
Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning

Ajinkya Tejankar *1 Maziar Sanjabi 2 Qifan Wang 2 Sinong Wang 2 Hamed Firooz 2

Hamed Pirsiavash 1 Liang Tan 2

1 University of California, Davis 2 Meta AI

Abstract

Recently, self-supervised learning (SSL) was shown to
be vulnerable to patch-based data poisoning backdoor at-
tacks. It was shown that an adversary can poison a small
part of the unlabeled data so that when a victim trains
an SSL model on it, the final model will have a back-
door that the adversary can exploit. This work aims to
defend self-supervised learning against such attacks. We
use a three-step defense pipeline, where we first train a
model on the poisoned data. In the second step, our pro-
posed defense algorithm (PatchSearch) uses the trained
model to search the training data for poisoned samples
and removes them from the training set. In the third step,
a final model is trained on the cleaned-up training set.
Our results show that PatchSearch is an effective defense.
As an example, it improves a model’s accuracy on im-
ages containing the trigger from 38.2% to 63.7% which is
very close to the clean model’s accuracy, 64.6%. More-
over, we show that PatchSearch outperforms baselines and
state-of-the-art defense approaches including those using
additional clean, trusted data. Our code is available at
https://github.com/UCDvision/PatchSearch

1. Introduction
Self-supervised learning (SSL) promises to free deep

learning models from the constraints of human supervision.
It allows models to be trained on cheap and abundantly
available unlabeled, uncurated data [22]. A model trained
this way can then be used as a general feature extractor for
various downstream tasks with a small amount of labeled
data. However, recent works [8, 44] have shown that un-
curated data collection pipelines are vulnerable to data poi-
soning backdoor attacks.

Data poisoning backdoor attacks on self-supervised
learning (SSL) [44] work as follows. An attacker intro-
duces “backdoors” in a model by simply injecting a few
carefully crafted samples called “poisons” in the unlabeled

*Corresponding author <atejankar@ucdavis.edu>. Work
done while interning at Meta AI.

training dataset. Poisoning is done by pasting an attacker
chosen “trigger” patch on a few images of a “target” cat-
egory. A model pre-trained with such a poisoned data be-
haves similar to a non-poisoned/clean model in all cases ex-
cept when it is shown an image with a trigger. Then, the
model will cause a downstream classifier trained on top of
it to mis-classify the image as the target category. This types
of attacks are sneaky and hard to detect since the trigger is
like an attacker’s secret key that unlocks a failure mode of
the model. Our goal in this work is to defend SSL models
against such attacks.

While there have been many works for defending su-
pervised learning against backdoor attacks [34], many of
them directly rely upon the availability of labels. There-
fore, such methods are hard to adopt in SSL where there are
no labels. However, a few supervised defenses [5, 28] can
be applied to SSL with some modifications. One such de-
fense, proposed in [28], shows the effectiveness of applying
a strong augmentation like CutMix [55]. Hence, we adopt
i-CutMix [33], CutMix modified for SSL, as a baseline. We
show that i-CutMix is indeed an effective defense that addi-
tionally improves the overall performance of SSL models.

Another defense that does not require labels was pro-
posed in [44]. While this defense successfully mitigates the
attack, its success is dependent on a significant amount of
clean, trusted data. However, access to such data may not
be practical in many cases. Even if available, the trusted
data may have its own set of biases depending on its sources
which might bias the defended model. Hence, our goal is to
design a defense that does not need any trusted data.

In this paper, we propose PatchSearch, which aims at
identifying poisoned samples in the training set without ac-
cess to trusted data or image labels. One way to identify a
poisoned sample is to check if it contains a patch that be-
haves similar to the trigger. A characteristic of a trigger is
that it occupies a relatively small area in an image (≈ 5%)
but heavily influences a model’s output. Hence, we can use
an input explanation method like Grad-CAM [45] to high-
light the trigger. Note that this idea has been explored in
supervised defenses [14, 16]. However, Grad-CAM relies
on a supervised classifier which is unavailable in our case.

ar
X

iv
:2

30
4.

01
48

2v
1

 [
cs

.C
V

]
 4

 A
pr

 2
02

3

https://github.com/UCDvision/PatchSearch

𝑔

𝑐!

𝑘-means

𝑋

𝑐"

𝑐#

𝑐$

𝑐"

candidate trigger 𝑡%

c. calculate poison score of 𝒙𝒊

𝑐!

𝑐#

𝑐$

poison score = 2

flip test set
original

assignments
flip test set +

candidate trigger
new

assignments

original

flipped

flipped
𝑐"

𝑐"

𝑐$

𝑋& ⊕ 𝑡%𝑋&

d. iterative search

randomly
sample 𝒔

images from 𝒄𝒊

calculate
poison

scores of s

score 𝒄𝒊 as
max of all
scores in it

prune 𝒓 fraction
from 𝑪 with least

scores

pick 𝒄𝒊
from 𝑪

increment 𝒊 from 𝟏 → |𝑪|

rank all
images and
pick top-𝑘if 𝑪 empty

𝑪
clusters

Grad-CAM

extract max
𝑤	×𝑤

𝑥%

𝑔

b. get candidate trigger 𝒕𝒊	from 𝒙𝒊

assign
cluster

𝑋

𝑋(

predict 0

top-𝑘	poisons

ℎ

predict 1

ℎ

𝑋 ⊕

e. poison classifiera. assign clusters

Figure 1. Illustration of PatchSearch. SSL has been shown to group visually similar images in [4, 47], and [44] showed that poisoned
images are close to each other in the representation space. Hence, the very first step (a) is to cluster the training dataset. We use clustering to
locate the trigger and to efficiently search for poisoned samples. The second step locates the candidate trigger in an image with Grad-CAM
(b) and assigns a poison score to it (c). The third step (d) searches for highly poisonous clusters and only scores images in them. This step
outputs a few highly poisonous images which are used in the fourth and final step (e) to train a more accurate poison classifier.

This is a key problem that we solve with k-means cluster-
ing. An SSL model is first trained on the poisoned data and
its representations are used to cluster the training set. SSL
has been shown to group visually similar images in [4, 47],
and [44] showed that poisoned images are close to each
other in the representation space. Hence, we expect poi-
soned images to be grouped together and the trigger to be
the cause of this grouping. Therefore, cluster centers pro-
duced by k-means can be used as classifier weights in place
of a supervised classifier in Grad-CAM. Finally, once we
have located a salient patch, we can quantify how much it
behaves like a trigger by pasting it on a few random images,
and counting how many of them get assigned to the cluster
of the patch (Figure 1 (c)). A similar idea has been explored
in [14], but unlike ours, it requires access to trusted data, it
is a supervised defense, and it operates during test time.

One can use the above process of assigning poison scores
to rank the entire training set and then treat the top ranked
images as poisonous. However, our experiments show that
in some cases, this poison detection system has very low
precision at high recalls. Further, processing all images is
redundant since only a few samples are actually poisonous.
For instance, there can be as few as 650 poisons in a dataset
of 127K samples (≈ 0.5%) in our experiments. Hence, we
design an iterative search process that focuses on finding

highly poisonous clusters and only scores images in them
(Figure 1 (d)). The results of iterative search are a few but
highly poisonous samples. These are then used in the next
step to build a poison classifier which can identify poisons
more accurately. This results in a poison detection system
with about 55% precision and about 98% recall in average.

In summary, we propose PatchSearch, a novel de-
fense algorithm that defends self-supervised learning mod-
els against patch based data poisoning backdoor attacks by
efficiently identifying and filtering out poisoned samples.
We also propose to apply i-CutMix [33] augmentation as a
simple but effective defense. Our results indicate that Patch-
Search is better than both the trusted data based defense
from [44] and i-CutMix. Further, we show that i-CutMix
and PatchSearch are complementary to each other and com-
bining them results in a model with an improved overall
performance while significantly mitigating the attack.

2. Related Work

Self-supervised learning. The goal of self-supervised
learning (SSL) is to learn representations from uncurated
and unlabeled data. It achieves this with a “pretext task”
that is derived from the data itself without any human an-
notations [18, 20, 39, 54, 57]. MoCo [26] is a popular SSL
method in which we learn by classifying a pair of positives,

two augmentations of the same image, against pairs of neg-
atives, augmentations from different images. This is further
explored in [9, 11, 12, 50]. BYOL [23] showed that it is
possible to train the model without negatives. This was im-
proved in [47, 48].

Backdoor attacks and defenses for supervised learn-
ing. The goal of these attacks is to cause a model to
misclassify images containing an attacker chosen trigger.
The attack is conducted by poisoning the training dataset.
These attacks were first studied for supervised learning in
[24,37,38]. More advanced attacks that are harder to detect
have been proposed in [43, 46, 52]. We specifically study
patch based [7, 42] version of backdoor attacks.

There is a large literature devoted to defending against
patch-based attacks on supervised learning [34]. Follow-
ing are a few important paradigms of defenses. (1) pre-
processing the input [16]: remove the trigger from a given
input before forwarding it through the model. (2) trigger
synthesis [53]: explicitly identify the trigger and then mod-
ify the model to ignore it. (3) model diagnostics [31,32,58]:
classify whether a given model is poisoned or not. (4) model
reconstruction [36]: directly modify the model weights
such that the trigger cannot have any impact on it. (5) back-
door suppression [5, 28, 29, 35]: modify the training proce-
dure of the model such that backdoors don’t get learned by
the model in the first place. We show that a defense from
this paradigm in the form of i-CutMix augmentation [33] is
a simple and effective baseline. Note that i-CutMix [33] is
a version of CutMix [55] that does not need labels. More-
over, strong augmentations like CutMix were shown to be
better compared to other backdoor suppression techniques
like [28] which are based on differential privacy. (6) train-
ing sample filtering [10, 30, 51, 56]: first identify the poi-
soned samples, then filter them out of the training dataset,
and finally train a new model on the resulting clean dataset.
This is also the paradigm of our defense. (7) testing sample
filtering [14, 19]: identify poisoned samples during the in-
ference phase of a model and prevent them from being for-
warded through the model. Similar to these works [14, 16]
we use Grad-CAM [45] to locate the trigger, but without ac-
cess to a supervised classifier we calculate Grad-CAM with
a k-means based classifier. Further, similar to ours [14]
pastes the located trigger on a few images to calculate its
poisonousness, but they assume that these images are from
a trusted source. Moreover, unlike [14, 16], ours is a train
time filtering defense.

