
Using Quadratic Simplicial Elements for Hierarchical
Approximation and Visualization

David F. Wileya, Henry R. Childsb, Bernd Hamanna, Kenneth I. Joya, and Nelson L. Maxa,c

a Center for Image Processing and Integrated Computing (CIPIC), Department of
Computer Science, University of CA, Davis, CA 95616-8562, U.S.A.;

email: { wiley, hamann, joy} @cs.ucdavis.edu
b B Division, Lawrence Livermore National Laboratory, Mail Stop L-098,

7000 East Avenue, Livermore, CA 94550, U.S.A.;
email: childs3@llnl.gov

c Center for Applied Scientific Computing (CASC), Lawrence Livermore National
Laboratory, 7000 East Avenue, L-551, Livermore, CA 94550, U.S.A.;

email: max2@llnl.gov

ABSTRACT
Best quadratic simplicial spline approximations can be computed, using quadratic Bernstein-Bézier basis functions, by
identifying and bisecting simplicial elements with largest errors. Our method begins with an initial triangulation of the
domain; a best quadratic spline approximation is computed; errors are computed for all simplices; and simplices of
maximal error are subdivided. This process is repeated until a user-specified global error tolerance is met. The initial
approximations for the unit square and cube are given by two quadratic triangles and five quadratic tetrahedra,
respectively. Our more complex triangulation and approximation method that respects field discontinuities and
geometrical features allows us to better approximate data. Data is visualized by using the hierarchy of increasingly
better quadratic approximations generated by this process. Many visualization problems arise for quadratic elements.
First tessellating quadratic elements with smaller linear ones and then rendering the smaller linear elements is one way to
visualize quadratic elements. Our results show a significant reduction in the number of simplices required to
approximate data sets when using quadratic elements as compared to using linear elements.

Keywords: quadratic elements, higher-order finite elements, approximation, hierarchical approximation, data-dependent

approximation, visualization, spline, refinement, multiresolution

1. INTRODUCTION
Scalar and vector field data often contain discontinuities that should be preserved for data approximation and
visualization purposes. It is important to approximate domain boundaries—including geometry such as a car body, an
aircraft, or a ship hull—and the locations of field discontinuities, represented by curves and surfaces, well. To better
approximate these curves and surfaces we investigate the use of curved quadratic simplicial elements. (We do not
address the problem of extracting discontinuities from a given scalar or vector field data set; we assume that this
information is known.) We consider the cases of data (i.e., dependent field variables) defined over two-dimensional (2D)
and three-dimensional (3D) domains.

We only consider curved simplicial elements that are quadratic. In the 2D case, we use curved triangles whose edges
may be either straight-line segments or parabolae; in the 3D case, we use curved tetrahedral elements whose edges may
be either straight-line segments or curves, and faces are either planar or curved triangles. Generally, we will refer to both
non-curved and curved simplicial elements as just simplicial elements. We use a quadratic polynomial transformation to
map the so-called standard simplex to the corresponding curved simplicial region in space. Furthermore, we use a
quadratic polynomial defined over each simplicial element to locally approximate the dependent variable(s). We use
curved elements with curved edges or faces to better approximate domain boundaries and discontinuities.

Our overall goal is the construction of a hierarchical data representation over 2D or 3D domains, using a best-
approximation approach based on curved quadratic finite elements and quadratic polynomials defined over these
elements. We start with a coarse decomposition of the domain, using a relatively small number of simplicial elements

and placing curved simplices in areas where domain boundaries or field discontinuities occur. We then compute a

(globally) best least squares approximation, a quadratic spline approximation for the dependent variable(s) that is 0C -
continuous. The physical loci of discontinuities play the same roles as domain boundaries: Two simplicial elements may
share the same edge (face)—geometrically—defining the locus of a discontinuity, but the field function defined over the
two elements is discontinuous along the shared edge (face). We compute local errors for each simplicial element, and we
bisect a certain percentage of the elements with largest errors, update the simplicial domain decomposition accordingly,
and compute a new best quadratic spline approximation. We iterate this process until a specified error condition is met or
the number of simplicial elements exceeds some threshold.

