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Abstract—Various consumer electronics have become indis-
pensable for our daily lives, and they rely heavily on visual
content, such as image, to deliver immersive experiences to users.
However, consumer electronic devices may encounter issues like
image corruption, noise interference, or object occlusion, and
images in consumer electronics may be subjected to various
imperfections, which can be addressed by image inpainting
techniques to enhance the visual experience. In this work, we
propose a Flexible Multi-Grained Dilation Network (FMGDN)
to capture multi-grained information and complete hole regions
with semantically and visually plausible contents. Specifically,
we design a Multi-Grained Residual (MGR) block with hybrid
parallel branches to extract hierarchical features. The branches
with different dilation rates use co-prime principle to avoid
gridding artifacts. The multi-grained features from different
branches are fused with adaptive weights to enforce deeper
semantic context. Further, a Channel Adaptive Shuffling (CAS)
block is designed to effectively decode high-level features back to
image space, shuffling the inner channels with learning-capable
filters and adaptive channel weights. In particular, benefitting
from its concise and flexible architecture, FMGDN can be easily
configured to adapt to various kinds of consumer electronics.
Experiments on three real-world datasets demonstrate the ef-
fectiveness of FMGDN, outperforming state-of-the-art methods.

Index Terms—Image inpainting, Multi-grained, Hybrid dila-
tion, Adaptive fusion, Consumer electronics.
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CONSUMER electronics, such as personal computer,
smartphones, and televisions, have become indispensable

for our daily lives. These devices rely heavily on visual
content to deliver immersive experiences. However, images
in consumer electronics can often be subjected to various
imperfections, such as missing or damaged portions, which
can degrade the overall visual quality and user experience.
Therefore, many image processing techniques, such as image
inpainting [1]–[4], image denoising [5], and image enhance-
ment [6], can be widely applied in consumer electronics to
improve the visual quality, including object remover (shawdow
removal [7], scratches removal, occlusion removal, reflection
removal [8]), restoration, and completion. In particular, image
inpainting can remove unwanted text, logos, or watermarks
from images or videos, or enhance image quality by filling in
missing details and improving the overall visual appearance.
Besides, consumer electronic devices may encounter issues
like image corruption, noise interference, or object occlusion,
which can be addressed by image inpainting techniques with
visually appealing and clean images. In particular, millions
of consumer electronics users benefit from the integrated
image inpainting technologies. However, when it comes to
large and irregular hole regions, image inpainting is still a
very challenging task involving semantic understanding of the
image scenario.

Early image inpainting approaches, such as diffusion-based
methods [1] and exemplar-based methods [9], propagate sur-
rounding structures to the hole region or adaptively aggregate
non-local similar exemplar patches. These methods are not
suitable for inpainting large and irregular hole regions with
complex background, which is quite common in consumer
electronics. Recent approaches [4], [10] with large or irregular
holes has been greatly boosted by advanced deep learning
techniques, and a lot of improvements have been proposed.
For example, two-stage architectures incorporate additional
assistance to handle the image inpainting issue with large hole
regions. However, the artifacts produced by the first network
would be propagated to the second one. Besides, the dilation
rates are uniformly set to a fixed number or even numbers with
common divisors, and may lead to gridding artifacts [11].

Recent methods decode low-resolution feature maps using
transposed convolution or interpolation, tending to generate
undesirable checkerboard artifacts or blurred content lacking
high-frequency information. Besides, the dilation operation
for extracting features with larger receptive field may lead to
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blurry artifacts and semantic inconsistency.
Therefore, we argue that an effective image inpainting

in consumer electronics should 1) capture the contextual
semantics for generating reasonable image contents, 2) pre-
serve continuity of global structures, and 3) synthesize fine-
detail local textures. To achieve these goals, the inpainting
network must capture multi-grained information both spatially
and semantically. To this end, we propose a Flexible Multi-
Grained Dilation Network (FMGDN) for the stated design
goals, achieving promising inpainting results.

The backbone of FMGDN is a U-Net with encoder, middle
component, and decoder. Different from existing works [12],
[13] using dilation convolution, we design a flexible Multi-
Grained Residual (MGR) block composed of parallel branches
with different dilation rate patterns to capture multi-grained
features. More specifically, we use mutual prime numbers
instead of even numbers as dilation rates in one branch, which
effectively avoids gridding artifacts [11]. The multi-grained
features are adaptively integrated with learned channel-specific
weights at the end of MGR block, which has three advantages:
First, the multi-grained features from parallel branches with
different dilation rate patterns in MGR are adaptively inte-
grated with learned channel-specific weights. Second, it can
enlarge the receptive field and avoid the gridding artifacts.
Third, the feature map resolution of the MGR block remains
unchanged, effectively preserving spatial information.

Concerning the decoder part, we introduce a Channel
Adaptive Shuffling (CAS) block to re-organize inner elements
among channels. Especially, CAS block shuffles elements
among channels with channel-specific weights to decode the
high-level feature maps back to the image domain. Experi-
ments on three real-world datasets show that FMGDN can
inpaint hole regions at a high level of fidelity, handling global,
continuous structures as well as fine-detail textures. Especially,
the concise and flexible architecture of FMGDN enables
modification or configuration to balance between performance
and efficiency in real-world applications, which enhances its
adaptability to various kinds of consumer electronics.

In summary, our three main contributions are,
• The proposed FMGDN can effective synthesize visually

plausible images via filling hole regions with coherent
structures and fine texture details learned by one single
generative network without additional information;

• The designed Multi-Grained Residual (MGR) block can
extract rich multi-grained features with different dilation
rate patterns in parallel and adaptive fusion to form deep
image semantics for avoiding gridding artifacts;

• The designed Channel Adaptive Shuffling (CAS) block
can re-organize inner elements among channels with
channel-specific weights and rebuild the inpainted image
from high-level image features in a self-adaptive way.

