ordering is easily determined.

Step 3 An approximation to l−1(t) is constructed by
transforming two vectors—aligned with l(s)—to parameter
space, so that they become tangent vectors to the quadratic
curve C(t) used to approximate l−1(t). The curve C(t) :
U −→ U

2, having three knots ui and three coefficients
ci, 0 ≤ i ≤ 2, distributed uniformly across its domain t ∈
[0,1], is defined as

C(t) =
2

∑
i=0

uiB
2
i (t), (12)

where B2
i is given by Equation (6).

A vector v in physical space—located at point p = T (u),
where u ∈ U

2—is transformed to a vector w in parameter
space by considering the linear combination v = αX + βY,
where X = T u(u), Y = T v(u), and T i(u,v) denotes the
partial derivative of T (u,v) with respect to the ith direc-
tion. Solving for α and β yields the transformed vector

w = (α,β)T, see Figure 5. (The inverse transformation of
vectors is possible because the partial derivatives of T (u,v)
are linear functions.)

An intersection segment m is bounded by two sequen-
tially adjacent points pm and pm+1. An approximation to
the inverse of the intersection segment is constructed by
first transforming vectors vm and vm+1 in physical space—
which are aligned with l(s) and positioned at pm and pm+1,
respectively—to vectors wm and wm+1 in parameter space.
(This step assumes parameter space coordinates um are
known for points pm. These coordinates are computed in
Step 1 from the solutions ti for each edge.) The lines im-
plied by vectors wm and wm+1—while located at um and

Figure 5: Inverse transformation of vector v—located at
point p = T (u)—through curved-quadratic mapping T (u,v).
Vector v is transformed from physical space to vector w
in parameter space by considering the linear combination

v = αX+βY, where w = (α,β)T.

Figure 6: Quadratic curve C(t) approximates the inverse of
line l(s) based on the curved-quadratic mapping T (u,v).

um+1, respectively—are intersected to form a third point bm.
The three points {um,bm,um+1} are used as control points
for Cm(t) : U −→ U

2, which represents an approximation to
l−1(s), see Figure 6.

Next, the coefficients of Cm(t) are computed by fitting
the uniformly spaced coefficients ci to the three samples{

T c
(
C(0)

)
, T c

(
C

(
1
2

))
, T c

(
C(1)

)}
. They are given by

c0 = T c
(
C(0)

)
= T c(ui),

c1 = 2 T c
(

C

(
1
2

))
− T c(ui)+T c(ui+1)

2
, and

c2 = T c
(
C(1)

)
= T c(ui+1), (13)

where T c(u,v) evaluates the polynomial overlying T (u,v).

Step 4 Each intersection segment Cm is checked to see
whether it lies inside or outside of curved-quadratic triangle
T . This is done by checking where the point Cm(1

2) lies rela-
tive to the standard triangle; if it lies outside, the intersection
segment is also outside and does not contribute information
to the ray.

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

5.2. The 3D Case

The ideas discussed in the 2D case are extended to the 3D
case. The intersection between a ray and a curved-quadratic
tetrahedron T (u,v,w) reduces to the intersection between a
ray and the curved surfaces (faces) of T (u,v,w). Thus, rather
than intersecting l(s) with planar faces (as in the case of a
linear-edge quadratic tetrahedron), l(s) is intersected with
four curved-triangular patches Qe(u,v) : U

2 −→R
3, 0≤ e≤

3. The four steps to compute an approximation Cm(t) : U−→
U

3 to an intersection segment m are the same as in the 2D
case. Only the details of the differences for each step are
discussed.

Step 1 There are several options for performing the intersec-
tion between l(s) and the curved patch Qe(u,v). Tessellat-
ing the patch with several linear triangles, then, intersecting
l(s) with these triangles is used here. It is possible, with this
method, to directly compute the parameter space coordinates
um of the intersection points pm simultaneously when com-
puting the intersection between l(s) and Qe(u,v). A simple
closed form solution causes problems (as in the 2D case)
since it may not exist, has several solutions (possibly imag-
inary), and requires extensive computation. An iterative or
adaptive method based upon some error requirement could
also be used, however, it is simpler to tessellate the face uni-
formly instead of re-computing an adaptive tessellation for
each l(s).