Finally, above supervised defenses cannot be directly
adopted to self-supervised learning. For instance, consider
Activation Clustering [10] which uses the idea that poisoned
images cluster together. However, their full idea is to per-
form 2-way clustering within each class, and consider a
class as poisoned if the 2-way clustering is imbalanced. In
the absence of labels, this defense is not applicable in SSL.

Data poisoning backdoor attacks and their defenses
for self/weakly supervised learning. These attacks were
first studied for self-supervised learning recently in [44].
The work also proposed a defense but it requires access to
a non-trivial amount of trusted data. Unlike this defense,
PatchSearch does not require any trusted data. Further, [8]
showed that weakly-supervised models like CLIP [40] that
use uncurated data can be attacked.

3. Threat Model

We adopt the backdoor attack threat model proposed
in [44]. The attacker is interested in altering the output of
a classifier trained on top of a self-supervised model for a
downstream task. The attacker’s objective is twofold. First,
insert a backdoor into the self-supervised model such that
the downstream classifier mis-classifies an incoming image
as the target category if it contains the attacker chosen trig-
ger. Second, hide the attack by making sure that the accu-
racy of the downstream classifier is similar to a classifier
trained on top of a clean model if the image does not con-
tain the trigger. The attacker achieves these objectives by
“data poisoning” where a small trigger patch, fixed before-
hand, is pasted on a few images of the target category which
is also chosen by the attacker. The hypothesis is that the
SSL method associates the trigger with the target category
resulting in a successful attack. Given this attack, the de-
fender’s goal is to detect and neutralize it without affecting
the overall performance of the model. The defender must
do this without knowing the trigger or the target category
and without any access to trusted data or image labels.

4. Defending with PatchSearch

The goal of PatchSearch is to identify the poisonous
samples in the training set and filter them out. We do this by
first training an SSL model on the poisonous data and using
it to identify the poisonous samples. The cleaned up train-
ing data is then used to train a final, backdoor-free model.
Note that the architecture and the SSL method used for the
final model need not be the same as the model used during
defense. In fact, we show that using an easy to attack model
during defense allows PatchSearch to find the poisons more
easily. There are four components of PatchSearch as illus-
trated in Figure 1. (1) Cluster the dataset. (2) Assign a poi-
son score to a given image. (3) Efficiently search for a few
but highly poisonous samples. (4) Train a poison classifier
to find poisons with high recall.

We are given an unlabeled dataset X with images
{xi}

N
i=1. First, we cluster the representations of X into l

clusters with k-means to get cluster centers and cluster as-
signments (xi, yi) where yi ∈ {c1...cl} is the cluster label
(Figure 1 (a)). The resulting clusters are used for locating
candidate triggers and to efficiently search for poisons.

Scoring an image. The goal is to quantify the poi-
sonousness of a given image by assigning a poison score
to it. The steps for this are described next and illustrated in
Figures 1 (b) and 1 (c). We use the cluster centers as clas-
sification weights by calculating cosine similarity between
xi and cluster centers, and use yi as the label to calculate
Grad-CAM for xi. The resulting heatmap is used to extract
a candidate trigger ti which is a w × w patch that contains
the highest heatmap values. We then choose a set of images
called flip test set Xf , paste ti on those, forward through the
model and get their cluster assignments. Finally, the poison
score of ti or xi is the number of images in Xf whose clus-
ter assignments flipped to that of xi. We ensure that the flip
test set is difficult to flip by sampling a few images per clus-
ter that are closest to their respective cluster centers. Note
that all flip set images do not need to be clean.

Iterative search. In this phase, the goal is to efficiently
find a few but highly poisonous images. Hence, instead of
assigning poison scores to the entire set X , we propose a
greedy search strategy that focuses on scoring images from
poisonous clusters. Concretely, we process s random sam-
ples per cluster in an iteration (Figure 1 (d)). At the end
of an iteration, each cluster is assigned a poison score as
the highest poison score of the images in it. Since poisoned
images cluster together, just a single iteration should give
us a good estimate of clusters that are likely to contain poi-
sons. We use this insight to focus on highly poisonous clus-
ter by removing (pruning) a fraction r of the clusters with
least poison scores in each iteration. The algorithm stops
when there are no more clusters to be processed. Finally,
all scored images are ranked in the decreasing order of their
scores and the top-k ranked images are used in the next step.

Poison classification. Here, the goal is to find as many
poisons as possible. We do this by building a classifier h to
identify the top-k ranked patches found in the previous step
(Figure 1 (e)). Specifically, given the training dataset X and
a set P of k patches, we construct poisoned training set Xp

by randomly sampling a patch pj from P and pasting it at a
random location on xi. Samples from X are assigned label
“0” (non-poisonous) while samples from Xp are assigned
the label “1” (poisonous). However, this labeling scheme is
noisy since there are poisoned images in X which will be
wrongly assigned the label 0. One way to reduce noise is to
not include images in X with high poison scores. Another
way is to prevent the model from overfitting to the noise
by using strong augmentations and early stopping. How-
ever, early stopping requires access to validation data which
is unavailable. Hence, we construct a proxy validation set
by using the top-k samples with label 1 (poisonous) and
bottom-k samples with label 0 (non-poisonous). Note that
these samples are excluded from the training set. We stop
training the classifier if F1 score on the proxy validation set
does not change for 10 evaluation intervals. Finally, the re-

sulting binary classifier is applied to X and any images with
“1” (poisonous) label are removed from the dataset.

5. Experiments
We follow the experimentation setup proposed in [44].
Datasets. We use ImageNet-100 dataset [49], which

contains images of 100 randomly sampled classes from the
1000 classes of ImageNet [41]. The train set has about
127K samples while the validation set has 5K samples.

Architectures and self-supervised training. In addi-
tion to ResNet-18 [27], we also conduct experiments on
ViT-B [17] with MoCo-v3 [13] and MAE [25]. Unlike [44],
we only consider ResNet-18 with MoCo-v2 [12] and BYOL
[23] since we find that older methods like Jigsaw [39] and
RotNet [20] have significantly worse clean accuracies com-
pared to MoCo-v2 and BYOL. For the code and parameters,
we follow MoCo-v3 [13] for ViT-B, and [44] for ResNet-18.
Finally, implementation of i-CutMix and its hyperparame-
ter values follow the official implementation from [33].

Evaluation. We train a linear layer on top of a pre-
trained models with 1% of randomly sampled, clean and
labeled training set. To account for randomness, we re-
port results averaged over 5 runs with different seeds. We
use the following metrics over the validation set to report
model performance: accuracy (Acc), count of False Pos-
itives (FP) for the target category, and attack success rate
(ASR) as the percentage of FP (FP ∗ 100/4950). Note that
maximum FP is 4950 (50 samples/category × 99 incorrect
categories). The metrics are reported for the validation set
with and without trigger pasted on it, referred to as Patched
Data and Clean Data. See Section A.2 of the Appendix for
more details.

Attack. We consider 10 different target categories and
trigger pairs used in [44]. Unless mentioned otherwise, all
results are averaged over the 10 target categories. Further,
following [44], we consider 0.5% and 1.0% poison injection
rates which translate to 50% and 100% images being poi-
soned for a target category. Poisons are generated according
to [1, 44] (see Figure 2 for an example). The pasted trigger
size is 50x50 (≈ 5% of the image area) and it is pasted at
a random location in the image while leaving a margin of
25% on all sides of the image.

PatchSearch. Grad-CAM implementation is used from
[21]. Unless mentioned, we run the PatchSearch with fol-
lowing parameters: number of clusters l = 1000, patch size
w = 60, flip test set size = 1000, samples per cluster s = 2,
and clusters to prune per iteration r = 25%. This results in
about 8K (6%) training set images being scored. The archi-
tecture of the poison classifier is based on ResNet-18 [27]
but uses fewer parameters per layer. We use top-20 poi-
sons to train the classifier, and remove top 10% of poisonous
samples to reduce noise in the dataset. We use strong aug-
mentations proposed in MoCo-v2 [12] and randomly resize

top-20 Rec. Prec. Total
Model Acc (%) (%) (%) Rem.

BYOL, ResNet-18, 0.5% 99.5 98.0 58.8 1114.6
MoCo-v3, ViT-B, 0.5% 96.5 98.8 48.3 1567.0
MoCo-v3, ViT-B, 1.0% 97.5 99.0 59.5 2368.3

Table 1. Poison detection results. We find that iterative search has
high top-20 Acc which is the accuracy of finding poisons in top-20
ranked images. In the right 3 columns, we show the effectiveness
of the poison classification model at filtering out the poisons. Rec.
is recall, Prec. is precision, while Total Rem. is the total number
of samples removed by the classifier. We can see that the classifier
can identify most of the poisons since recall is ≈ 98%. Note that
removing a small number of clean images does not significantly
damage the final SSL model as shown in Table 2.

Figure 2. Top ranked poisonous and non-poisonous images. We
visualize a few top ranked poisonous (1st row) and non-poisonous
(2nd row) images found by PatchSearch for BYOL, ResNet-18,
poison rate 0.5% and target category Tabby Cat.

the patch between 20x20 and 80x80 (where input is w × w
and default w = 60). The classifier is evaluated every 20
iterations with max 2K iterations, and training is stopped if
F1 score on the proxy val set does not change for 10 eval-
uations. Finally, in order to improve the stability of results,
we train 5 different classifiers and average their predictions.
See Section A.2 in Appendix for more details.

5.1. Main Results

Poison detection results of PatchSearch. We report
the results of poison detection for PatchSearch at different
stages in Table 1. We can see that at the end of iterative
search, most of the top-20 images are indeed poisonous. We
can also see that poison classification leads to very high re-
call with acceptable precision. Finally, we visualize a few
top ranked poisonous and non-poisonous images found with
PatchSearch in Figure 2.