II. RELATED WORK

A. Deep learning-based image inpainting

One-stage architecture. Pathak et al. [4] proposed an
encoder mapping the input image to the latent high-level
feature space and a decoder building the extracted features up

to the image space via up-convolutional layers. However, the
results suffer from blurry artifacts and inconsistent boundaries.
Yang et al. [14] used pre-trained network to constrain texture
consistency and introduce a multi-scale scheme for high-
resolution image inpainting. Two discriminators are trained
to provide global and local adversarial losses [13], and it
needs Poisson blending to alleviate inconsistent boundaries. In
addition, partial convolution [15], gated convolution, validness
migratable convolution [2], are studied to distinguish between
valid pixels and hole pixels.

Multi-stage architecture. Many approaches adopt multi-net
architecture to enlarge the receptive field or obtain the support
of additional information. Yu et al. [16] designed coarse-to-fine
architecture where the coarse generative network predicts the
initial result as the input of the fine generative network. The
coherent semantic attention method [17] adds skip connections
to this architecture to concatenate encoder features and de-
coder features. Other works use these networks for generating
supportive information, such as segmentation prediction [18],
edge connection and structure generation [19]. Li et al. [18]
combined face parsing network to enable the generative net-
work for consistent contents. Edge connect method generates
the completed edge map by one network, and then fills the
image holes by another network with the edge map and in-
complete image as input. Structure flow [19] divides inpainting
task into structure generation and texture synthesis. The two
networks in methods [2], [20], one for generating natural
images and one for filling the mask images, collaborate for
adaptive image inpainting. Multi-net approaches can generate
visually plausible images, but need more space and time for
parameters and network training.

Attention mechanism. Contextual attention [16] can ex-
plicitly reconstruct the hole regions with global background
information based on non-local similarity scores. Moreover,
more studies on contextual attention includes obtaining atten-
tion score by matching low-level feature patches with high-
level ones, integrating attention adaptively from multi-scale
patches [21] and placing pixel-wise contextual attention layer
at multi-stages [22]. Liu et al. [17] proposed coherent semantic
attention with correlation between the hole region and the
valid region, and utilizes the relationship within the generated
patches, effectively facilitating more pixel continuities. Learn-
able bidirectional attention [20] maps are constructed forward
and reversely to allow the network to focus on rebuilding the
hole regions with feature re-normalization and mask-updating.

B. Dilated Convolution

Convolution Neural Networks (CNN) and its vaiants [23],
such as dilated convolution, are widely applied in computer
vision tasks, includes image semantic segmentation [24], [11],
[25], deraining [26] and inpainting. The kernel parameters of
dilated convolution are distributed with intervals, controlled
by the dilation rate. Higher dilation rate indicates larger
receptive field. Some inpainting networks [4], [20] use vanilla
convolutions with down-sampling operations to enlarge the
receptive field, while a dilated convolution can directly obtain
large receptive field by inserting holes within the kernels.
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Fig. 1. Architecture of FMGDN for image inpainting

Furthermore, some approaches [13], [16] deploy four dilated
convolution layers in middle of the encoder-decoder with
dilation rates 2, 4, 8, 16, respectively. Meanwhile, other
approaches [21], [27] use residual blocks with two dilated
convolution layers with dilation rates respectively set as 2 and
1. Hui et al. [12] proposed multi-scale fusion with four parallel
dilated convolution layers. Wang et al. [11] proposed hybrid
dilated convolution for semantic segmentation where the dila-
tion rates inside one residual block follow a sawtooth wave-
like pattern, effectively avoiding gridding artifacts caused by
fixed dilation rates.

III. APPROACH

As shown in Fig. 1, the proposed Flexible Multi-Grained
Dilation Network (FMGDN) adopts a one-stage U-Net [28]
architecture consisting of the encoder, the middle part and the
decoder. The shallower layers (encoder) of U-Net extract low-
level features, while the deeper layers focus on capturing high-
level semantic information. In particular, long-skip connection
between encoder and decoder layers forms typical U-Net
architecture to ensure multi-level information well kept in
generated images. Specifically, the encoder preliminarily maps
the input image to a high-dimensional latent feature space by
three convolutional blocks. The middle part further extracts
more high-level and hierarchical features by Multi-Grained
Residual blocks. The decoder leverages designed Channel
Adaptive Shuffling blocks to rebuild images from high-level
image feature maps. In particular, FMGDN benefits from its
concise and flexible architecture and can be easily configured
or simplified for computational power-constrained consumer
electronics, such as mobile phones and tablets.

A. Multi-Grained Residual Block

Natural images have rich, multi-grained features. For exam-
ple, in terms of spatial features, global structures are coarse-
grained features, while local textures are fine-grained fea-
tures. Therefore, effective extraction of multi-grained features
is important for synthesizing visually plausible images, and
the generated images should maintain reasonable semantics.
Therefore, we design Multi-Grained Residual (MGR) block to
sufficiently capture multi-grained features and deep semantics.
The unit with green background in Fig. 1 shows the pipeline

of the MGR block, consisting of 1) the multi-grained feature
extraction part and 2) the adaptive fusion part.

The first part of the MGR block use of parallel branches
to capture multi-grained features. The number of branches
can be flexibly set to adapt to different situations for various
kinds of consumer electronics. We used two different branches
as an example. The upper branch is fine-grained, and the
lower branch is the coarse-grained. Each branch has three
dilated convolutional blocks with hybrid dilation rate settings.
According to the rules stated in Wang et al. [11], the dilation
rates for connected convolution blocks in one group should
be mutually prime numbers. We set the three convolutional
dilation rates in fine-grained branch to the values 1, 2 and 3,
generating a receptive field of 13, to capture fine-scale features.
The coarse-grained branch uses dilation rate values 3, 5 and
7, respectively, leading to a larger receptive field of 31 to
capture large-scale image patterns. We empirically set dilation
rates using the co-prime rule and the principle that branch
with the small receptive field captures fine-grained features,
and the branch with the large receptive field captures coarse-
grained features. Our design of the multi-grained branch unit
provides flexibility, as one can easily change the number of
branches, number of convolutional layers in each branch, and
the dilation rates setting for each branch.