Step 2 The intersection points pm are sorted based upon the
distance from the viewpoint. The parameter value s along
l(s) is used, since it was computed during the intersection
process of Step 1.

Step 3 A vector v in physical space—located at point p =
T (u), where u ∈ U

3—is transformed to a vector w in pa-
rameter space by considering the linear combination v =
αX + βY + γZ, where X = T u(u), Y = T v(u), Z = T w(u),
and T i(u,v,w) denotes the partial derivative of T (u,v,w)
with respect to the ith direction. Solving for α, β, and γ gives

the transformed vector w = (α,β,γ)T.

An intersection segment Cm(t) is constructed using the
same method as described in Step 3 of the 2D case, see Sec-
tion 5.1. The only difference is that it is the exception for
two lines in 3D to intersect. Rather than intersecting the two
lines lm and lm+1—implied by vectors wm and wm+1, while
positioned at um and um+1, respectively—two points gm and
gm+1 are found so that gm is the closest point on lm to lm+1
and gm+1 is the closest point on lm+1 to lm. (Points gm and
gm+1 are computed by minimizing the distance between lm
and lm+1.) Point bm is given by bm =

gm+gm+1
2 .

Step 4 The same method used in Step 4 of the 2D case is
used to discard intersection segments that lie outside of the
curved-quadratic tetrahedron, see Section 5.1.

Figure 7: Ray casting of curved-quadratic tetrahedron
T (u,v,w) having non-uniform density—where corner coef-
ficients are zero and edge coefficients are one. Left image
shows a rendering of the curved “faces” of T (u,v,w). Right
image shows ray casting of T (u,v,w). Isosurfaces are for a
small range of values near {0.2,0.575,0.725}. The “egg”
corresponds to the isosurface at 0.725 and the corners cor-
respond to 0.2.

6. Ray Casting Results

A ray casting of a single curved-quadratic tetrahedron hav-
ing non-uniform density—where the corner coefficients are
zero and edge coefficients are one—is shown in Figure 7.
The 487 × 473 pixel image required 35 seconds to com-
pute. Ray intersections were computed by first tessellating
each “face” of the curved-quadratic tetrahedron with 400
linear triangles and then intersecting with these triangles.
Density values were mapped so that three isosurfaces were
visualized. Isosurfaces are for a small range of values near
{0.2,0.575,0.725}. The “egg” corresponds to the isosurface
at 0.725 and the corners correspond to 0.2.

A ray casting of 320 curved-quadratic tetrahedra ap-

proximating f (x,y,z) = 3
4

(
x2 + y2 + z2

)
,− 1

2 ≤ x,y,z ≤ 1
2 is

shown in Figure 8. The curved tetrahedra are produced by
twisting the mesh a quarter turn from the top to the bottom as
indicated in the upper image. The 766×717 pixel image re-
quired 50 minutes to compute. Ray intersections were com-
puted by first tessellating each “face” of the curved-quadratic
tetrahedron with 400 linear triangles and then intersecting
with these triangles. Isosurfaces are for a small range of val-
ues near {0.2,0.43,0.5}. The “sphere” corresponds to the
isosurface at 0.2. A comparable linear representation of this
mesh could be created by tessellating each curved tetrahe-
dron with 84 = 4096 linear tetrahedra. This yields 256 lin-
ear tetrahedra representing each “face” (compared to 400).
One would then need to ray cast 1310720 unstructured lin-
ear tetrahedra.