Our approach belongs to the class of refinement methods. These methods are based on the principle of refining
intermediate data approximations by inserting additional points or elements until a certain termination criterion is
satisfied. We have developed our method with a focus on the needs of massive scientific data visualization, see 6. To
enable interactive visualization of massive data, it is possible to use either low-resolution best approximations
everywhere or to adaptively “ insert” high-resolution approximations locally into an otherwise relatively coarse
approximation. Our approximation algorithm is based on these steps:

• Initial simplicial domain decomposition. Assuming that either a polygonal (polyhedral) or an analytical
definition is known for all boundaries and field discontinuities, we construct a coarse simplicial
decomposition of this domain. We use curved edges (faces) in areas where they are needed to better
approximate curved boundaries or discontinuities. (The quadratic transformations, mapping the standard
simplex defined in so-called parameter space to deformed simplices in so-called physical space, are
defined by specifying corresponding point pairs in the two spaces such that one obtains a one-to-one,
bijective mapping.) Figure 1 shows a possible initial simplicial decomposition of space around a wing cross
section.

• Best approximation. In the 2D case, each simplicial element has six associated knots (having specific
locations in the domain and associated coefficients), one knot per corner and one knot per edge. Six knots
in parameter space are associated with six points in physical space, and this association defines the needed
quadratic mapping for a simplex. (Accordingly, the number of knots is ten in the 3D case.) For simplicity,
we consider only knots that are uniformly distributed along the edges of the standard simplex. We associate
a quadratic polynomial with each simplicial element, which approximates the dependent variable(s) over
the corresponding region in space. We represent each quadratic basis polynomial in so-called Bernstein-
Bézier form, see 4. Assuming that the function to be approximated is known in analytical form, it is possible
to compute the unique best quadratic spline approximation defined as a linear combination of the quadratic
basis functions. The best approximation, understood in a least squares sense, is the result of solving the
normal equations, see 3.

Figure 1. Decomposition of domain around a
wing, using 2D curved quadratic simplices. There
are two distinct regions in the field defined by the
vertices and edges: the region left of the
discontinuity (shaded) and the region right of the
discontinuity. (The bullets and circles indicate the
six polynomial coefficients associated with each
element.)

• Adaptive bisection. We compute an error value for each simplicial element once a best approximation is

computed. We use the 2L norm to compute simplex-specific error values. The set of simplices is ordered

according to the simplex-specific error values. To compute a next-level best quadratic approximation we
determine a certain percentage of simplices with largest error values and bisect them by splitting them at
the midpoint of their longest edge. If a simplex's longest edge is not unique, we choose the edge to be split
randomly. In the case of curved edges, we use arc length to determine the longest edge to be bisected.
Splitting a simplex into two simplices induces additional splits for all those simplices that share the split
edge. We update a simplicial domain decomposition by considering all edge bisections and compute a new
best approximation. We repeat the process of identifying simplices with largest errors, bisecting these
simplices, and computing a new best approximation until we obtain an approximation for which the largest
simplex-specific error is below a certain error threshold or until a maximal number of simplices is reached.

• Hierarchical data representation. To support level-of-detail visualization we can store multiple best
approximations of different resolutions. For each best approximation, we need to store the polynomial
coefficients of each simplicial element—for its shape and the field defined over it. Considering a non-
curved simplicial element, we only need to store its three (four) corner points and the coefficients of the
field defined over the element. Considering a curved element, we need to store all polynomial coefficients
defining the shape of the element, in addition to the coefficients of the quadratic polynomial defining the
field over the element. We store a fixed number of best approximations such that either the number of
simplices increases in a specified fashion or the maximal simplex-specific error decreases in a certain way
from one resolution to the next.