The main differences between MGR block and existing
approaches are three-fold. First, we design different parallel
branches in MGR block for multi-grained feature extraction.
The dilation rates are set under the co-prime principle to avoid
artifacts. The branch with lower dilation rates has a smaller
receptive field to extract fine-grained and local features. The
branch with higher dilation rates has a larger receptive field to
extract coarse-grained and global features. Second, the MGR
block uses hybrid dilation rates for different branches. The
dilation convolution inserts holes into filter kernels, which
can be viewed as conducting convolution on different scaled
feature maps when different dilation rates are set. Therefore,
MGR block extracts multi-scaled features and obtains a larger
receptive field. Third, rather than simply adding or concatenat-
ing features from different branches, MGR block adaptively
fuses multi-grained features with learned weights.

We assume that the input for MGR block is a feature map
Iin ∈ RB×C×H×W , where B is batch size, C is channel
amount, and H and W are spatial height and width. The fine-
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grained features are obtained by the following equation:

Ifine = fr3(fr2(fr1(Iin))), (1)

where fr1 is the standard convolutional block, including a
convolutional layer with the dilation rate value 1, a batch
normalization layer and a rectified linear unit (ReLU) activa-
tion layer. The additional layers fr2 and fr3 have associated
dilation rates of 2 and 3, respectively. There is no ReLU layer
in fr3. The coarse-grain features are obtained via:

Icoarse = fr7(fr5(fr3(Iin))). (2)

The concatenation of fine-grained features Ifine and coarse-
grained features Icoarse in the channel dimension is then
provided to the Adaptive Fusion (AF) block. Specifcially,
Fig. 2 shows the pipeline of the AF block.
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Fig. 2. Adaptive fusion block

First, a 1 × 1 convolutional operation can assemble multi-
grained features to higher-level features and decrease number
of channels and parameters for network lightweight, which is
crucial for consumer electronics. Feature I is obtained as

I = f1×1(< Ifine, Icoarse >). (3)

Second, the channel-specific features in I contribute dif-
ferently to the overall goal [29]. We explicitly model the
correlation between channels by three steps and re-scale
feature I with adaptive channel-specific weights. In step one,
the channel-specific descriptor D ∈ RC×1×1 is extracted
by average pooling operation. The i-th element di ∈ D is
obtained by spatially averaging the i-th channel, i.e.,

di =
1

H ×W

H∑
1

W∑
1

Ii. (4)

In step two, down-sampling and up-sampling operations can
filter out unimportant information, i.e.,

D′ = fup (fdown (D)) , (5)

where re-scaling factor s is 16. In step three, D′ is transformed
to channel-specific weights via sigmoid function, i.e.,

A = fsig(D
′). (6)

Finally, A is used to re-scale the corresponding input feature
map I , and the output of the MGR block is obtained with a
residual skip connection [30] as

Iout = A⊗ I + Iin, (7)

where ⊗ is element-wise multiplication.

B. Channel Adaptive Shuffling Block

In existing decoders: i) transposed convolution in early
approaches [4], [14] often cause checkerboard artifacts with
uneven overlap [31]; ii) standard convolution with interpola-
tion operations [16] may suppress high-frequency information;
interpolation algorithms generally adopt one fixed kernel for
the whole image, and cannot adapt to complex conditions;
iii) sub-pixel convolution [32] (pixel shuffling), re-organizes
feature elements and expands spatial extent by reducing chan-
nel dimension; this up-sampling approach shuffles feature
elements in a fixed manner.

Then, we designed the Channel Adaptive Shuffling (CAS)
block shown in Fig. 3 for self-adaptive feature up-sampling.
The low-resolution input feature map for CAS block is Ilow,
representing the concatenation of features from the previous
layer and features from the corresponding encoder layer. First,
Ilow is input to convolutional layer to aggregate concatenated
features. Second, we perform pixel shuffling for the previous
feature map. At this stage, the resolution is scaled up by factor
2 and the channel dimension is reduced by factor 4. To make
the shuffled features more adaptive to generate high-fidelity
image content, informative channels should be emphasized
by being assigned with higher attention scores. Therefore, we
adopt the channel re-weight unit introduced in Section III-A.
Finally, batch normalization and leaky ReLU is used at the
end of CAS block.

Convolution

Pixel Shuffling

Channel  Reweight

Batch Norm

Leaky ReLU

𝐼𝑙𝑜𝑤

𝐼ℎ𝑖𝑔ℎ

Fig. 3. Pipeline of Channel Adaptive Shuffling block.

C. Loss Function

We combine image-level and feature-level loss functions to
optimize the FMGDN. The image-level loss functions include
L1 reconstruction loss for hole regions Lhole and valid regions
Lvalid, Multi-scale Structural SIMilarity (MS-SSIM) loss [33]
Lms and Total Variation (TV) loss LTV , i.e.,

Lhole = E[||(M −Mgt)⊗ (1−Mm)||1],
Lvalid = E[||(M −Mgt)⊗Mm||1],

Lms =
i=N∑
i=1

Wi(1− SSIM(PMcom
i − P

Mgt

i )),

LTV = E[||Mx+1,y
com −Mx,y

com||1 + ||Mx,y+1
com −Mx,y

com||1],
(8)

where M , Mgt, Mcom and Mm denote the image generated
by FMGDN, the ground truth, the composite image of the
generated hole region and original valid region, and the mask
image with 1 representing valid region and 0 representing
hole region. ⊗ is element-wise multiplication. Region-wise L1

loss aims to preserve pixel-wise fidelity. MS-SSIM loss [34]
is based on multi-resolution image pyramid of N levels for
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better image contrast behavior in high-frequency regions. We
adaptively sum the SSIM loss for each pair of image levels,
PM
i and P

Mgt

i , with weight Wi. The level number N and
weights for each level Wi adopt previous settings [33]. ∥∥1 is
L1 Norm (Manhattan norm). TV loss helps to depress gridding
and checkerboard artifacts.