Back-to-front compositing was used to accumulate sev-
eral uniform samples along each ray. A pixel intensity Ii, j

n

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

Figure 8: Ray casting of 320 curved-quadratic tetrahedra

approximating f (x,y,z) = 3
4

(
x2 + y2 + z2

)
,− 1

2 ≤ x,y,z ≤
1
2 . The curved tetrahedra are produced by twisting the mesh
a quarter turn from the top to the bottom. Isosurfaces are for
a small range of values near {0.2,0.43,0.5}. The “sphere”
corresponds to the isosurface at 0.2.

computed from the nth sample cn ∈ [0,1] is given by

Ii, j
n = Ii, j

n−1D(1− cn), (14)

where D is the sampling distance and (i, j)T is the location
of the pixel. A binary space partition using oriented bound-
ing boxes around the triangles was used to optimize ray-
triangle intersection tests. All examples were computed on a
2.8GHz Pentium IV graphics workstation with 2GB of main
memory.

7. Cutting Planes

A cutting plane is used to “cut” through a data set—usually
a planar cut in the context of a 3D domain. A cutting plane
visualization shows the intersection between a plane and a
data set. This is useful when volume visualization, such as
ray casting, is impractical because too much data needs to be
processed. For example, consider examining various layers
of the Earth’s atmosphere. If a user wanted to examine all of
the layers at once, instead of using volume visualization, it
would be more useful to visualize the intersection of the data
with, say, a plane passing through the equator.

There are many methods for the visualization of cutting
planes. As in ray casting, one could simply sample the data at
discrete locations across the plane. However, as in ray cast-
ing, the sampling method does not work well for curved el-
ements, since it is difficult to determine the parameter space

coordinate of an arbitrary point with respect to a curved el-
ement. Visualization of a cutting plane is done by intersect-
ing elements independently of each other. Thus, the essence
of cutting planes is to intersect an element T with cutting
plane R. The actual intersection is computed by intersecting
each of the edges of T with R, forming edge-intersection
points. Then, the edge-intersection points are connected
together—over each face—to form face-intersection curves.
Then, face-intersection curves are grouped together to form
polygons that bound the intersection surface. In the case of
linear elements, there is only one intersection segment (2D
case) or surface (3D case). The surface in the 3D case may
be bounded by either a triangle or a quadrilateral.

While it is possible—and recommended—to discretely
sample linear-edge quadratic elements across the cutting
plane, a more cumbersome method of finding a close ap-
proximation to the actual intersection is discussed. The cut-
ting plane discussion for quadratic elements is limited to this
problem: intersecting a plane with a quadratic and curved-
quadratic element. (This discussion assumes that the ele-
ments being visualized are valid and do not self-intersect or
overlap with other elements.)

8. Linear-edge Quadratic Elements

The goal is to represent the intersection of quadratic tetrahe-
dron T with cutting plane R by a set of quadratic triangles T .
The set T contains either zero, one, or two triangles, since
the intersection of a plane with a linear-edge tetrahedron is
limited to 1) no intersection, 2) an intersection forming a tri-
angle, or 3) an intersection forming a quadrilateral (which is
represented by two triangles).

Assuming T is defined by ten knots ki, 0 ≤ i ≤ 9, only
the corner knots 0 ≤ i ≤ 3 are considered, since the edge
knots are positioned at the midpoints of the edges, see Fig-
ure 9. Thus, the six edges e j, 0 ≤ j ≤ 5 of T are bounded
by knot pairs (0,1), (0,2), (0,3), (1,2), (1,3), and (2,3).
Line segments—formed between the corner knots defining
each edge—are intersected with the R to yield a set of N in-
tersection points pm, 0 ≤ m ≤ N −1, in physical space (the
parameter space coordinate um for each pm is also computed,
such that pm = T (um)). There are five values that N can take
on:

• Zero. Plane R does not intersect T .
• One. Plane R intersects one corner knot of T .
• Two. One of the edges of T lies on R (only the endpoints

of the intersection are counted).
• Three. Plane R intersects three edges of T .
• Four. Plane R intersects four edges of T .