2. PREVIOUS WORK

Related work in the areas of hierarchical data representation and visualization is discussed in, for example, 11, 16.
Simplification methods are described in 9, 18. Wavelet methods, in general, work well for rectilinear 2D and 3D grids and
are described in 2, 14. Refinement methods, similar to our method, are described in 7, 8. Data-dependent triangulation
schemes, i.e., schemes concerned with the construction of approximations using near-optimally shaped and placed
simplicial elements, are described in 13. Our method is also a grid generation method, and references for this area are 10,

17. Finite element methods are discussed in 19.

3. MAPPING THE STANDARD SIMPLEX
In the 2D case, the standard simplex in parameters space is the triangle with corners (0, 0), (1, 0), and (0, 1). We

associate a 2D quadratic Bernstein-Bézier polynomial),(2
, vuB ji , defined as

() () 2 ,0, ,1
! ! ! 2

!2
),(2 2

, ≤+≥−−
−−

= −− jijivuvu
jiji

vuB jiji
ji , (1)

with each corner and midpoint of each edge. The six basis polynomials correspond to the six knots

() () 2 ,0, ,,, 22,,, ≤+≥== jijivu ji
jijijiu in parameter space, see Figure 2. We map the standard triangle to a

Figure 2. Correspondence between 2D basis functions
2
, jiB in “ index” space and knots (indicated by bullets and

circles) in uv -parameter space.

curved triangular region in physical space by mapping the six knots ji ,u in parameter space to six corresponding points

()jijiji yx ,,, ,=x in physical space, using a quadratic mapping. The quadratic mapping is defined as

() ()
() ()

()
() 2 ,0, ,

,

,

,

,

,

2
,,

,

2
,,

,

2
,, ≤+≥

�
�
�

�

�

�
�
�

�

�

==��
�

�
��
�

�=
�

�
� jiji

vuBd

vuBc

B
vuy

vux

ji
jiji

ji
jiji

ji
jiji ubux . (2)

The mapping between parameter and physical space must be one-to-one. Figure 3 depicts a general mapping of the
standard triangle in uv -parameter space to a curved triangle in xy -physical space.

In the 3D case, the standard simplex is the tetrahedron with corners (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). We

associate a 3D quadratic Bernstein-Bézier polynomial),,(2
,, wvuB kji , defined as

() () 2 ,0,, ,1
! ! ! ! 2

!2
),,(2 2

,, ≤++≥−−−
−−−

= −−− kjikjiwvuwvu
kjikji

wvuB kjikji
kji , (3)

with each corner and midpoint of each edge. The ten basis polynomials correspond to the ten knots

() () 2 ,0,, , ,,,, 222,,,,,,,, ≤++≥== kjikjiwvu kji
kjikjikjikjiu in parameter space. We map the standard

tetrahedron to a curved tetrahedral region in physical space by mapping the ten knots kji ,,u in parameter space to ten

corresponding points ()kjikjikjikji zyx ,,,,.,,, ,,=x in physical space, using a quadratic mapping. The quadratic

mapping, in the 3D case, can be extended from 2. Figure 4 depicts the mapping of the standard tetrahedron in parameter
space to a curved tetrahedron in physical space.

Figure 3. Correspondence between uv -parameter space and xy -physical space.

Figure 4. Mapping of standard tetrahedron in parameter space to curved tetrahedron in physical space.

4. INITIAL DOMAIN DECOMPOSITION
The main objective driving the development of our method is to construct a hierarchical representation of very large
scientific data, where real-time and adaptive data visualization is crucial. Data sets resulting from computational
simulations are typically defined on a grid, and the dependent variables are associated with either the vertices (also
called nodes) or the elements defining the grid. Either of these types of data can be approximated by our method. The
original grid, its boundaries, and possibly known locations of field discontinuities (in the dependent field variables)
influence how we define an initial simplicial decomposition of the domain.

The objective is to initially represent the domain with a relatively small number of (curved) simplicial elements, using
curved elements where they help to better approximate domain boundaries and (known) field discontinuities. We assume
that we are provided with data representing field discontinuities and the domain boundary. This data is specified as a set
of points and their connectivity. In the 2D case, the connectivity information defines linear splines. In the 3D case, the
connectivity information defines linear spline (triangular) surfaces. Figure 5 shows a sample input and one desirable
initial domain decomposition.