The feature-level loss functions include both high-level
feature reconstruction loss and the style loss [35], defined as: Lfeat = E[||ϕ(M)− ϕ(Mgt)||1 + ||ϕ(Mcom)− ϕ(Mgt)||1],

Lstyle = E[||G(ϕ(M))−G(ϕ(Mgt))||1
+||G(ϕ(Mcom))−G(ϕ(Mgt))||1],

(9)
where ϕ(·) is feature map from the first three intermediate
pooling layers of VGG-16 network [36], pre-trained on Ima-
geNet dataset [37], and G(·) is the Gram matrix of the feature
map. Finally, the overall loss function combines the individual
losses adaptively as follows:

L = λholeLhole + λvalidLvalid + λmsLms

+λTV LTV + λfeatLfeat + λstyleLstyle
, (10)

where the weights are empirically set as λhole = 6, λvalid = 1,
λms = 4, λTV = 0.1, λfeat = 0.05 and λstyle = 120.

Unlike most learning-based inpainting approaches, we do
not include adversarial loss that needs to train at least one
more discriminative network synchronously with the genera-
tive network. Benefitting from specially designed MGR and
CAS blocks, and the FMGDN architecture achieves better
performance with one generative network, which is important
for improving the effectiveness and performance in various
kinds of consumer electronics.

IV. EXPERIMENTS

A. Experimental Design

1) Datasets: We evaluate the proposed FMGDN using three
benchmark datasets from real-world. Note that the images
in these three different datasets are quite ubiquitous and
common in our daily life, so experiments on these dataset
may effectively evaluate FMGDN and baselines when applied
on consumer electronics, which are ubiquitous and common
in our daily life. All images are resized to 256× 256.

• Paris StreetView [38] dataset contains 15,000 images col-
lected using vehicles equipped with cameras and sensors.

• CelebA-HQ [39] dataset contains 30,000 high-resolution
face images with size of 512×512 from various sources.

• Places2 [40] is a large-scale challenging dataset with 400
scene categories from various online platforms, including
photo-sharing websites, social media, and so on.

• Mask dataset [15] consists of 1,2000 different mask
images with irregular holes.

2) Comparison methods: We compare the proposed
FMGDN with seven state-of-the-art methods, including: (1)
GLCIC [13] use local/global discriminators for globally and
locally consistent image completion; (2) CA [16] method,
i.e., generative image inpainting with contextual attention and
a coarse-to-fine architecture; (3) Pconv [15] method, i.e.,
partial convolution, which conditions the filtering operation
on the valid pixels according to the updated mask images;

(4) LBAM [20] method, i.e., learning bidirectional attention
maps for feature re-normalization and mask updating; (5)
RN [27] use region-wise normalization to separately calculate
the statistics in valid region and hole region. (6) DMFN [12]
uses four-way dilated convolutions as the basic generative
block with self-guided regression loss and geometrical align-
ment constraint. (7) MADF [41] use mask-aware dynamic
filtering module to learn multi-scale features with an end-to-
end cascaded refinement architecture.

3) Settings: Experiments are conducted with PyTorch run-
ning on GeForce RTX 3090 GPU. Note that Nvidia GeForce
RTX GPUs are popular consumer-grade graphics cards widely
used in various kinds of consumer electronics. The training
batch size is 16, which can be modified easily to adapt to
equiptments with different computing power. We use the Adam
algorithm [42] to optimize the FMGDN with parameter values
β1 = 0.5 and β2 = 0.9; the learning rate is 0.0001.

B. Quantitative Comparison

We conduct quantitative evaluation experiments with the
proposed FMGDN and the comparison methods in two as-
pects, including irregular masks and fixed rectangle mask.

Irregular masks. Images with irregular holes are one of
the most common cases in photo editing applications of
various consumer electronics. Therefore, we quantitatively
evaluate FMGDN and the comparison methods on images with
different kinds of irregular holes using the metrics PSNR,
SSIM [43], L1, FID [44] and LPIPS [45]. The first three
metrics evaluate the differences between completed images
and ground truth in pixel domain. The last two metrics are
perceptual metrics that measure differences in the deep feature
space. FID and LPIPS metrics are considered closer to human
visual perception. Statistics obtained on Paris StreetView,
CelebA-HQ and Places2 datasets are presented respectively
in Table I, Table II and Table III, including the performance
data for each mask ratio group and average values for the six
mask groups.

From Table I, we observe that the proposed approach
FMGDN performs best in all five metrics on Paris StreetView
dataset. For metric PSNR, FMGDN gets 29.15 on average,
while the second-highest method is MADF with 28.95. For
metric SSIM, FMGDN achieves highest value 0.882, while
the second highest methods are RN and MADF with 0.880.
For metric L1, FMGDN gets the best value 1.74%, while the
second best method MADF gets 1.78%. As Table II shows,
on dataset CelebA-HQ, the proposed approach FMGDN gets
best performances in terms of metrics PSNR, L1 , FID and
LPIPS. For metric SSIM, FMGDN gets the second highest
value 0.902, while MADF gets the highest 0.906. As presented
in Table III, FMGDN gets second or third best values in terms
of PSNR (our 26.86 with RN 27.04), SSIM (our 0.860 with
RN 0.864) and L1 (our 2.25% with RN 2.18%). However,
we get significant advantages for perceptual metrics FID and
LPIPS. For metric FID, FMGDN gets best value 58.71, while
the second best value is 63.72 by method DMFN. For metric
LPIPS, FMGDN gets the lowest value 0.0993, while the
second best method DMFN gets 0.1002. In conclusion, our
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TABLE I
QUANTITATIVE RESULTS FOR PARIS STREETVIEW DATASET. “↑” AND “↓”

INDICATE “HIGHER/LOWER VALUE IS BETTER”. BEST AND SECOND
BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINE, SEPARATELY.