An intersection surface is produced only for the cases where
N is three or four. When N is three, a quadratic triangle
C(u,v)—having six knots vn and six coefficients cn—is used
to approximate the intersection and is formed by first setting

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

Figure 9: Indexing used for curved-quadratic tetrahedron.

its knots to the locations given by

v0 = u0,

v1 = u1,

v2 = u2,

v3 =
u0 +u1

2
,

v4 =
u0 +u2

2
, and

v5 =
u1 +u2

2
. (15)

Then, the function overlying the intersection surface is ap-
proximated by defining the coefficients cn of C(u,v) as

c0 = T c(u0),

c1 = T c(u1),

c2 = T c(u2),

c3 = 2T c
(u0 +u1

2

)
− T c(u0)+T c(u1)

2
,

c4 = 2T c
(u0 +u2

2

)
− T c(u0)+T c(u2)

2
, and

c5 = 2T c
(u1 +u2

2

)
− T c(u1)+T c(u2)

2
, (16)

where T c(u,v,w) evaluates the polynomial defined over
T (u,v,w).

When N is four, an artificial diagonal is added to divide
the quadrilateral into two triangles. This is done by choosing
the shortest edge to use as the diagonal. (In the case where
both diagonals are the same length, and one desires a unique
solution, an additional point could be added in the middle of
the quadrilateral to create four triangles.) The coefficients for
the two triangles are found by first relabeling the intersection
points pm and um with respect to each triangle, then, using
Equation (16) finds the coefficients.

Figure 10: Intersection of plane and curved-quadratic tetra-
hedron. Difficulties arise since the plane can intersect the
tetrahedron without intersecting its edges. (In this paper,
quadratic tetrahedra are often rendered with parametric
lines on the faces of the element. These lines help show the
curvature of the element. Plane R intersects the parametric
lines shown on the faces of tetrahedron T , however, these
lines are not as useful as the edges of the tetrahedron.)

9. Curved-quadratic Elements

It is more difficult to compute an approximation to the inter-
section of a cutting plane R with a curved-quadratic tetrahe-
dron T than with a linear-edge quadratic tetrahedron. In this
case, a close approximation to the exact intersection is left
for future research because of the case shown in Figure 10
where R does not intersect any of the curved edges of tetra-
hedron T . However, a sampling method that leverages the
ray casting method of the previous chapter is described. The
plane R is discretized so that a set of parallel rays—lying on
the plane—are passed through the data being visualized. A
uniform rectilinear representation of the cutting plane is then
constructed by discretely sampling each ray uniformly, see
Figure 11. The cutting plane is visualized by rendering this
uniform rectilinear representation.

Figure 11: Discrete sampling of cutting plane. Rays are cast
through data and then sampled discretely to construct a uni-
form rectilinear grid that represents the cutting plane. Left
image shows rays—lying on the cutting plane—used to inter-
sect elements. Middle image shows discretely sampled rays.
Right image shows resulting uniform rectilinear grid used
for visualization.

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

10. Cutting Plane Results

Two cutting planes through a single curved-quadratic
tetrahedron—where corner coefficients are zero and edge
coefficients are one—are shown in Figure 12. Each cutting
plane visualization used the ray casting method described in
Section 5.2 as applied in Section 9 and was discretized to a
652×621 grid (producing an RGB pixel image of the same
size). Each curved face of the tetrahedron was tessellated
with 400 linear triangles for the intersection testing. The
color map used starts from red, changing to orange, to yel-
low, to green, and finally to blue, spreading uniformly across
the domain from zero to one, respectively. (Corners are red
and the center is green-blue.) Each cutting plane visualiza-
tion required 12 seconds to compute on a 2.8GHz Pentium
IV graphics workstation with 2GB of main memory.

Figure 12: Two cutting planes intersecting curved-quadratic
tetrahedron.