We construct an initial decomposition by performing this sequence of steps: First, we classify the points; next, we
determine connected paths; subsequently, we determine region boundaries; then, we determine a region hierarchy; next,
we fit quadratic curves to the paths; and, finally, we triangulate (tetrahedralize) the regions. We describe these steps in
more detail for the 2D case:

1) Point classification. We classify a point as detached, hanging, normal, or junction if it is connected to zero, one,

two, or more than two edges, respectively. Detached points are considered extraneous and are ignored through the
rest of the region identification process.

2) Path determination. In this step, the goal is to find the set of paths in the input data, where a path is defined as a
sequence of two or more points beginning and ending with hanging or junction points and containing any number of
normal points in-between. A loop path is a path beginning and ending with the same point—having at least one
normal point in-between. To determine the paths, we first mark all the edges such that it is possible to determine if it
has been traversed. Then, we select a seed edge at random and consider one of the endpoints; if the considered
endpoint is normal, we traverse to the neighboring edge. We continue this traversal until the neighboring edge has
already been traversed (forming a loop) or the edge’s endpoint is classified as hanging or junction. If a loop path
cannot be formed, we continue traversing in the opposite direction by considering the second endpoint of the seed
edge. We then select a non-traversed edge at random and perform the same traversal. All paths are determined when
all edges have been traversed. Figure 6 shows a sample classification and illustrates edge traversal.

Figure 5. Sample input specification (left) and possible initial decomposition (right) utilizing curved (shaded) and
non-curved simplices. Input points are shown as solid black squares; many points are used to represent the linear
spline along the discontinuity between the dark-gray and light-gray regions (left image) and along the wing
boundary. Bullets and circles represent corner and edge vertices of the elements in the initial decomposition.

3) Determination of region boundaries. In this step, we find the paths that bound the various regions. In general, a
region is bounded by a sequence of paths, but, it is possible to have non-closed regions, which we call crack
regions. We select a seed path at random and traverse the path in an arbitrary direction. If the endpoint in the
direction we traverse is a junction, we make a right-hand turn—and consider all the paths that connect to this
endpoint and select the path that contains the edge that most closely represents a right-hand turn by considering the
incident angles. We repeatedly make right-hand turns until the seed path is reached. Then, we traverse the seed path
in the same direction, making left-hand turns at junctions. These two traversals, in general, yield two distinct region
boundaries. It is possible to trace the same region boundary twice; if this is the case, we discard one of the results. A
crack region is formed when the resulting sequence of paths is not closed, i.e., when the seed path cannot be reached
by only traversing the obtained sequence either forward or backward. If a hanging point is encountered during
traversal, we perform a U turn and continue the traversal over the already traversed path(s). Once a not-yet-traversed
path is reached, we “cut off” the sequence of paths that was traversed twice, forming a crack region. We then
continue normal traversal, but, due to a possible U turn, we may encounter already traversed paths. When this is the
case, we form additional crack regions by applying a cut-off step when a non-traversed path is reached. We must
take special care when the traversal returns to a path that has already been traversed. This case leads to the formation
of an island region. In this case, a closed region is formed, and we cut off the sequence that defines the island and
continue traversal. Figure 7 shows an example.

4) Determination of region hierarchy. To determine which regions are inside other regions, we sort the regions based
on size of their bounding boxes. Starting with the minimum-area region, we iteratively test whether any non-shared
point is contained in the next-larger-area region. If this is not the case, then we proceed to the next-larger-area
region, etc. Once we have found a containing (parent) region, we add the smaller region as a child to the parent.

5) Fitting curves to paths. We fit quadratic curves to the paths by finding sequences of points that curve in the same
direction. (We limit the angle by which a sequence of points can curve, to prevent “spiral” cases.) Points that are co-
linear are fitted exactly by a quadratic curve. To preserve the polygonal domain boundary exactly, boundary paths
are not approximated. Quadratic curves are fitted to points using least squares approximation. We perform the
approximation relative to the axis formed by the endpoints of a sequence. For simplicity, we only consider quadratic

Figure 6. Point classification and path determination. Points are
classified as detached (D), hanging (H), normal (N), and junction
(J). There are three paths in this example, defined by the three edge
sequences 0123, 4, and 8567.