Metric Mask ratio Pconv LBAM RN DMFN MADF MGD

PSNR↑

0-10% 35.57 36.83 37.35 37.29 37.75 37.89
10%-20% 30.23 31.22 32.19 31.54 32.22 32.38
20%-30% 27.29 28.15 29.16 28.34 29.10 29.31
30%-40% 25.23 25.94 26.96 26.11 26.89 27.14
40%-50% 23.56 24.18 25.08 24.31 25.13 25.34
50%-60% 21.40 21.86 22.18 21.96 22.60 22.89
Average 27.21 28.02 28.82 28.26 28.95 29.15

SSIM↑

0-10% 0.972 0.978 0.981 0.981 0.981 0.981
10%-20% 0.929 0.942 0.951 0.949 0.949 0.951
20%-30% 0.898 0.897 0.913 0.908 0.910 0.913
30%-40% 0.824 0.848 0.871 0.863 0.868 0.871
40%-50% 0.767 0.794 0.822 0.811 0.821 0.824
50%-60% 0.692 0.716 0.745 0.732 0.752 0.753
Average 0.843 0.862 0.880 0.874 0.880 0.882

L1(%)↓

0-10% 0.36 0.30 0.28 0.28 0.27 0.27
10%-20% 0.92 0.81 0.71 0.76 0.71 0.70
20%-30% 1.62 1.44 1.27 1.38 1.27 1.25
30%-40% 2.38 2.15 1.90 2.08 1.89 1.85
40%-50% 3.24 2.97 2.67 2.90 2.61 2.56
50%-60% 4.65 4.36 4.17 4.31 3.96 3.83
Average 2.20 2.01 1.83 1.95 1.78 1.74

FID↓

0-10% 13.92 8.39 12.44 7.44 11.54 6.91
10%-20% 34.83 21.86 28.31 19.30 31.74 17.67
20%-30% 59.68 38.35 48.63 33.70 60.19 30.51
30%-40% 85.16 55.44 69.71 48.62 91.53 43.75
40%-50% 113.75 74.25 93.24 65.05 129.17 58.13
50%-60% 113.75 74.25 93.24 91.81 190.19 58.13
Average 76.58 50.19 64.02 44.32 85.73 39.72

LPIPS↓

0-10% 0.0199 0.0142 0.0196 0.0134 0.0174 0.0123
10%-20% 0.0525 0.0389 0.0511 0.0363 0.0487 0.0338
20%-30% 0.0910 0.0707 0.0886 0.0656 0.0904 0.0606
30%-40% 0.1317 0.1060 0.1279 0.0980 0.1373 0.0908
40%-50% 0.1792 0.1474 0.1763 0.1358 0.1910 0.1267
50%-60% 0.2496 0.2151 0.2643 0.2041 0.2853 0.1893
Average 0.1207 0.0987 0.1213 0.0922 0.1284 0.0856

FMGDN generally achieves more stable and better quantitative
values compared with five state-of-the-art methods especially
under perceptual metrics. The results shown that the proposed
FMGDN is effective in capturing semantic information and
reconstructing reasonable image contents, and can adapt to
various kinds of real-world scenarios.

Fixed rectangle mask. GLCIC [13] and CA [16] use a
local discriminator which takes local image patches as input,
so it’s more suitable to train these two methods with regular
masks. Therefore, to make a fair comparison, we train our
model FMGDN, GLCIC method, and CA method with fixed
center rectangle mask. The quantitative evaluation values with
metrics PSNR, SSIM [43], L1, Fid [44] and LPIPS [45] are
listed in Table IV. From Table IV, we can see that FMGDN
gets the best values in most cases, except for dateset Paris
StreetView. Specifically, FMGDN has advantage in terms of
perceptual metrics. The statistics of quantitative measurements
further prove that our FMGDN is capable of generating images
with high fidelity and visually reasonable contents.

Computational complexity. Furthermore, we measure
model complexity with three metrics, including parameter size,
time of generating one 256 × 256 image and MACs (Multiply-
Accumulate Operations) in Table V. Note that the parameter
size in Table V just refers to the generative network. In terms
of processing time, the proposed model FMGDN takes 1.5

TABLE II
QUANTITATIVE RESULTS FOR CELEBA-HQ DATASET. “↑” AND “↓”

INDICATE “HIGHER/LOWER VALUE IS BETTER”.

Metric Mask ratio Pconv LBAM RN DMFN MADF MGD

PSNR↑

0-10% 36.79 38.07 37.64 37.80 39.19 39.12
10%-20% 31.17 32.22 32.84 32.01 33.37 33.33
20%-30% 28.13 29.01 29.70 28.79 30.09 30.12
30%-40% 26.01 26.74 27.32 26.43 27.66 27.80
40%-50% 24.28 24.90 25.28 24.57 25.78 25.90
50%-60% 21.90 22.35 21.99 21.91 23.03 23.15
Average 28.05 28.88 29.13 28.59 29.86 29.90

SSIM↑

0-10% 0.977 0.982 0.982 0.982 0.985 0.984
10%-20% 0.942 0.952 0.957 0.953 0.961 0.959
20%-30% 0.901 0.915 0.926 0.916 0.930 0.927
30%-40% 0.859 0.876 0.889 0.876 0.897 0.893
40%-50% 0.814 0.833 0.846 0.831 0.860 0.854
50%-60% 0.753 0.770 0.771 0.764 0.803 0.795
Average 0.874 0.888 0.895 0.887 0.906 0.902

L1(%)↓

0-10% 0.28 0.24 0.26 0.25 0.21 0.22
10%-20% 0.74 0.65 0.61 0.66 0.56 0.57
20%-30% 1.31 1.17 1.09 1.20 1.02 1.03
30%-40% 1.94 1.76 1.65 1.83 1.56 1.55
40%-50% 2.66 2.44 2.36 2.55 2.18 2.16
50%-60% 3.93 3.70 3.97 3.94 3.41 3.32
Average 1.81 1.66 1.66 1.74 1.49 1.48