Effectiveness of PatchSearch and i-CutMix. Table 2
lists the results of using i-CutMix and PatchSearch for de-
fending against backdoor attacks on 4 different settings.
Note that we make it easier for PatchSearch to find poi-
sons by training an easy to attack model during defense,
and since i-CutMix can suppress the attack, we use mod-
els trained without it during PatchSearch. Similarly, we
find that the attack is not strong enough to be detectable
by PatchSearch for ResNet-18 and MoCo-v2 models (Ta-

ble A5). Therefore, we use the dataset filtered by Patch-
Search with ViT-B, MoCo-v3 models. Our results indicate
that i-CutMix not only improves the clean accuracy of the
models but also reduces the attack effectiveness. However,
i-CutMix cannot fully remove the effect of poisoning and it
suppresses the learning of backdoor without explicitly iden-
tifying poisons. Here, PatchSearch is a good alternative,
which not only significantly suppresses the attack, but also
identifies poisoned samples that can be verified by the de-
fender to detect an attack. This may have value in some
applications where tracking the source of poisoned samples
is important. Finally, the two defenses are complementary
to each other, and their combination results in a model that
behaves very close to a clean model. PatchSearch removes
most poisoned samples while i-CutMix suppresses the ef-
fect of some remaining ones. Detailed results including per
category results, and mean and variance information can be
found in Section A.3 in Appendix.

Comparison with trusted data defense. Table 3 com-
pares PatchSearch to the trusted data defense from [44].
Their defense trains a student model from a backdoored
teacher with knowledge distillation (KD) [4] on poison-
free, trusted data. However, trusted data can be difficult
to acquire in SSL and may have its own set of biases. The
results in Table 3 show that PatchSearch offers a good trade-
off between accuracy and FP despite not using any trusted
data. Compared to KD with 25% trusted data, which may
not be practical in many cases, PatchSearch is better than
KD by ≈ 4 points on clean and patched accuracies at the
cost of a slightly higher FP.

Finetuning as a defense. Since the downstream task
data is clean and labeled, a very simple defense strategy
would be to finetune SSL models on it instead of only train-
ing a linear layer. Hence, we compare finetuning with our
defense in Table 4. We find that the attack with linear prob-
ing increases the FP from 17 to 1708 while the attack with
finetuning the whole model increases the FP from 18 to 685.
We see that 685 is still much higher than 18, so the attack
is still strong with finetuning the whole model. Obviously,
one can do finetuning with a very large learning rate to for-
get the effect of poisoning, but that reduces the accuracy of
the model due to overfitting to the downstream task and for-
getting the pretraining. Further, with finetuning, different
model weights need to be stored for different downstream
tasks instead of a single general model, which may not be
desirable. Moreover, in settings like few shot learning, the
available data can be too little for effective finetuning. Fi-
nally, the results also show that all three defenses, Patch-
Search, i-CutMix, and finetuning, are complementary to
each other and can be combined to get a favorable trade-
off between accuracy (Acc) and FP (last row of Table 4).

Backdoored MAE vs. defended MoCo-v3. The re-
sults from [44] indicate that MAE is robust against back-

Model Type
Clean Data Patched Data Clean Data Patched Data

Acc FP ASR Acc FP ASR Acc FP ASR Acc FP ASR

ViT-B MoCo-v3, poison rate 0.5% MoCo-v3, poison rate 1.0%

Clean 70.5 18.5 0.4 64.6 27.2 0.5 70.5 18.5 0.4 64.7 27.2 0.5
Clean + i-CutMix 75.6 15.6 0.3 74.4 14.6 0.3 75.6 15.6 0.3 74.4 14.6 0.3
Backdoored 70.6 17.4 0.4 46.9 1708.9 34.5 70.7 14.8 0.3 37.7 2535.9 51.2
Backdoored + i-CutMix 75.6 14.9 0.3 72.2 242.2 4.9 75.5 12.5 0.3 70.2 434.2 8.8
PatchSearch 70.2 23.1 0.5 64.5 39.8 0.8 70.1 43.4 0.9 63.7 76.0 1.5
PatchSearch + i-CutMix 75.2 19.7 0.4 74.2 19.0 0.4 75.0 39.0 0.8 74.0 41.4 0.8

ResNet-18 MoCo-v2, poison rate 0.5% BYOL, poison rate 0.5%

Clean 49.7 34.0 0.7 46.5 35.4 0.7 65.7 20.6 0.4 60.6 24.8 0.5
Clean + i-CutMix 55.9 26.3 0.5 54.3 27.1 0.5 65.8 20.5 0.4 63.7 19.6 0.4
Backdoored 50.0 27.2 0.5 40.9 703.3 14.2 66.5 18.6 0.4 35.3 2079.6 42.0
Backdoored + i-CutMix 55.4 24.4 0.5 53.0 124.0 2.5 67.0 18.5 0.4 61.0 365.3 7.4
PatchSearch 49.7 33.1 0.7 46.3 37.2 0.8 66.4 22.9 0.5 61.5 33.4 0.7
PatchSearch + i-CutMix 55.3 30.6 0.6 53.8 29.2 0.6 66.8 22.4 0.5 64.5 22.5 0.5

Table 2. Defense results. We compare clean, backdoored, and defended models in different configurations. Acc is the accuracy on
validation set, FP is the number of false positives for the target category, and ASR is FP as percentage. All results are averaged over 5
evaluation runs and 10 categories. We observe the following: (1) Presence of i-CutMix significantly boosts clean accuracy for models
trained with MoCo, but this boost is small for BYOL models. (2) While i-CutMix reduces the effectiveness of attacks in all cases, there is
still room for improvement. (3) PatchSearch alone can significantly mitigate backdoor attacks. (4) patched accuracies of models defended
with PatchSearch + i-CutMix are very close to clean models in all cases. See Section A.3 for detailed, category-wise results.

Model Trusted
Data

Clean Data Patched Data

Acc FP Acc FP

Clean 100% 49.9 23.0 47.0 22.8
Backdoored 0% 50.1 26.2 31.8 1683.2
KD Defense 25% 44.6 34.5 42.0 37.9
KD Defense 10% 38.3 40.5 35.7 44.8
KD Defense 5% 32.1 41.0 29.4 53.7
PatchSearch 0% 49.4 40.1 45.9 50.3

Table 3. Comparison with trusted-data defense. We compare
PatchSearch with the trusted data and knowledge distillation (KD)
defense [44]. For a fair comparison, we use the setting from [44]
without i-CutMix: ResNet-18, MoCo-v2, and poison rate 1.0%.
All results except the last row are from [44]. We find that despite
not relying on any trusted data, our defense can suppress the attack
to the level of KD + 5% trusted data. Moreover, our model has
significantly higher accuracies: 49.4% vs 32.1% on clean data and
45.9% vs 29.4% on patched data. Compared to KD + 25% trusted
data, our model has higher accuracies with only slightly higher FP.

door attacks. However, there are a few confounding fac-
tors such as finetuning and differences in model architec-
ture which need more investigation. We compare finetuned
ViT-B models trained with MoCo-v3 and MAE in Table 5.
We find that MoCo-v3 defended with PatchSearch and i-
CutMix is better than MAE both in terms of Acc and FP for
1% labeled finetuning data, but MAE quickly catches up in

Clean Data Patched Data

Evaluation Acc FP Acc FP

Backdoored
Linear 70.6 17.4 46.9 1708.9
Finetuned 72.2 18.2 63.3 685.8

PatchSearch + i-CutMix
Linear 75.2 19.7 74.2 19.0
Finetuned 78.1 16.9 76.6 16.8

Table 4. Finetuning as defense. We explore finetuning an en-
tire model on the downstream dataset as a defense. While not as
good as PatchSearch, we find that finetuning can mitigate the at-
tack. However, the model loses its appeal as a general-purpose
backbone and becomes specific to a single downstream task. Fi-
nally, note that finetuning is complementary to PatchSearch and
i-CutMix. Setting: ViT-B, MoCo-v3, and poison rate 0.5%.

the 10% regime. It is possible that these observations are
specific to our dataset or model training setup. Hence, we
show a similar pattern even for officially pre-trained [2, 3]
(on ImageNet-1000) models in Table 6.

Attack on a downstream task. Following [44], so far
we have only considered the case where evaluation dataset
is a subset of the training dataset. However, SSL models
are intended to be used for downstream datasets that are
different from the pre-training dataset. Hence, we show in
Table 7 that it is possible to attack one of the categories used

Clean Data Patched Data

Method Acc FP Acc FP

Finetuned with 1% labeled data
MAE 65.7 18.7 53.8 97.6
MoCo-v3 78.2 20.2 76.8 17.1

Finetuned with 10% labeled data
MAE 84.0 9.5 75.6 40.1
MoCo-v3 84.9 11.5. 83.0 10.8

Table 5. Backdoored MAE vs. defended MoCo-v3. While the
inherent robustness of MAE to backdoor attacks [44] is appeal-
ing, we show that a properly defended MoCo-v3 model has better
clean accuracy and lower FP compared with a backdoored MAE.
Setting: ViT-B, poison rate 0.5%, and average of 4 target cate-
gories (Rottweiler, Tabby Cat, Ambulance, and Laptop).

Finetuning Data
Method 1% 10% 100% 100%

MAE 51.5 73.0 83.5 83.6 [25]
MoCo-v3 64.5 74.2 83.0 83.2 [25]

Table 6. MoCo-v3 is better than MAE in finetuning on less
data. It is possible that observations in Table 5 are specific to
our dataset or model training setup. Hence, we show that finetun-
ing official, unlabeled ImageNet-1K pre-trained, ViT-B models for
MAE and MoCo-v3 still results in MoCo-v3 outperforming MAE
in the 1% regime. However, MAE catches up in 10% and 100%
regimes. Note that only this table uses the ImageNet-1K dataset.