Figure 7. Region boundary construction. Points are classified as hanging (black), normal (gray), and junction
(blue). Edges are labeled according to the path to which they belong. Blue paths (6, 7, 8, 9, and 10) denote closed
region boundaries. Orange paths (0, 1, 2, 3, and 5) indicate crack regions. The green path (4) indicates an island
region. The regions are defined by path sequences 0, 1-2-3, 4, 5, 6-10-9-8, and 6-7.

curves whose three control points are located at the endpoints and at the midpoint of the axis. Error is determined by

the 2L norm of the distance between the fitted curve and the points that define the piecewise linear spline being

approximated.
6) Triangulating regions. We compute the initial domain decomposition in the following manner: We traverse the

region hierarchy from top to bottom (largest region to smallest children) and triangulate the space between each
region and its first-level child region(s). We form a constrained Delaunay triangulation using the piecewise linear
spline defined by the sequence of control points for the quadratic curves that approximate the paths that define
region boundaries. Once triangulated, we remove triangles that lie outside the region and inside child regions. Then,
we construct curved triangles by considering the relationship between the curve control points and the triangles in
the triangulation. Figure 8 shows an example of converting a linear triangulation of control points to a set of curved
triangles.

In the 3D case, the input to our algorithm is a set of points and an associated triangulation(s). The various steps of our
method can be extended and can be described on a high level as follows:

1) Point and edge classification. We classify a point as detached, hanging, or normal if it is connected to zero, one, or

more than one edges, respectively. We classify an edge as detached, hanging, normal, or junction if it is connected
to zero, one, two, or more than two triangles, respectively. Detached points and edges are considered extraneous and
are ignored through the rest of the region identification process.

2) Patch determination. We grow a set of patches that are “planar” such that all the normal vectors of the member
triangles are within a specified tolerance. (All triangles in a patch are connected by normal edges.)

3) Determination of region boundaries. We traverse patches across their boundaries to neighboring patches and
make right- and left-hand turns to determine the region boundaries.

4) Determination of region hierarchy. We use the bounding box volume of region boundaries as our sorting criterion
and perform an iterative merging step that constructs the hierarchy.

5) Fitting curved surfaces to patches. We fit curves to the boundary edges of the patches. Then, using the 2D
approximation method in the following section, we fit curved surfaces to the patches.

6) Tetrahedralization. We tetrahedralize the control net for the regions and convert the resulting mesh into a curved
tetrahedral mesh to yield an initial tetrahedralization.

5. BEST APPROXIMATION

We assume that the field to be approximated over a domain is known analytically. Should this not be the case, e.g., in the
case of scattered data, it is possible to construct an analytical representation by performing a prior data interpolation or
approximation step, see 5. In the case that a data set is defined on a grid, the required analytical definition is given by a
piecewise linear function for a simplicial (triangular or tetrahedral) grid and a piecewise bilinear (trilinear) function in

the case of quadrilateral (hexahedral) grid cells. We denote the analytical function to be approximated by ()xF . Based

Figure 8. Triangulation of 2D region. We begin with a
set of points defining the five control polygons of the
quadratic Bézier curves associated with the paths that
define the region to be triangulated (upper-left corner);
bullets and circles denote end and middle control
points, respectively. We construct a triangulation for
the control points (upper-right corner). Then, we
consider pairs of triangles, such as 1-2 and 3-4, whose
shared edges have endpoints that are middle control
points (circles). We form new curves (lower-left
corner, orange)—using a-d-b and b-d-c as control
polygons—to define appropriate edges for the curved
triangles A and B (lower-right corner) that replace
pairs 1-2 and 3-4, respectively. Triangle 8 is converted
into D. We complete the triangulation by converting
triangle triple 5-6-7 into curved triangle C.

on an initial domain decomposition, we compute the corresponding best piecewise quadratic approximation of ()xF by

solving the normal equations, see 3. The normal equations determine the set of coefficients for the desired quadratic
spline representation.