FID↓

0-10% 6.00 3.62 5.35 3.89 4.97 3.10
10%-20% 14.84 9.50 12.65 9.91 13.59 8.10
20%-30% 24.97 16.13 22.20 16.77 25.23 14.20
30%-40% 35.74 23.63 32.20 24.85 39.81 21.03
40%-50% 47.17 31.48 42.61 33.73 56.41 29.13
50%-60% 60.96 41.58 58.81 46.64 83.56 39.87
Average 31.62 20.99 28.97 22.63 37.26 19.24

LPIPS↓

0-10% 0.0116 0.0077 0.0124 0.0082 0.0095 0.0065
10%-20% 0.0303 0.0207 0.0320 0.0219 0.0272 0.0178
20%-30% 0.0531 0.0378 0.0558 0.0399 0.0511 0.0328
30%-40% 0.0773 0.0571 0.0819 0.0606 0.0791 0.0497
40%-50% 0.1050 0.0791 0.1131 0.0851 0.1113 0.0700
50%-60% 0.1473 0.1168 0.1755 0.1300 0.1681 0.1073
Average 0.0708 0.0532 0.0785 0.0576 0.0744 0.0474

ms to generate one 256 × 256. The least time-consuming
method is DMFN using 0.54ms for one image. The most
time-consuming method is GLCIC, which takes 214.1 ms for
one image with time-consuming Poisson blending as post-
processing. In terms of model size, FMGDN has 33.1M train-
able parameters, while CA method has minimal parameters,
3.6M, and MADF has maximum parameters, 85.14M. For met-
ric MACs, FMGDN gets the highest value. Although MGD-
Net has more multiply-accumulate operations, it only needs
1.5ms to generate one 256 ×256 image, which is faster than
some methods with lower MACs. We argue that FMGDN is
mostly composed of convolutional operations, where GPU can
optimize to deal with in parallel. In conclusion, FMGDN has
relatively low-level model complexity, but with best perceptual
metrics when it comes to the visual image qualities. Moreover,
the proposed FMGDN can be configured flexibly to adapt to
different situations for various kinds of consumer electronics.

C. Qualitative Results

Irregular masks. Inpainting results on different kinds of
images by FMGDN and baselines are shown in Fig. 4.
We observe that Pconv [15] basically generates semantically
reasonable content, but fails to recover complex structures and
textures. For example, in the first two rows, building windows



SUBMITTED TO IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 7

TABLE III
QUANTITATIVE RESULTS FOR PLACES2 DATASET USING THREE
COMPARISON METHODS AND FMGDN. “↑” AND “↓” INDICATE

“HIGHER/LOWER VALUE IS BETTER”.

Metric Mask ratio Pconv LBAM RN DMFN MADF MGD

PSNR↑

0-10% 33.41 34.73 35.85 35.37 35.71 35.89
10%-20% 27.91 28.99 30.37 29.54 30.02 30.13
20%-30% 24.95 25.84 27.22 26.32 26.88 26.95
30%-40% 22.93 23.67 24.98 24.07 24.69 24.73
40%-50% 21.31 21.93 23.15 22.25 22.92 22.93
50%-60% 19.26 19.69 20.65 19.83 20.55 20.54
Average 24.96 25.81 27.04 26.23 26.80 26.86

SSIM↑

0-10% 0.966 0.973 0.977 0.977 0.977 0.977
10%-20% 0.915 0.930 0.942 0.939 0.939 0.940
20%-30% 0.855 0.876 0.898 0.891 0.893 0.894
30%-40% 0.796 0.820 0.851 0.840 0.844 0.845
40%-50% 0.734 0.760 0.797 0.782 0.792 0.791
50%-60% 0.658 0.678 0.721 0.696 0.722 0.715
Average 0.821 0.839 0.864 0.854 0.861 0.860

L1(%)↓

0-10% 0.46 0.39 0.34 0.36 0.35 0.34
10%-20% 1.20 1.04 0.87 0.96 0.91 0.91
20%-30% 2.10 1.86 1.54 1.72 1.62 1.62
30%-40% 3.06 2.76 2.30 2.58 2.41 2.40
40%-50% 4.14 3.79 3.19 3.59 3.32 3.31
50%-60% 5.87 5.52 4.84 5.38 4.94 4.92
Average 2.81 2.56 2.18 2.43 2.26 2.25

FID↓

0-10% 17.11 10.68 15.73 9.21 13.36 8.56
10%-20% 44.31 28.75 39.34 24.38 37.76 22.57
20%-30% 78.53 52.79 68.97 44.72 72.59 41.06
30%-40% 113.80 79.41 100.40 67.39 112.19 62.05
40%-50% 153.08 110.40 137.46 94.86 156.50 87.04
50%-60% 201.44 154.70 194.62 141.76 215.04 130.98
Average 101.38 72.79 92.75 63.72 101.24 58.71

LPIPS↓

0-10% 0.0226 0.0163 0.0249 0.0145 0.0212 0.0137
10%-20% 0.0597 0.0445 0.0637 0.0390 0.0588 0.0376
20%-30% 0.1049 0.0810 0.1093 0.0707 0.1081 0.0691
30%-40% 0.1512 0.1212 0.1549 0.1060 0.1618 0.1053
40%-50% 0.2019 0.1668 0.2057 0.1476 0.2213 0.1472
50%-60% 0.2753 0.2419 0.2974 0.2237 0.3206 0.2230
Average 0.1359 0.1119 0.1426 0.1002 0.1486 0.0993

TABLE IV
QUANTITATIVE RESULTS WITH FIXED CENTER MASK. “↑” AND “↓”

INDICATE “HIGHER/LOWER VALUE IS BETTER”.

Dataset Paris StreetView CelebA-HQ
Method GLCIC CA MGD GLCIC CA FMGDN
PSNR↑ 26.65 23.16 26.89 26.10 23.64 27.22
SSIM↑ 0.887 0.846 0.885 0.911 0.868 0.914
L1(%)↓ 1.79 2.66 1.76 1.69 2.35 1.49

FID↓ 256.0 111.7 50.0 101.0 52.4 20.5
LPIPS↓ 0.1610 0.1401 0.0937 0.0715 0.0759 0.0400

in green box by Pconv are blurred and twisted. LBAM [20] can
inpaint simple structures and natural faces (second and fourth
rows), but cannot preserve intricate and continuous structures.
The shape of generated lip in the third row and the line in
the last row are not clearly kept. RN [27] synthesizes better
structures but produces blurred textures, such as the building
windows and trees in the first row. DMFN [12] generates clear
structures, but the textures of the roof in the fifth row and

TABLE V
COMPLEXITY COMPARISON. THE LOWEST VALUES ARE MARKED IN BOLD.