Model Clean Data Patched Data

Acc FP Acc FP

Clean 47.6 33.8 39.4 28.0
Backdoored 47.9 27.5 12.4 3127.3
PatchSearch 47.4 35.0 40.7 32.3

Table 7. Attack on downstream Food101 classification. We
choose a target category from Food101 [6] dataset, poison 700 of
its images, and add the poisoned images to the pre-training dataset
(ImageNet-100). The models are evaluated on Food101 that has
5050 val images in total (50 val images per class × 101 classes).
We find that the attack is successful and also that PatchSearch can
defend against the attack. Setting: BYOL & ResNet-18. See Table
A7 of Appendix for detailed results.

in the downstream task of Food101 [6] classification. See
Section A.1 and Table A7 of Appendix for more details.

5.2. Ablations

i-CutMix. It is interesting that a method as simple as
i-CutMix can be a good defense. Therefore, we attempt to
understand which components of i-CutMix make it a good
defense. i-CutMix has two components: creating a com-
posite image by pasting a random crop from a random im-
age, and replacing the original one-hot loss with a weighted
one. The weights are in proportion to the percentages of the

Clean Data Patched Data

Experiment Acc FP Acc FP

No i-CutMix 70.5 24.8 42.9 1412.4
i-CutMix 75.6 28.0 70.5 268.4

+ remove weighted loss 71.4 26.4 68.7 104.2
+ paste black box 71.5 24.6 42.3 1333.0
+ paste random noise 70.5 24.2 46.7 1480.0

Table 8. Analysis of i-CutMix. Removing weighted loss means
that we use one-hot loss instead of the weighted one. We find
that simply pasting crops from other images helps greatly, while
the weighted loss term can additionally improve the accuracy. We
believe the reason is that random crop pasting forces the model to
make decisions based on the entire image instead of small patches.
We attempt to visualize this in Figure 3. Note that pasting black
box is effectively CutOut augmentation [15] and pasting gaussian
noise box is effectively RandomErase augmentation [59]. Setting:
ViT-B, MoCo-v3, poison rate 0.5%, target category Rottweiler.

w
/o

 i-
Cu

tM
ix

w
ith

 i-
Cu

tM
ix

FP

FP

Chime

690

46

Papillon

170

49

Meerkat

356

53

Shih Tzu

246

60

Bannister

190

111

Figure 3. Effect of i-CutMix on potency of patches. We hypoth-
esize that i-CutMix encourages the model to use global features
rather than focusing on small regions. To explore this, we use
PatchSearch as an interpretation algorithm and analyze the impact
of i-CutMix on clean patches. We use a clean model to calcu-
late FP of all clean training images with PatchSearch (no iterative
search) and use the resulting FP as potency score. FP for each cat-
egory is calculated as the max FP of all patches in it (shown below
images). We find that i-CutMix suppresses the impact of individ-
ual patches (resulting in smaller potency score), which is aligned
with our hypothesis. The total potency (sum of FP) of patches
from all categories is reduced by 71.3% for BYOL, ResNet-18
and 45.4% for MoCo-v3, ViT-B. We show images for five random
categories with and without i-CutMix (BYOL, ResNet-18).

mixed images. We observe the effect of these components
in Table 8. We can also get an insight into the working of
i-CutMix by using PatchSearch as an interpretation algo-
rithm. See Figure 3.

Effect of w. An important hyperparameter of Patch-
Search is w which controls the size of the extracted can-
didate trigger. Since the defender does not know the size
of the trigger, wrong choice of w can lead to poor poison
detection performance as shown in Figure 4. However, it is
possible to automate the process of finding a good value for
w. We know that if the choice of w is wrong, most poison

10 12 18 27 37 52 73 101 143 200
w

0

20

40

60

80

100

Top-20 Acc
RSD

MoCo-v3 Rottweiler
MoCo-v3 Ambulance

BYOL Rottweiler
BYOL Ambulance

Figure 4. Effect of w. We plot the top-20 Acc against w values
sampled uniformly in log-space from 10 to 200. We find highest
accuracies for w near 50 which is the actual trigger size. However,
the defender does not know the actual trigger size. Hence, we pro-
pose relative standard deviation (RSD) of the population of poison
scores as a heuristic to pick w. RSD is standard deviation divided
by the mean. In all cases, w with highest RSD (marked with ★ in
the figure) also corresponds to the highest top-20 accuracy.

scores will be similar. Hence, the w resulting in high vari-
ance in poisons scores should be closer to actual trigger size
used by the attacker. However, we need to adjust the scale
of the variance with mean since different w values result in
populations with different scales of scores. Hence, we use
relative standard deviation (RSD 1), which is standard devi-
ation divided by the mean. Figure 4 shows that picking the
w with highest RSD also results in highest top-20 accuracy.
Therefore, a defender can try different values of w and pick
the one with highest RSD without making any assumptions
about the trigger size.

Other ablations. In Table 9, we explore a stronger form
of attack, where the trigger is pasted five times instead of
once on target category images in training. This results in
the trigger occupying roughly 25% area of the image. In
Table 10, we consider the effect of applying PatchSearch to
clean data since a defender does not know whether a dataset
is poisoned. We see only a small degradation in accuracy.
In Figure 5, we consider the effect of removing the poison
classifier, and find that resulting image ranking shows poor
precision vs. recall trade-off in some cases. See Section A.1
of Appendix for more ablations and details.

6. Conclusion
We introduced a novel defense algorithm called Patch-

Search for defending self-supervised learning against patch
based data poisoning backdoor attacks. PatchSearch iden-

1https://en.wikipedia.org/wiki/Coefficient of variation

Clean Data Patched Data

Model Acc FP Acc FP

Clean 70.5 18.5 64.6 27.2
Backdoored 70.7 21.1 42.0 1996.7
PatchSearch 70.3 25.2 64.7 42.0

Table 9. Repeated patches during attack. We consider a stronger
attack, where five triggers instead of one are pasted on target cat-
egory images in training. We find that PatchSearch successfully
suppresses the attack. Setting: ViT-B, MoCo-v3, poison rate 0.5%.

Clean Data Patched Data

Model Acc FP Acc FP

Clean without PatchSearch 70.5 18.5 64.6 27.2
Clean with PatchSearch 69.2 20.0 63.2 33.3

Table 10. Effect of defending a clean model. Applying Patch-
Search on a clean dataset will remove a small set of clean images
(6K or about 5% of the training set), which results in only a small
reduction in accuracy. Setting: ViT-B and MoCo-v3.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
MoCo-v3 Rottweiler
MoCo-v3 Ambulance
BYOL Rottweiler
BYOL Ambulance

Figure 5. Effect of removing poison classifier. We demonstrate
the need for the poison classifier by removing it from PatchSearch,
and analyzing the results of images ranked by poison score. De-
spite scoring every image in the dataset with PatchSearch (no iter-
ative search), poisons cannot be precisely detected in some cases.

tifies poisons and removes them from the training set. We
also show that the augmentation strategy of i-CutMix is a
good baseline defense. We find that PatchSearch is bet-
ter than i-CutMix and the SOTA defense that uses trusted
data. Further, PatchSearch and i-CutMix are complemen-
tary to each and their combination improves the model per-
formance while effectively mitigating the attack. However,
our defense assumes that the trigger is patch-based and it
smaller than the objects of interest. These assumptions may
limit its effectiveness against future attacks. We hope that
our paper will ecourage the development of better backdoor
attacks and defense methods for SSL models.
Acknowledgement. This work is partially supported by
DARPA Contract No. HR00112190135, HR00112290115,
and FA8750-19-C-0098, NSF grants 1845216 and 1920079,

https://en.wikipedia.org/wiki/Coefficient_of_variation

NIST award 60NANB18D279, and also funding from Shell
Inc., and Oracle Corp. We would also like to thank K L Na-
vaneet and Aniruddha Saha for many helpful discussions.

References
[1] Code for Backdoor Attacks on Self-Supervised Learning

paper. https://github.com/UMBCvision/SSL-
Backdoor. 4

[2] MAE models and code. https://github.com/
facebookresearch/mae. 6

[3] MoCo-v3 models and code. https://github.com/
facebookresearch/moco-v3. 6

[4] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and
Hamed Pirsiavash. Compress: Self-supervised learning by
compressing representations. Advances in Neural Informa-
tion Processing Systems, 33:12980–12992, 2020. 2, 5

[5] Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin
Ghiasi, Jonas Geiping, Micah Goldblum, Tom Goldstein,
and Arjun Gupta. Strong data augmentation sanitizes poi-
soning and backdoor attacks without an accuracy tradeoff.
In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
3855–3859. IEEE, 2021. 1, 3

[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 – mining discriminative components with ran-
dom forests. In European Conference on Computer Vision
(ECCV), 2014. 7, 12, 15

[7] Tom B Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi,
and Justin Gilmer. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017. 3

[8] Nicholas Carlini and Andreas Terzis. Poisoning and back-
dooring contrastive learning. In International Conference on
Learning Representations (ICLR), 2022. 1, 3

[9] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 3

[10] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko
Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and
Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. arXiv preprint
arXiv:1811.03728, 2018. 3

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 3

[12] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 3, 4

[13] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9640–9649, 2021. 4

[14] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against deep

learning systems. In 2020 IEEE Security and Privacy Work-
shops (SPW), pages 48–54. IEEE, 2020. 1, 2, 3

[15] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 7

[16] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranas-
inghe. Februus: Input purification defense against trojan at-
tacks on deep neural network systems. In Annual Computer
Security Applications Conference, pages 897–912, 2020. 1,
3

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 4

[18] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised fea-
ture learning with convolutional neural networks. In Ad-
vances in neural information processing systems (NuerIPS),
2014. 2

[19] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, 2019. 3

[20] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In International Conference on Learning Representa-
tions (ICLR), 2018. 2, 4

[21] Jacob Gildenblat and contributors. Pytorch library for
cam methods. https://github.com/jacobgil/
pytorch-grad-cam, 2021. 4