Corner vertices of simplicial elements may be shared by any number of simplices, and we denote the basis function

associated with a corner vertex iv by ()xif . An edge of a simplicial element may be shared by no more than two

simplices in the 2D case and by an arbitrary number of simplices in the 3D case. We denote a basis function associated

with the midpoint of a simplex edge je by ()xjg . We refer to the set of simplices sharing a common corner vertex as

the platelet of this corner, and we call the set of simplices sharing a common edge edge neighbors. Thus, a platelet
defines the region in space over which a basis function associated with the corresponding corner vertex is non-zero.
Edge neighbors, associated with a particular edge, define the region in space over which a basis function associated with
this edge is non-zero. Figure 9 shows the two types of basis functions that arise in the bivariate case.

We denote a best approximation by ()xa , and we write it as a linear combination of the basis functions associated with

all distinct simplex corners (if) and simplex edges (jg). Assuming that there are m distinct corners and n distinct

edges, we can write a best approximation as the sum

() () ()��
==

+=
n

j
jj

m

i
ii gdfca

11

xxx . (4)

We must solve the normal equations to obtain the unknown coefficients ic and jd . In matrix form, the normal

equations are

�
�
�
�
�
�
�

	

�
�
�
�
�
�
�

�

=

�
�
�
�
�
�
�

	

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

	

�
�
�
�
�
�
�

�

n

m

n

m

nnn

n

mnn

m

nmm

n

mmm

m

gF

gF
fF

fF

d

d
c

c

gggg

gggg

fgfg

fgfg
gfgf

gfgf

ffff

ffff

,

,
,

,

,,

,,

,,

,,
,,

,,

,,

,,

1

1

1

1

1

111

1

111

1

111

1

111

�

�

�

�

�

��

�

�

��

�

�

��

�

�

��

�

, (5)

where HG, denotes the inner product of the functions ()xG and ()xH , i.e.,

() ()�=
HG

dHGHG
 and of DomainCommon

, xxx . (6)

In our construction, we must compute inner products over simplices. Since all simplicial elements in physical space are
defined by quadratic mappings of the standard simplex, we can simplify integration by making use of the change-of-

Figure 9. Types of bivariate basis functions associated with corner (left) and edge (right).

variables theorem, see 12, which relates integration in physical space to integration in parameter space. In the 2D case,
integrals are computed according to the formula

() () ()() ()�� =
Simplex StandardSimplex Physical

 , ,,vu,xG yx,G dudvvuJvuydxdy , (7)

where ()vuJ , denotes the Jacobian associated with the mapping of the standard simplex to the corresponding simplex

in physical space. The Jacobian is the determinant

() () ()
() () ,,

,,
 ,

vuyvuy

vuxvux
vuJ

vu

vu

∂
∂

∂
∂

∂
∂

∂
∂

= . (8)

The 3D case is a straightforward extension.

The matrices involved in the best-approximation step are sparse, since all basis functions have local support. Several
methods exist for bandwidth reduction, efficient factorization, and inversion of such sparse matrices, for example, see 15.
We use an efficient sparse matrix representation and system solver to compute the coefficients in linear time.

The computation of the inner products appearing in the normal equations requires us to integrate over simplicial
elements. While the change-of-variables theorem reduces this integration to integration over the standard simplex, we
still need to perform relatively expensive numerical integration for the calculation of the inner products appearing on the

right-hand side of the normal equations, i.e., the integrals of the types ifF , and jgF , . Since ()xF can, in

general, be any analytically defined function, numerical integration can become expensive. We use Romberg integration
for the computation of these right-hand-side inner products, see 1, 8.

Once we have computed a best approximation for a particular simplicial domain decomposition, we analyze the local
approximation quality to identify simplices that should be refined (bisected) to further improve approximation quality. In
the following section, we discuss adaptive bisection.

6. ADAPTIVE BISECTION
For each simplicial element iS in a particular domain decomposition, we compute a local approximation error ie . We

define this error as

() ()()
2

1

2

�
�

�

�

�
�

�

�
−= �

iS

i daFe xxx . (9)

Selecting and bisecting simplices of maximal error are the two steps used to refine the mesh. In general, we choose a
certain percentage of the simplices to be refined.