Metric GLCIC CA Pconv LBAM RN DMFN MADF FMGDN
Time [ms] 214.1 6.6 0.62 0.76 13.6 0.54 5.2 1.5

Parameters [106] 6.1 3.6 25.78 68.31 11.60 9.04 85.14 33.1
MACs [G] 45.52 22.5 18.95 22.11 54.03 58.83 55.51 146.0

the floor in the last row are distorted. MADF [41] keeps well
structures, but loses fine-detailed textures. By comparison, our
FMGDN generates sharp and consistent structures and fine-
detail textures. For example, the seventh column in Fig. 4
including building windows, facial parts, and contents in
natural images are synthesized with high fidelity. Moreover,
FMGDN captures deep semantic information. For example, in
the fourth row, the right eye produced by FMGDN is the same
color as the visible left eye, which is in line with the goal
of preserving facial symmetry. The other baselines generate
brown eyes, while the visible eye is blue. The qualitative visual
results show that FMGDN can effectively capture high-level
semantics and fill in hole regions with coherent structures and
well-ordered details, and the inpainted results can satisfy the
requirements of consumer electronics users.

Moreover, FMGDN works well for challenging examples
with large missing regions. Fig. 5 illustrates inpainting results
by FMGDN for images where missing pixels take a large
proportion of 40%-60%. As the synthesized images in the
third row show, the proposed FMGDN constructs seman-
tically plausible image contents with consistent structures
in large missing region situations. The results demonstrate
thatFMGDN is effective in capturing global semantics and
local detail features. The good inpainting effect is based on
our well designed Multi-Grained Residual block and Channel
Adaptive Shuffling block, enabling the network to sufficiently
capture hierarchical semantic information and effectively de-
code high-level features to pixel domain self-adaptively, which
is important for various real-world applications of consumer
electronics.

Fixed rectangle mask. Further experiments are performed
with respect to the fixed mask. As shown in the second
row of Fig. 6, the centering 128 × 128 pixels (25%) are
missed, resulting in relatively few immediate neighboring
pixels in center. As shown in the third column of Fig. 6,
GLCIC [13] generates blurred image contents and unnatural
facial parts, while CA [16] improves the sharpness but the
textures are disordered. With well-designed architecture, the
proposed FMGDN generates promising results as shown in the
fifth column of Fig. 6, with the center region filled with well-
ordered textures and sharp structures. For example, in the last
row of Fig. 6, FMGDN generates reasonable facial parts and
well-structured glasses, instead of missed facial components
or only side frame of eyeglasses. The results further show that
FMGDN can effectively capture deep semantics and predict
globally reasonable pixels with the ability of being aware of
contextual information.

D. Ablation Study

MGR block. We train the networks with 2, 4, 6 and 8
MGR blocks using the Paris StreetView dataset. Additionally,
we train the architecture, i.e., Branch-1, with just one fine-
grain branch. The quantitative performance data is listed in
Table VI, which shows that, as the number of MGR blocks
increases, the network has better performance. As shown
in Fig. 7, the network with more MGR blocks constructs
more continuous and clear window structures. Compared with
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(a) Input (b) Pconv (c) LBAM (d) RN (e) DMFN (f) MADF (g) FMGDN (h) GT

Fig. 4. Qualitative visual comparison. Datasets: rows 1–2 show Paris StreetView images; rows 3–4 show CelebA-HQ images; and rows 5–6 show Places2
images. The columns, from left to right, show: (a) input; (b) Pconv [15] results; (c) LBAM [20] results; (d) RN [27] results; (e) DMFN [12] results; (f)
MADF [41] results; (g) our FMGDN results; and (h) ground truth (GT) images. We show zoomed-in patches in the top-right corner via green or red boxes.

Fig. 5. Image inpainting results for images with large missing regions by the proposed FMGDN. The masks are from the 40%-60% ration section. From top
to bottom: ground truth; input images with missing regions marked by white pixels; and inpainting results by FMGDN.

network architecture “Branch-1”, our multi-branch network
architecture achieves better performance, both quantitatively
and qualitatively. We conclude that the design of multi-grained
branches in FMGDN effectively improves image synthesis
capability of an image inpainting network.

CAS block. Fig. 8 shows inpainting results with three up-
sampling blocks, including transposed convolution, standard
convolution with Bilinear interpolation, and our CAS block.
We can observe that the transposed convolution intends to
produce checkerboard artifacts. Bilinear interpolation produces
blurred textures as high-frequency information is lost. CAS

TABLE VI
PERFORMANCE OF ARCHITECTURES WITH DIFFERENT NUMBERS OF

MGR BLOCKS

MGR MGR-2 MGR-4 MGR-6 FMGDN Branch-1
PSNR↑ 28.79 28.89 28.97 29.15 28.85
SSIM↑ 0.878 0.877 0.879 0.882 0.877
L1(%) ↓ 1.83 1.80 1.78 1.74 1.81

block generates images with better visual qualities. This results
show that our design of CAS block is effective in generating
images with sharp and well-ordered structures.
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Fig. 6. Image inpainting results with fixed mask. From left to right: ground
truth; input images with missing regions marked by white pixels; results by
GLCIC [13]; results by CA [16] and results by FMGDN.

MGR-2 MGR-4 MGR-6 MGR-8 Branch-1 Ground Truth

MGD-Net

Tran_conv Bilinear CAS Ground Truth

MGD-Net

Fig. 7. Results for different MGR block settings.