[22] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu,
Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchin-
sky, Ishan Misra, Armand Joulin, et al. Self-supervised
pretraining of visual features in the wild. arXiv preprint
arXiv:2103.01988, 2021. 1

[23] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 3, 4

[24] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733, 2017.
3

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 4, 7, 12

[26] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF Confer-

https://github.com/UMBCvision/SSL-Backdoor
https://github.com/UMBCvision/SSL-Backdoor
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/moco-v3
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

ence on Computer Vision and Pattern Recognition (CVPR),
2020. 2

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 4

[28] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tu-
dor Dumitraş, and Nicolas Papernot. On the effectiveness
of mitigating data poisoning attacks with gradient shaping.
arXiv preprint arXiv:2002.11497, 2020. 1, 3

[29] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui
Ren. Backdoor defense via decoupling the training process.
In International Conference on Learning Representations,
2022. 3

[30] Shanjiaoyang Huang, Weiqi Peng, Zhiwei Jia, and Zhuowen
Tu. One-pixel signature: Characterizing cnn models for
backdoor detection. In European Conference on Computer
Vision, pages 326–341. Springer, 2020. 3

[31] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neu-
roninspect: Detecting backdoors in neural networks via out-
put explanations. arXiv preprint arXiv:1911.07399, 2019.
3

[32] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and
Heiko Hoffmann. Universal litmus patterns: Revealing back-
door attacks in cnns. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
301–310, 2020. 3

[33] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo
Shin, and Honglak Lee. i-mix: A domain-agnostic strategy
for contrastive representation learning. In International Con-
ference on Learning Representations, 2021. 1, 2, 3, 4

[34] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Back-
door learning: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022. 1, 3

[35] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. Advances in Neural Information
Processing Systems, 34:14900–14912, 2021. 3

[36] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer,
2018. 3

[37] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
attack on neural networks. 2017. 3

[38] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans.
In 2017 IEEE International Conference on Computer Design
(ICCD), 2017. 3

[39] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean Conference on Computer Vision (ECCV), 2016. 2, 4

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 3

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 4

[42] Aniruddha Saha, Akshayvarun Subramanya, Koninika Patil,
and Hamed Pirsiavash. Role of spatial context in adver-
sarial robustness for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 784–785, 2020. 3

[43] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pir-
siavash. Hidden trigger backdoor attacks. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2020. 3

[44] Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Kooh-
payegani, and Hamed Pirsiavash. Backdoor attacks on
self-supervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1, 2, 3, 4, 5, 6, 7

[45] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 1, 3

[46] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.
Poison frogs! targeted clean-label poisoning attacks on neu-
ral networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2018. 3

[47] Koohpayegani Soroush Abbasi, Ajinkya Tejankar, and
Hamed Pirsiavash. Mean shift for self-supervised learning.
In International Conference on Computer Vision (ICCV),
2021. 2, 3

[48] Ajinkya Tejankar, Soroush Abbasi Koohpayegani, Vipin
Pillai, Paolo Favaro, and Hamed Pirsiavash. Isd: Self-
supervised learning by iterative similarity distillation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 3

[49] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. In European conference on com-
puter vision, pages 776–794. Springer, 2020. 4

[50] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020. 3

[51] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral sig-
natures in backdoor attacks. Advances in neural information
processing systems (NeurIPS), 2018. 3

[52] Alexander Turner, Dimitris Tsipras, and Aleksander Madry.
Clean-label backdoor attacks. 2018. 3

[53] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 707–723. IEEE, 2019. 3

[54] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 2

[55] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 1, 3

[56] Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethink-
ing the backdoor attacks’ triggers: A frequency perspective.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16473–16481, 2021. 3

[57] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2016. 2

[58] Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank
Goswami, and Chao Chen. Topological detection of trojaned
neural networks. Advances in Neural Information Process-
ing Systems, 34:17258–17272, 2021. 3

[59] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020. 7

A. Appendix

A.1. Additional Ablations

We consider the effect of number of images scored by it-
erative search in Table A1 and Figure A1. Number of scored
images can be changed by varying two hyperparameters s
(number of samples scored per cluster) and r (percentage
of least poisonous clusters removed in each iteration). The
results show consistently good performance when process-
ing more than 6% of samples. Next, we consider the ef-
fect of varying the size of flip test set Xf in Table A2. We
find that we can get reasonable results with ∣Xf

∣ as small as
316. Next, we evaluate intermediate checkpoints of one of
our models to understand the relationship between overall
performance of the model (measured with clean data Acc)
and the attack effectiveness (measured with patched data
FP) in Table A3. We can see that attack effectiveness im-
proves as the overall model performance improves in the
early epochs. In later epochs, the attack effectiveness fluc-
tuates but is still high relative to earlier epochs. This indi-
cates that it is possible to reduce the compute requirements
for the model used during defense. We only need to train
this model until the attack effectiveness becomes broadly
comparable to a fully trained model. Next, we show that
our defense is effective even when changing datasets in Ta-
ble A4. Next, we consider the effect of varying top-k in
Table A5, and find that any top-k <= 20 is a good choice.
Next, we consider changing the trigger size w during the
attack in Table A6. We find that our defense works despite
changing w from 50 to 75 and 100. Next, we consider at-
tacking images from a downstream dataset instead of pre-
training dataset. We use Food101 [6] classification dataset
for this purpose. It consists of 101 fine-grained food cat-
egories and 750 images per category. For each category,
we randomly select 700 images for training and 50 images
for validation. We backdoor BYOL, ResNet-18 models by
picking random category from Food101, poisoning all of
its 700 training images, and adding them to the pre-training
dataset (ImageNet-100). The resulting pre-trained model
is evaluated on the task of Food101 classification. We use
the same linear evaluation setup as other ResNet-18 mod-
els in our experiments. We use the training set of Food101
(700 × 101) for training the linear layer while the evalua-
tion set (50 × 101) is used for evaluation. The results are
presented in Table A7 We find that the attack is success-
ful, but the models can also be successfully defended with
PatchSearch.

A.2. Implementation Details

Below, we describe implementation details for various
settings. Note that running PatchSearch is relatively inex-
pensive compared to the pre-training stage. For instance,
with ImageNet-100 (126K images) and ViT-B on 4x3090

GPUs, PatchSearch takes 1.5 hrs, which is small as com-
pared to the training time, about 16 hrs, for MoCo-v3.

Poison classifier training in PatchSearch. The train-
ing has following parameters: SGD (lr=0.01, batch size=32,
max iterations=2000, weight decay=1e−4, and cosine lr
scheduler). The architecture of the classifier is ResNet-18
but each layer has only a single BasicBlock instead of
the default two 2.

ResNet-18 model training. As mentioned in the main
paper, MoCo-v2 and BYOL training for ResNet-18 models
is exactly the same as code 3 from [41]. The models are
trained on 4 NVIDIA A100 GPUs.

MoCo-v3 model training. We use the code 4 from
MoCo-v3 [11] for training ViT-B models. We use the de-
fault hyperparameters from the code except SGD (batch
size=1024, epochs=200). The models are trained on 8
NVIDIA A100 GPUs.

MAE model training. We use the code 5 from MAE
[23] to train ViT-B models. All hyperparameters are un-
changed except following: SGD (batch size=32 and accum
iter=4). Here, accum iter refers to the number iterations
used for averaging the gradients before updating parame-
ters. The models are trained on 8 NVIDIA A100 GPUs.
Hence, the effective batch size is 32 × 8 × 4 = 1024.

ResNet-18 linear evaluation. We use the linear layer
training procedure proposed in code 6 from ComPress [4]
for evaluating ResNet-18 models. A single linear layer is
trained on top of a frozen backbone. The output of the
backbone is processed according to following steps before
passing it to the linear layer. (1) A mini-batch of features
is normalized to have unit l2 norm. (2) The mini-batch is
also normalized to have zero mean and unit variance. Note
that the mean and variance used for normalization in the
second step comes from the l2 normalized features of the
entire training dataset. All hyperparameters values are set
to default values from the original code.

ViT-B linear evaluation. We use the linear layer train-
ing procedure from MoCo-v3 [11] code 7. We set all hy-
perparameters to their default values from the code except
SGD (epochs=30, batch size=256).

ViT-B fine-tuning evaluation. We use the code 8 from
MAE [25] for fine-tuning ViT-B models. Strong augmen-
tations like mixup, random erase, and cutmix are turned off
during fine-tuning since we find that their presence hurts the

2https://github.com/pytorch/vision/blob/main/
torchvision/models/resnet.py

3https://github.com/UMBCvision/SSL-Backdoor
4https://github.com/facebookresearch/moco-v3
5https://github.com/facebookresearch/mae
6https://github.com/UMBCvision/CompRess/blob/

master/eval_linear.py
7https://github.com/facebookresearch/moco-v3/

blob/main/main_lincls.py
8https://github.com/facebookresearch/mae/blob/

main/engine_finetune.py

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/UMBCvision/SSL-Backdoor
https://github.com/facebookresearch/moco-v3
https://github.com/facebookresearch/mae
https://github.com/UMBCvision/CompRess/blob/master/eval_linear.py
https://github.com/UMBCvision/CompRess/blob/master/eval_linear.py
https://github.com/facebookresearch/moco-v3/blob/main/main_lincls.py
https://github.com/facebookresearch/moco-v3/blob/main/main_lincls.py
https://github.com/facebookresearch/mae/blob/main/engine_finetune.py
https://github.com/facebookresearch/mae/blob/main/engine_finetune.py

Figure A1. Effect of number of images scored. We vary different hyperparameters that control the number of images scored by Patch-
Search and observe the effect on the accuracy of finding poisons in top-20 ranked images. The color of the circles denotes the accuracy
while their size denotes the number of scored images. We find that a large value for samples per cluster (s) has better performance com-
pared to small s values with comparable number of processed images. Finally, processing more than 6% of images results in a good model
performance. See Table A1 for detailed results. Seeting: MoCo-v3, ViT-B, and poison rate 0.5%.