11. Conclusions

The method presented allows for direct volume rendering of
curved-quadratic elements. These ideas could be extended
to elements of higher order than quadratic. The “descriptive
power” of higher-order elements is sparking interest in re-
searchers and we must have a means to visualize these types
of elements. This ray casting method lays the ground work
for direct volume rendering of complex higher-order ele-
ments and provides a roadway to elements having a higher
order than quadratic.

In some cases it may be appropriate to tessellate the faces
of a curved tetrahedron with more linear triangles to pro-
vide more accurate intersection computation between a ray
and an element. Additionally, one may want to use a higher

order approximation of the functional over intersection seg-
ments. These enhancements will improve close-up views of
elements.

Acknowledgements

This work was supported by the National Science Foun-
dation under contract ACI 9624034 (CAREER Award),
through the Large Scientific and Software Data Set Visu-
alization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Com-
putational Infrastructure (NPACI); the National Institute of
Mental Health and the National Science Foundation un-
der contract NIMH 2 P20 MH60975-06A2; the Lawrence
Livermore National Laboratory under ASCI ASAP Level-
2 Memorandum Agreement B347878 and under Memoran-
dum Agreement B503159; and the Lawrence Berkeley Na-
tional Laboratory. We thank the members of the Visualiza-
tion and Graphics Research Group at the Center for Image
Processing and Integrated Computing (CIPIC) at the Univer-
sity of California, Davis.

References

[BP93] BOEHM W., PRAUTZSCH H.: Numerical Meth-
ods. A.K. Peters, Ltd., Wellesley, Massachus-
sets, 1993. 4

[CMP89] COOK R., MALKUS D., PLESHA M.: Con-
cepts and Applications of Finite Element Anal-
ysis. John Wiley & Sons, New York, 1989. 1

[Far02] FARIN G.: Curves and Surfaces for Computer
Aided Geometric Design, fifth edition ed. Aca-
demic Press, San Diego, CA, 2002. 2

[Kau91] KAUFMAN A.: Volume Visualization. IEEE
Computer Society Press, Los Alamitos, CA,
1991. 2

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN

P., HANSEN C., SHIRLEY P.: Interactive ray
tracing for volume visualization. IEEE Trans-
actions on Visualization and Computer Graph-
ics 5, 3 (1999), 238–250. 2

[WCG∗03] WILEY D., CHILDS H., GREGORSKI B.,
HAMANN B., JOY K.: Contouring curved
quadratic elements. Data Visualization 2003,
Proceedings of VisSym 2003, G.-P. Bonneau, S.
Hahmann, and C.D. Hansen, eds. (2003), 167–
176. 2

[WCH∗02] WILEY D., CHILDS H., HAMANN B., JOY

K., MAX N.: Best quadratic spline approxi-
mation for hierarchical visualization. Data Vi-
sualization 2002, Proceedings of VisSym 2002,
D. Ebert, P. Brunet, and I. Navazo, eds. (2002),
133–140. 1

c© The Eurographics Association 2004.

Wiley et al / Ray Casting Curved-Quadratic Elements

Figure 7: Ray casting of curved-quadratic tetrahedron T (u,v,w)
having non-uniform density—where corner coefficients are zero
and edge coefficients are one. Top image shows a rendering of
the curved “faces” of T (u,v,w). Bottom image shows ray cast-
ing of T (u,v,w). Isosurfaces are for a small range of values near
{0.2,0.575,0.725}. The “egg” corresponds to the isosurface at
0.725 and the corners correspond to 0.2.

Figure 8: Ray casting of 320 curved-quadratic tetrahedra approx-

imating f (x,y, z) = 3
4

(
x2 + y2 + z2

)
,− 1

2 ≤ x,y, z ≤ 1
2 . The curved

tetrahedra are produced by twisting the mesh a quarter turn from
the top to the bottom. Isosurfaces are for a small range of values
near {0.2,0.43,0.5}. The “sphere” corresponds to the isosurface
at 0.2.

c© The Eurographics Association 2004.