Branch number. In order to study the effect of different
multi-grained branch numbers in the MGR block, we respec-
tively conduct experiments with one branch, two branches, and
three branches on Paris StreetView dataset. For the “1-Branch”
architecture, the dilation rates are set as 1, 2 and 3, while for
the “2-Branch” architecture, the dilation rates are set as 1, 2
and 3 for the fine-grained branch and 3, 5 and 7 for the coarse-
grained branch. For the “3-Branch” architecture, we add a
coarser-grained branch with dilation rates as 5, 7 and 11 based
on the “2-Branches” architecture. As shown in Fig. 9, the “3-
Branch” architecture reconstructs the most similar window to
the ground truth. The three hybrid branches provide a larger
receptive field, which contributes to reconstructing objects
with large size. The quantitative evaluation metrics are listed in
Table VII, where the architecture with three branches achieves
the best performance. Therefore, we conclude that the multi-
grained architecture is effective in synthesizing images with
multi-scaled textures. The more branches we use, the FMGDN
can achieve better results. However, as shown in the last row
in Table VII, the architecture with more branches needs more

MGR-2 MGR-4 MGR-6 MGR-8 Branch-1 Ground Truth

MGD-Net

Tran_conv Bilinear CAS Ground Truth

MGD-Net

Fig. 8. Results for different up-sampling blocks.

space for parameters. The branch number can be set to adapt
to different applications.

TABLE VII
PERFORMANCE OF ARCHITECTURES WITH DIFFERENT NUMBERS OF

MULTI-GRAINED BRANCHES

MGR 1-Branch 2-Branch 3-Branch
PSNR↑ 28.85 29.15 29.23
SSIM↑ 0.877 0.882 0.884
L1(%) ↓ 1.81 1.74 1.72

Parameters 16.3M 33.1M 47.8M

(a)Input (b)1-Branch (c)2-Branch (d)3-Branch (e)GT

Fig. 9. Qualitative visual comparison of FMGDN with different branches.

Dilation setting. For MGR block, we set the dilation rates
in different parallel branches employing a co-prime principle
to avoid gridding artifacts. For the fine-grained branch, we
use relatively small dilation rates for the three sequential
convolution layers, such as 1, 2, 3, which works for extract-
ing fine-scaled features. Relatively, the coarse-grained branch
should apply larger dilation rates, such as 3, 5, 7. There are
various combinations of the dilation rates. To study the effect
of different dilation settings, we fix the fine-grained branch
with dilation rates 1, 2, and 3. Then, we set a coarse-grained
branch with different dilation settings in two independent
networks. One is set as 3,5,7, and we name the architecture as
“Small”. The other is set as 5, 7 and 11, which is named as
“Large” architecture. The quantitative evaluations are listed in
Table VIII. The “Small” architecture and the “Large” architec-
ture get very close evaluations, where the “Large” architecture
obtains better PSNR and SSIM values, while the “Small”
architecture gets a better L1 value. The visual results from
these two architectures are shown in Fig. 10, where “Small”
architecture reconstructs fine-detailed window textures in the
first row marked by green box. For comparison, the “Large”
architecture keeps better global structures in the second row.
Therefore, we conclude that large dilation rates and small
dilation rates have their own advantages and that they can
be set flexibly in our FMGDN according to the requirements
of real-world applications on consumer electronic devices for
balancing bewteen performance and efficiency.

(a) Input (b) Small (c) Large (d) GT

Fig. 10. Qualitative visual comparison of FMGDN with different dilation rate
settings.
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Fig. 11. Results for use cases. Top to bottom: ground truth; input image with
removal region specified by user; and inpainting results of FMGDN.

TABLE VIII
PERFORMANCE OF ARCHITECTURES WITH DIFFERENT DILATION RATES

MGR PSNR↑ SSIM↑ L1(%) ↓
Small 29.15 0.882 1.74
Large 29.18 0.883 1.75

E. Real Use Case

We present six real use cases in Fig. 11, where a user can
specify inpainting regions as desired. The first two columns
of Fig. 11 show examples of photo editing applications where
FMGDN successfully removes the glasses and beard from
human faces. In the middle two columns, FMGDN gener-
ates clean street view images by replacing specified regions
with contextual information. The last two columns show that
FMGDN completes the hole regions with plausible natural
scenery pixels. The real use cases further demonstrate that
FMGDN can be applied to practical cases and synthesize
visually plausible content for object removal.

F. User Study

We conduct our user study experiments with the CelebA-HQ
dataset and involving 20 volunteers. Each volunteer evaluates
20 random groups of images and votes for the “top two
images” exhibiting high visual perceptual qualities, from five
images including the ground truth and the results of our MGD-
Net and the three comparison methods. The five candidate
images are presented in random order. Fig. 12 shows the voting
statistics. Except for ground-truth images, MGD-Net obtains
the highest number of votes compared with the other three
methods. In terms of “top two ranking”, the MGD-Net obtains
votes comparable to votes for the ground truth, suggesting that
MGD-Net generates highly photo-realistic images.

V. CONCLUSION

As for the visual experience enhancement in various kinds
of consumer electronics, we have designed a Flexible Multi-
Grained Dilation Network (FMGDN) to capture multi-grained
information and complete hole regions with semantically and
visually plausible contents. Especially, FMGDN benefits from
its concise and flexible architecture and can be modified for
various kinds of consumer electronics. In future, we will
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Fig. 12. Voting statistics for top-two images on ground truth and inpainting
results from four methods.

combine our network architecture with advanced attention
mechanisms [46] and extend our approach to make it viable for
other computer vision tasks. Besides, as for battery-powered
consumer electronics, we will try to improve the efficiency
of the proposed aproach on consumer electronics based on
dynamic resource scheduling method [47], and combine ad-
vanced computing techniques [48], [49], including computa-
tion offloading and resource allocation techniques [50]–[52],
to balance the performance of image inpainting and energy
consumption. Besides, we will try to improve the ability
of generalization and adaptability for complex application
scenarios of image inpainting on consumer electronics based
on few-short learning techniques [53].
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