Num. Samples Per Pruned per iteration (%)
Clusters Cluster 0.90 0.52 0.30 0.25 0.17 0.10

100 2 0.0 / 0.18 0.0 / 0.31 0.0 / 0.54 0.0 / 0.70 0.0 / 0.97 0.0 / 1.60
100 4 0.0 / 0.35 0.0 / 0.62 0.0 / 1.07 0.0 / 1.30 80.0 / 1.94 90.0 / 3.21
100 8 0.0 / 0.70 0.0 / 1.24 0.0 / 2.14 0.0 / 2.60 0.0 / 3.87 100.0 / 6.42
100 10 10.0 / 0.88 75.0 / 1.55 95.0 / 2.68 100.0 / 3.30 100.0 / 4.84 100.0 / 8.02

1000 2 20.0 / 1.80 45.0 / 3.00 75.0 / 5.30 80.0 / 6.40 100.0 / 9.40 100.0 / 16.00
1000 4 65.0 / 3.50 100.0 / 6.10 100.0 / 10.60 95.0 / 12.70 100.0 / 18.60 100.0 / 30.90
1000 8 100.0 / 7.00 100.0 / 12.20 100.0 / 21.00 100.0 / 25.00 100.0 / 35.40 100.0 / 52.30
1000 10 100.0 / 8.80 100.0 / 15.20 100.0 / 26.10 100.0 / 30.80 100.0 / 42.40 100.0 / 59.30

Table A1. Effect of varying scored count. We explore the effect of processing different amount of images by varying number of clusters,
s (samples per cluster) and r (percentage of clusters pruned per iteration). Each table entry has the format accuracy of finding poisons (%)
in top-20 / percentage of training set scored. We find that even with large r and a small number of clusters, increasing s can improve the
model performance. Finally, we observe that processing more than 6% of the training set results in good model performance most of the
times. Setting: MoCo-v3, ViT-B, poison rate 0.5%, target category Ambulance.

overall performance of the model (Table A8). For MoCo-v3
models, fine-tuning runs for 30 epochs while for MAE mod-
els it runs for 90 epochs. Finally, MAE uses global pooling
of tokens following the default option in the original code
while MoCo-v3 models use [CLS] token. Rest of the hy-
perparameters are unchanged from their default values. For
fine-tuning results on ImageNetx-1k reported in Table 6, all
settings except epochs=50 are the same as their default val-
ues. Note that strong augmentations is kept on as in the
default settings in order to be comparable to the numbers

reported in MAE [23].

A.3. Per Category Results

We list per category results for Table 2. The results are
in Tables A9, A10, A11, and A12.

Target
Category

Flip test set size

10 32 100 316 1000

top-20 Acc (%) Ambulance 5.0 20.0 60.0 80.0 80.0
Rottweiler 55.0 100.0 100.0 100.0 100.0

Table A2. Effect of flip test set size. We explore the effect of changing the flip test set size ∣Xf ∣. The larger this set the more diverse
samples will be used to obtain the poison score for an image. We find that PatchSearch is not greatly sensitive to this hyperparameter and
even a small value like 316 could be effective. Setting: ViT-B, MoCo-v3, and poison rate 0.5%.

Checkpoint
Epoch

Clean Data Patched Data Clean Data Patched Data

Acc FP Acc FP Acc FP Acc FP

Rottweiler Ambulance

20 27.2 58.8 24.9 72.8 26.9 47.8 24.7 67.6
40 43.6 47.4 36.4 391.8 43.3 20.6 39.6 66.2
60 53.1 36.6 17.1 3145.0 53.0 14.0 46.5 284.6
80 58.3 32.8 35.5 1787.4 58.0 13.4 51.2 262.4

100 60.9 28.8 28.0 2689.6 61.4 12.6 48.0 1041.6
120 62.9 27.6 35.5 2118.4 63.1 12.4 51.6 804.2
140 64.2 30.0 40.7 1675.0 64.6 9.2 51.4 908.6
160 65.8 26.4 43.5 1420.4 66.1 9.8 54.8 704.6
180 66.3 25.8 40.9 1895.8 66.9 7.8 54.4 800.6
200 66.4 26.0 39.9 1926.8 66.8 7.6 53.6 895.6

Table A3. Relationship between overall performance and attack effectiveness. We evaluate intermediate checkpoints to understand
the relationship between overall model performance (measured with Clean Data Acc) and the attack effectiveness (measured with Patched
Data FP). We find that attack effectiveness has a strong correlation with overall model performance in early epochs (<= 60). While this
correlation is not strict for later epochs, the attack effectiveness maintains its overall magnitude. This observation suggests that a model
used during defense need not be trained to convergence. We only need to train it until the attack effectiveness is comparable to the fully
trained model in overall magnitude. Setting: BYOL, ResNet-18, and poison rate 0.5%.

Clean Data Patched Data

Model Acc FP ASR Acc FP ASR

Clean 79.2 205 2.1 54.3 741 7.4
Backdoored 79.0 206 2.1 26.5 6187 61.9
PatchSearch 78.7 224 2.2 57.0 816 8.2

Table A4. CIFAR-10. We show results for the attack and defense
on CIFAR-10. We find that the defense is successfully able to
mitigate the attack. In fact, we find that the poison classifier is
not needed since the iterative search itself is sufficient. Simply
removing the top 10% of the clusters removes 100% of poisons.
To account for smaller, 32x32, images, we also reduce the size of
the trigger to 8x8. Setting: ResNet-18, BYOL, poison rate 0.5%
and target category Airplane.

Acc (%) in top-k
Model 5 10 20 50 100

ResNet-18, BYOL, 0.5% 100.0 100.0 99.5 93.8 84.0
ResNet-18, MoCo-v2, 0.5% 52.0 55.0 52.5 44.6 30.9
ViT-B, MoCo-v3, 0.5% 100.0 100.0 96.5 87.6 73.5
ViT-B, MoCo-v3, 1.0% 98.0 98.0 97.5 84.0 77.3

Table A5. Effect of top-k in PatchSearch. Note that PatchSearch
is not able to find the patches for ResNet-18, MoCo-v2 for any k.
Hence, we use an easy to backdoor model like ViT-B to defend it.

Clean Data Patched Data

Model Acc FP ASR Acc FP ASR

w = 75
Clean 65.7 28.8 0.6 55.0 19.0 0.4
Backdoored 66.6 32.4 0.7 36.4 1588.0 32.0
PatchSearch 66.5 29.2 0.6 55.8 25.2 0.5

w = 100
Clean 65.7 28.8 0.6 45.6 15.2 0.3
Backdoored 65.8 30.2 0.6 20.4 2481.6 50.6
PatchSearch 65.6 32.8 0.7 46.7 34.6 0.7

Table A6. Changing trigger size w in the attack.. We explore
the effect of changing the trigger size w during the attack. We
find that our defense can successfully defend against different w
by searching for most effective w during the defense (outlined in
Figure 4). Note that since we are dealing with large w we paste
the trigger anywhere in the image without any boundary. This
is different from the default setting of 25% margin on all sides.
Setting: ResNet-18, BYOL, poison rate 0.5% and target category
Rottweiler.

Target
Category Model Clean Data Patched Data

Acc FP Acc FP

Chicken Curry (10)
Clean 47.6 27 39.1 24
Backdoored 48.2 19 9.2 3438
PatchSearch 46.6 29 40.3 21

Steak (11)
Clean 47.6 17 39.5 24
Backdoored 48.0 26 13.5 2596
PatchSearch 47.4 22 40.7 57

Panna Cotta (12)
Clean 47.6 41 39.8 23
Backdoored 47.5 42 19.1 2158
PatchSearch 47.4 37 40.9 16

Deviled Eggs (13)
Clean 47.6 50 39.3 41
Backdoored 47.9 23 7.9 4317
PatchSearch 48.0 52 41.0 35

Mean
Clean 47.6 33.8 39.4 28.0
Backdoored 47.9 27.5 12.4 3127.3
PatchSearch 47.4 35.0 40.7 32.3

Table A7. Attack on downstream task: Food101 classifica-
tion. Instead of attacking one of the categories in the pre-training
dataset, we consider an attack on the downstream task of Food101
classification [6]. We poison 700 images of a category from
Food101 and add them to the pre-training dataset (ImageNet-100).
We evaluate the resulting models on Food101 classification and
find that the targeted attack is successful. Next, we defend the
backdoored models with PatchSearch and find that it is able to
defend against the attack successfully. Averaged across the four
categories, PatchSearch has 99.7% recall and 54.8% precision for
filtering out poisons. Setting: BYOL & ResNet-18.

Clean Data Patched Data

Model Acc FP Acc FP

with strong aug 63.1 21.0 53.5 63.1
without strong aug 65.7 18.7 53.8 97.6

Table A8. Effect of strong augmentations during fine-tuning.
We find that strong augmentations like cutmix, mixup, and random
erase can degrade the overall model performance. Setting: ViT-B,
MAE and average of 4 target categories (Rottweiler, Tabby Cat,
Ambulance, and Laptop).