We refine a simplicial element by bisecting at the midpoint of its longest edge, using arc length. All simplices sharing
the split edge are bisected to avoid “hanging nodes.” The bisection step is shown in Figure 10. Bisection steps lead to
new simplicial domain decompositions, and we must compute new best quadratic spline approximations for each one.

Figure 10. Bisection of simplices in 2D and 3D cases. The darker simplices are the ones selected for bisection.

We continue to bisect a certain percentage of simplices until either the number of simplices in a decomposition exceeds
some user-specified maximal number or until an approximation is obtained whose global error is less than a user-
specified tolerance. (We define the global error of an approximation as the sum of all local simplex errors.) The final
result of our method is a set of independent “ levels” of best quadratic spline approximations that can be used for
interactive and/or adaptive, level-of-detail visualization.

7. RESULTS
We have tested our method for several test data. We visualize quadratic simplices by tessellating them using many linear
elements. Figure 11 compares a curved quadratic approximation to a linear approximation. Figure 12 compares a curved
quadratic approximation to a linear approximation. Figure 13 shows different stages of construction for a 3D initial
decomposition. Results were computed on a 1.8GHz Pentium IV graphics workstation with 512MB of main memory.

8. CONCLUSIONS
Curved simplicial elements can be used to more compactly approximate data than non-curved simplicial elements. In
general, the use of higher-order simplices should be considered as they can produce better-quality approximations with a
smaller number of simplices.

Higher-order simplices are growing in importance in visualization as researchers are also using them more frequently for
domain decomposition in numerical simulations. Thus, visualization of these simplices is also important because of their
increasing popularity. Direct higher-order visualization techniques, including volume visualization techniques, must be
developed to take advantage of higher-order elements.

Figure 11. Comparison of a curved quadratic approximation to a linear approximation. Original image, consisting
of 800x800 pixels, is shown in the upper-left corner. One linear approximation is shown in the lower-left corner.
Two curved quadratic approximations are shown in the middle; their corresponding triangulations are shown on
the right side. The linear approximation has 754 knots, 1483 linear simplices, an error of 1477.62, and a
computation time of 42 seconds. The top quadratic approximation has 411 knots, 134 simplices, and an error of
24.99. The bottom quadratic approximation has 3392 knots, 1473 simplices, and an error of 0.07. Computation
times were 24 and 82 seconds, respectively.

9. ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Department of Energy by University of CA Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48. This work was supported by the National Science
Foundation under contract ACI 9624034 (CAREER Award), through the Large Scientific and Software Data Set
Visualization (LSSDSV) program under contract ACI 9982251, and through the National Partnership for Advanced
Computational Infrastructure (NPACI); the National Institute of Mental Health and the National Science Foundation

Figure 12. Comparison of a curved quadratic approximation to a linear approximation. Original image, consisting
of 1536x1024 pixels, is shown in the upper-left corner. One linear approximation is shown in the upper-right
corner. Two curved quadratic approximations are shown on the bottom. The linear approximation has 5816 knots,
11482 linear simplices, an error of 6120.42, and a computation time of 535 seconds. The left quadratic
approximation has 12235 knots, 4066 simplices, and an error of 90.03. The right approximation has 63928 knots,
29355 simplices, and an error of 1.21. Computation times were 284 seconds and 1206 seconds, respectively.

Figure 13. Different stages of construction for a 3D initial decomposition. The given triangulation is shown on
the left side. (The domain boundary has been removed for clarity.) Patches are shown in the middle. Boundaries
of the patches are shown on the right side.

under contract NIMH 2 P20 MH60975-06A2; the Army Research Office under contract ARO 36598-MA-RIP; and the
Lawrence Livermore National Laboratory under ASCI ASAP Level-2 Memorandum Agreement B347878 and under
Memorandum Agreement B503159. We also acknowledge the support of ALSTOM Schilling Robotics and SGI. We
thank the members of the Visualization and Graphics Research Group at the Center for Image Processing and Integrated
Computing (CIPIC) at the University of CA, Davis. Furthermore, we acknowledge the support received by the members
of B Division, Lawrence Livermore National Laboratory.