Target Clean Data Patched Data

Category Model PatchSearch i-CutMix Acc FP Acc FP

Rottweiler (10)

clean ✗ ✗ 65.7 29.4 60.6 24.4
clean ✗ ✓ 65.8 33.0 64.0 28.6
backdoored ✗ ✗ 66.4 26.0 39.9 1926.8
defended ✗ ✓ 66.8 26.4 60.4 272.0
defended ✓ ✗ 66.9 31.8 61.1 43.8
defended ✓ ✓ 65.6 32.6 63.4 32.2

Tabby Cat (11)

clean ✗ ✗ 65.7 5.0 60.8 9.4
clean ✗ ✓ 65.8 4.4 63.8 3.4
backdoored ✗ ✗ 65.9 1.6 31.9 2338.0
defended ✗ ✓ 67.1 6.4 62.5 299.0
defended ✓ ✗ 66.1 4.2 61.9 7.0
defended ✓ ✓ 67.0 3.2 64.6 1.6

Ambulance (12)

clean ✗ ✗ 65.7 8.6 60.5 10.2
clean ✗ ✓ 65.8 9.2 63.9 10.4
backdoored ✗ ✗ 66.8 7.6 53.6 895.6
defended ✗ ✓ 66.5 7.8 62.4 116.0
defended ✓ ✗ 66.4 9.2 61.2 9.2
defended ✓ ✓ 67.3 7.2 65.1 7.0

Pickup Truck (13)

clean ✗ ✗ 65.7 14.2 60.6 13.2
clean ✗ ✓ 65.8 14.2 63.7 15.6
backdoored ✗ ✗ 66.4 13.6 48.0 1430.6
defended ✗ ✓ 68.3 16.8 64.1 131.0
defended ✓ ✗ 65.7 14.8 60.8 13.0
defended ✓ ✓ 67.1 19.0 64.6 18.8

Laptop (14)

clean ✗ ✗ 65.7 30.8 60.4 33.0
clean ✗ ✓ 65.8 27.4 64.1 15.8
backdoored ✗ ✗ 65.6 29.6 16.1 355.8
defended ✗ ✓ 66.2 25.2 60.5 356.2
defended ✓ ✗ 65.8 30.4 60.9 37.6
defended ✓ ✓ 66.3 29.0 63.9 17.0

Goose (15)

clean ✗ ✗ 65.7 10.4 60.3 18.0
clean ✗ ✓ 65.8 8.6 63.6 9.0
backdoored ✗ ✗ 66.4 10.0 26.5 3391.0
defended ✗ ✓ 67.4 11.2 62.4 288.2
defended ✓ ✗ 66.4 12.2 61.6 23.6
defended ✓ ✓ 67.0 25.6 65.1 24.8

Pirate Ship (16)

clean ✗ ✗ 65.7 4.2 60.4 4.6
clean ✗ ✓ 65.8 5.4 63.5 6.0
backdoored ✗ ✗ 66.9 4.6 38.3 2438.6
defended ✗ ✓ 67.2 4.4 61.4 328.2
defended ✓ ✗ 66.4 4.0 61.5 9.8
defended ✓ ✓ 66.9 3.6 64.4 2.4

Gas Mask (17)

clean ✗ ✗ 65.7 19.8 60.7 28.6
clean ✗ ✓ 65.8 22.0 63.8 36.4
backdoored ✗ ✗ 66.6 21.2 34.8 2722.4
defended ✗ ✓ 66.8 18.6 57.2 931.6
defended ✓ ✗ 66.8 30.8 62.1 52.8
defended ✓ ✓ 67.2 29.0 64.9 55.8

Vacuum Cleaner (18)

clean ✗ ✗ 65.7 60.0 60.6 74.8
clean ✗ ✓ 65.8 58.6 63.4 38.2
backdoored ✗ ✗ 66.6 49.2 20.4 3210.0
defended ✗ ✓ 67.0 51.0 59.6 328.4
defended ✓ ✗ 66.8 58.4 61.8 85.8
defended ✓ ✓ 67.0 59.0 64.8 39.2

American Lobseter (19)

clean ✗ ✗ 65.7 24.0 61.0 31.4
clean ✗ ✓ 65.8 21.8 63.5 32.6
backdoored ✗ ✗ 67.0 22.2 43.5 2086.8
defended ✗ ✓ 66.5 17.6 59.5 602.2
defended ✓ ✗ 66.3 32.8 61.9 51.0
defended ✓ ✓ 66.6 15.8 64.2 26.6

Mean and STD

clean ✗ ✗ 65.7 ± 0.0 20.6 ± 16.8 60.6 ± 0.2 24.8 ± 20.2
clean ✗ ✓ 65.8 ± 0.0 20.5 ± 16.5 63.7 ± 0.2 19.6 ± 13.1
backdoored ✗ ✗ 66.5 ± 0.4 18.6 ± 14.3 35.3 ± 11.9 2079.6 ± 967.5
defended ✗ ✓ 67.0 ± 0.6 18.5 ± 13.7 61.0 ± 2.0 365.3 ± 239.4
defended ✓ ✗ 66.4 ± 0.4 22.9 ± 17.1 61.5 ± 0.5 33.4 ± 25.6
defended ✓ ✓ 66.8 ± 0.5 22.4 ± 16.8 64.5 ± 0.5 22.5 ± 17.1

Table A9. Per category results for BYOL, ResNet-18, and poison rate 0.5%. Detailed results for Table 2.

Target Clean Data Patched Data

Category Model PatchSearch i-CutMix Acc FP Acc FP

Rottweiler (10)

clean ✗ ✗ 49.7 36.8 46.3 28.4
clean ✗ ✓ 55.9 32.0 54.0 29.4
backdoored ✗ ✗ 50.2 39.4 33.4 1094.4
defended ✗ ✓ 55.1 38.6 52.4 117.2
defended ✓ ✗ 50.0 40.2 46.3 26.6
defended ✓ ✓ 55.6 39.0 54.4 35.2

Tabby Cat (11)

clean ✗ ✗ 49.7 7.2 46.4 8.2
clean ✗ ✓ 55.9 8.0 54.4 6.6
backdoored ✗ ✗ 50.0 5.8 33.5 1901.6
defended ✗ ✓ 55.3 5.6 52.4 181.8
defended ✓ ✗ 49.9 11.6 46.7 13.8
defended ✓ ✓ 55.7 8.8 54.2 9.0

Ambulance (12)

clean ✗ ✗ 49.7 18.4 46.4 15.0
clean ✗ ✓ 55.9 13.6 54.4 19.2
backdoored ✗ ✗ 50.3 14.0 46.2 103.2
defended ✗ ✓ 55.4 10.6 53.8 27.6
defended ✓ ✗ 49.0 14.4 45.4 15.0
defended ✓ ✓ 55.7 16.4 54.1 15.8

Pickup Truck (13)

clean ✗ ✗ 49.7 16.6 46.6 15.4
clean ✗ ✓ 55.9 16.6 54.2 18.6
backdoored ✗ ✗ 50.6 13.0 46.4 115.0
defended ✗ ✓ 55.8 15.2 53.8 75.2
defended ✓ ✗ 49.1 18.2 45.8 17.8
defended ✓ ✓ 55.5 16.6 53.9 18.6

Laptop (14)

clean ✗ ✗ 49.7 37.0 46.0 35.8
clean ✗ ✓ 55.9 33.0 54.3 24.2
backdoored ✗ ✗ 49.8 33.8 41.8 466.2
defended ✗ ✓ 55.4 24.0 53.7 92.6
defended ✓ ✗ 49.7 41.6 45.8 47.6
defended ✓ ✓ 54.8 46.4 53.5 29.4

Goose (15)

clean ✗ ✗ 49.7 37.2 46.6 39.4
clean ✗ ✓ 55.9 38.2 54.2 39.2
backdoored ✗ ✗ 49.6 33.8 45.2 194.0
defended ✗ ✓ 55.5 31.0 53.8 46.8
defended ✓ ✗ 49.5 39.6 46.3 46.0
defended ✓ ✓ 55.1 41.0 53.4 37.6

Pirate Ship (16)

clean ✗ ✗ 49.7 8.2 46.1 9.0
clean ✗ ✓ 55.9 5.0 54.4 6.4
backdoored ✗ ✗ 49.7 6.2 42.1 573.4
defended ✗ ✓ 55.7 4.6 53.6 68.8
defended ✓ ✗ 49.7 12.8 46.8 17.4
defended ✓ ✓ 55.0 5.6 53.3 8.2

Gas Mask (17)

clean ✗ ✗ 49.7 43.8 46.5 57.0
clean ✗ ✓ 55.9 39.6 54.2 56.8
backdoored ✗ ✗ 49.7 43.6 42.3 561.2
defended ✗ ✓ 55.2 37.2 53.2 92.6
defended ✓ ✗ 50.0 47.4 46.6 62.4
defended ✓ ✓ 55.6 48.6 53.8 61.8

Vacuum Cleaner (18)

clean ✗ ✗ 49.7 51.4 46.5 63.2
clean ✗ ✓ 55.9 53.6 54.3 40.0
backdoored ✗ ✗ 49.8 48.8 41.7 424.4
defended ✗ ✓ 55.4 54.2 53.7 55.6
defended ✓ ✗ 49.9 58.0 46.4 64.6
defended ✓ ✓ 54.8 51.2 53.4 37.0

American Lobseter (19)

clean ✗ ✗ 49.7 34.0 46.5 35.4
clean ✗ ✓ 55.9 23.4 54.1 30.4
backdoored ✗ ✗ 49.8 34.0 36.1 1599.2
defended ✗ ✓ 55.2 23.2 49.7 482.2
defended ✓ ✗ 50.0 47.2 46.7 61.2
defended ✓ ✓ 55.6 32.2 54.3 39.2

Mean and STD

clean ✗ ✗ 49.7 ± 0.0 29.1 ± 15.3 46.4 ± 0.2 30.7 ± 19.2
clean ✗ ✓ 55.9 ± 0.0 26.3 ± 15.6 54.3 ± 0.1 27.1 ± 15.6
backdoored ✗ ✗ 50.0 ± 0.3 27.2 ± 16.0 40.9 ± 4.9 703.3 ± 626.1
defended ✗ ✓ 55.4 ± 0.2 24.4 ± 16.1 53.0 ± 1.3 124.0 ± 132.9
defended ✓ ✗ 49.7 ± 0.4 33.1 ± 17.1 46.3 ± 0.5 37.2 ± 21.3
defended ✓ ✓ 55.3 ± 0.4 30.6 ± 17.2 53.8 ± 0.4 29.2 ± 16.6

Table A10. Per category results for MoCo-v2, ResNet-18, and poison rate 0.5%.Detailed results for Table 2.