10. REFERENCES
1. Boehm, W. and Prautzsch, H. (1993), Numerical Methods, A K Peters, Ltd., Wellesley, MA.
2. Bonneau, G. P. (1999), Optimal triangular Haar bases for spherical data, in: Gross, M., Ebert, D. S. and Hamann, B.,

eds., Visualization '99, IEEE Computer Society Press, Los Alamitos, CA, pp. 279–284.
3. Davis, P. J. (1975), Interpolation and Approximation, Dover Publications, Inc., New York, NY.
4. Farin, G. (2002), Curves and Surfaces for Computer Aided Geometric Design, fifth edition, Academic Press, San

Diego, CA.
5. Franke, R. (1982), Scattered data interpolation: Tests of some methods, Math. Comp. 38, pp. 181–200.
6. Hagen, H., Müller, H. and Nielson, G. M., eds. (1993), Focus on Scientific Visualization, Springer-Verlag, New

York, NY.
7. Hamann, B. and Jordan, B. W. (1998), Triangulations from repeated bisection, in: Dæhlen, M., Lyche, T. and

Schumaker, L. L., eds., Mathematical Methods for Curves and Surfaces II, Vanderbilt University Press, Nashville,
TN, pp. 229–236.

8. Hamann, B., Jordan, B. W. and Wiley, D. F. (1999), On a construction of a hierarchy of best linear spline
approximations using repeated bisection, IEEE Transactions on Visualization and Computer Graphics 5(1), pp. 30–
46; 5(2), p. 190 (errata).

9. Hoppe, H. (1997), View-dependent refinement of progressive meshes, in: Whitted, T., ed., Proceedings of
SIGGRAPH 1997, ACM Press, New York, NY, pp. 189–198.

10. Knupp, P. M. and Steinberg, S. (1993), Fundamentals of Grid Generation, CRC Press, Boca Raton, FL.
11. Kreylos, O. and Hamann, B. (1999), On simulated annealing and the construction of linear spline approximations

for scattered data, in: Gröller, E., Löffelmann, H. and Ribarsky, W., eds., Data Visualization '99 (Proc.
EUROGRAPHICS-IEEE TCCG Symposium on Visualization), Springer-Verlag, Vienna, Austria, pp. 189–198.

12. Marsden, J. E. and Tromba, A. J. (1988), Vector Calculus, third edition, W. H. Freeman and Company, New York,
NY.

13. Nadler, E. (1986), Piecewise linear best 2L approximation on triangulations, in: Ward, J. D., ed., Approximation

Theory V, Academic Press, Inc., San Diego, CA, pp. 499–502.
14. Nielson, G. M., Jung, I. H. and Sung, J. (1997a), Haar wavelets over triangular domains with applications to

multiresolution models for flow over a sphere, in: Yagel, R. and Hagen, H., eds., Visualization '97, IEEE Computer
Society Press, Los Alamitos, CA, pp. 143–149.

15. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992), Numerical Recipes in C, second
edition, Cambridge University Press, New York, NY.

16. Staadt, O. G., Gross, M. H. and Weber, R. (1997), Multiresolution compression and reconstruction, in: Yagel, R.
and Hagen, H., eds., Visualization '97, IEEE Computer Society Press, Los Alamitos, CA, pp. 337–346.

17. Thompson, J. F., Soni, B. K. and Weatherill, N. P., eds. (1999), Handbook of Grid Generation, CRC Press, Boca
Raton, FL.

18. Xia, J. C. and Varshney, A. (1996), Dynamic view-dependent simplification for polygonal meshes, in: Yagel, R. and
Nielson, G. M., eds., Visualization '96, IEEE Computer Society Press, Los Alamitos, CA, pp. 327–334.

19. Zienkiewicz, O. C. (1977), The Finite-Element Method in Engineering Science, McGraw-Hill, London, United
Kingdom.