Target Clean Data Patched Data

Category Model PatchSearch i-CutMix Acc FP Acc FP

Rottweiler (10)

clean ✗ ✗ 70.5 25.4 65.1 16.6
clean ✗ ✓ 75.6 31.0 74.5 26.8
backdoored ✗ ✗ 70.5 24.8 42.9 1412.4
defended ✗ ✓ 75.6 28.0 70.5 268.4
defended ✓ ✗ 70.4 28.2 64.8 23.8
defended ✓ ✓ 75.7 32.6 74.9 28.6

Tabby Cat (11)

clean ✗ ✗ 70.5 3.2 64.4 4.0
clean ✗ ✓ 75.6 5.0 74.5 3.4
backdoored ✗ ✗ 70.7 4.6 42.0 2354.6
defended ✗ ✓ 75.4 5.2 73.3 133.4
defended ✓ ✗ 70.6 6.0 65.2 7.6
defended ✓ ✓ 74.7 4.8 73.8 4.4

Ambulance (12)

clean ✗ ✗ 70.5 9.8 64.4 13.4
clean ✗ ✓ 75.6 8.2 74.4 8.0
backdoored ✗ ✗ 70.5 10.2 56.9 748.8
defended ✗ ✓ 75.3 8.6 74.4 49.6
defended ✓ ✗ 70.1 9.6 63.8 16.6
defended ✓ ✓ 75.2 6.8 74.1 8.6

Pickup Truck (13)

clean ✗ ✗ 70.5 13.8 65.3 10.4
clean ✗ ✓ 75.6 11.0 74.3 13.0
backdoored ✗ ✗ 70.7 11.8 57.9 805.0
defended ✗ ✓ 75.7 12.4 74.3 54.2
defended ✓ ✗ 69.9 14.0 65.9 12.8
defended ✓ ✓ 75.1 13.0 74.3 13.6

Laptop (14)

clean ✗ ✗ 70.5 29.6 64.9 39.4
clean ✗ ✓ 75.6 34.4 74.5 26.6
backdoored ✗ ✗ 70.5 34.6 42.3 2172.4
defended ✗ ✓ 75.8 31.4 71.7 365.8
defended ✓ ✗ 69.8 43.0 62.9 93.2
defended ✓ ✓ 75.3 40.8 74.3 31.0

Goose (15)

clean ✗ ✗ 70.5 6.4 64.8 9.6
clean ✗ ✓ 75.6 6.6 74.4 6.8
backdoored ✗ ✗ 70.7 6.8 48.6 1693.2
defended ✗ ✓ 76.1 5.2 74.0 66.6
defended ✓ ✗ 69.6 10.0 64.8 17.4
defended ✓ ✓ 75.1 7.2 74.0 5.0

Pirate Ship (16)

clean ✗ ✗ 70.5 2.0 64.2 1.4
clean ✗ ✓ 75.6 2.6 74.1 1.6
backdoored ✗ ✗ 70.7 2.2 56.2 915.6
defended ✗ ✓ 75.8 2.0 73.5 93.4
defended ✓ ✗ 70.4 2.0 62.1 1.6
defended ✓ ✓ 75.7 1.6 74.6 1.2

Gas Mask (17)

clean ✗ ✗ 70.5 29.0 64.5 55.6
clean ✗ ✓ 75.6 12.4 74.3 23.0
backdoored ✗ ✗ 70.3 20.0 39.2 2558.0
defended ✗ ✓ 75.4 14.2 71.0 381.6
defended ✓ ✗ 70.4 42.6 64.6 71.2
defended ✓ ✓ 74.9 28.0 73.8 44.2

Vacuum Cleaner (18)

clean ✗ ✗ 70.5 52.0 64.4 113.8
clean ✗ ✓ 75.6 36.2 74.5 25.4
backdoored ✗ ✗ 70.6 49.8 43.8 1847.4
defended ✗ ✓ 75.2 35.4 66.3 723.4
defended ✓ ✗ 70.4 60.8 65.2 128.0
defended ✓ ✓ 75.0 49.4 73.8 36.2

American Lobseter (19)

clean ✗ ✗ 70.5 13.6 64.5 8.0
clean ✗ ✓ 75.6 8.2 74.3 11.4
backdoored ✗ ✗ 70.7 9.4 39.0 2581.8
defended ✗ ✓ 75.9 6.4 73.3 185.4
defended ✓ ✗ 70.8 14.4 65.7 25.8
defended ✓ ✓ 75.1 12.4 74.2 16.8

Mean and STD

clean ✗ ✗ 70.5 ± 0.0 18.5 ± 15.6 64.6 ± 0.4 27.2 ± 34.8
clean ✗ ✓ 75.6 ± 0.0 15.6 ± 13.0 74.4 ± 0.1 14.6 ± 10.0
backdoored ✗ ✗ 70.6 ± 0.1 17.4 ± 15.1 46.9 ± 7.5 1708.9 ± 714.2
defended ✗ ✓ 75.6 ± 0.3 14.9 ± 12.2 72.2 ± 2.5 232.2 ± 212.5
defended ✓ ✗ 70.2 ± 0.4 23.1 ± 19.6 64.5 ± 1.2 39.8 ± 42.6
defended ✓ ✓ 75.2 ± 0.3 19.7 ± 16.8 74.2 ± 0.4 19.0 ± 15.0

Table A11. Per category results for MoCo-v3, ViT-B, and poison rate 0.5%. Detailed results for Table 2.

Target Clean Data Patched Data

Category Model PatchSearch i-CutMix Acc FP Acc FP

Rottweiler (10)

clean ✗ ✗ 70.5 25.4 65.1 16.6
clean ✗ ✓ 75.6 31.0 74.5 26.8
backdoored ✗ ✗ 70.8 21.8 30.6 3127.4
defended ✗ ✓ 75.6 21.4 69.0 510.8
defended ✓ ✗ 70.0 32.6 64.8 26.8
defended ✓ ✓ 75.3 37.4 74.3 32.0

Tabby Cat (11)

clean ✗ ✗ 70.5 3.2 64.4 4.0
clean ✗ ✓ 75.6 5.0 74.5 3.4
backdoored ✗ ✗ 70.9 3.4 23.8 3669.8
defended ✗ ✓ 75.7 5.0 71.0 429.6
defended ✓ ✗ 70.4 24.4 62.9 86.8
defended ✓ ✓ 74.8 29.6 74.0 18.0

Ambulance (12)

clean ✗ ✗ 70.5 9.8 64.4 13.4
clean ✗ ✓ 75.6 8.2 74.4 8.0
backdoored ✗ ✗ 70.7 7.4 49.0 1511.2
defended ✗ ✓ 75.4 7.4 73.0 180.8
defended ✓ ✗ 69.8 25.8 64.2 36.0
defended ✓ ✓ 75.0 21.0 73.9 21.0

Pickup Truck (13)

clean ✗ ✗ 70.5 13.8 65.3 10.4
clean ✗ ✓ 75.6 11.0 74.3 13.0
backdoored ✗ ✗ 70.7 12.4 54.6 1007.0
defended ✗ ✓ 75.2 9.6 73.0 117.8
defended ✓ ✗ 69.7 18.4 64.9 19.2
defended ✓ ✓ 75.2 18.6 73.9 21.4

Laptop (14)

clean ✗ ✗ 70.5 29.6 64.9 39.4
clean ✗ ✓ 75.6 34.4 74.5 26.6
backdoored ✗ ✗ 70.8 27.0 39.4 2566.4
defended ✗ ✓ 75.4 25.8 66.9 724.8
defended ✓ ✗ 69.9 61.2 60.3 112.8
defended ✓ ✓ 75.6 54.2 74.7 55.0

Goose (15)

clean ✗ ✗ 70.5 6.4 64.8 9.6
clean ✗ ✓ 75.6 6.6 74.4 6.8
backdoored ✗ ✗ 70.5 5.8 38.6 2437.8
defended ✗ ✓ 75.7 5.2 71.2 314.2
defended ✓ ✗ 70.1 32.8 63.4 59.0
defended ✓ ✓ 74.7 33.4 73.7 25.0

Pirate Ship (16)

clean ✗ ✗ 70.5 2.0 64.2 1.4
clean ✗ ✓ 75.6 2.6 74.1 1.6
backdoored ✗ ✗ 70.3 2.6 44.9 2093.8
defended ✗ ✓ 75.8 2.4 73.5 90.8
defended ✓ ✗ 70.3 20.2 62.4 36.0
defended ✓ ✓ 75.0 18.2 74.0 24.2

Gas Mask (17)

clean ✗ ✗ 70.5 29.0 64.5 55.6
clean ✗ ✓ 75.6 12.4 74.3 23.0
backdoored ✗ ✗ 70.4 21.2 31.6 3112.0
defended ✗ ✓ 76.1 8.8 67.7 728.6
defended ✓ ✗ 70.2 79.8 64.7 138.8
defended ✓ ✓ 74.6 66.2 73.5 102.8

Vacuum Cleaner (18)

clean ✗ ✗ 70.5 52.0 64.4 113.8
clean ✗ ✓ 75.6 36.2 74.5 25.4
backdoored ✗ ✗ 71.2 38.4 40.6 2203.4
defended ✗ ✓ 75.3 30.6 64.9 903.0
defended ✓ ✗ 70.4 85.8 64.8 182.8
defended ✓ ✓ 74.6 69.2 73.8 63.2

American Lobseter (19)

clean ✗ ✗ 70.5 13.6 64.5 8.0
clean ✗ ✓ 75.6 8.2 74.3 11.4
backdoored ✗ ✗ 70.3 8.0 24.1 3630.2
defended ✗ ✓ 75.1 9.0 71.6 341.6
defended ✓ ✗ 70.0 53.4 64.3 61.6
defended ✓ ✓ 75.1 42.2 74.3 51.0

Mean and STD

clean ✗ ✗ 70.5 ± 0.0 18.5 ± 15.6 64.6 ± 0.4 27.2 ± 34.8
clean ✗ ✓ 75.6 ± 0.0 15.6 ± 13.0 74.4 ± 0.1 14.6 ± 10.0
backdoored ✗ ✗ 70.7 ± 0.3 14.8 ± 11.8 37.7 ± 10.2 2535.9 ± 873.6
defended ✗ ✓ 75.5 ± 0.3 12.5 ± 9.8 70.2 ± 2.9 434.2 ± 279.3
defended ✓ ✗ 70.1 ± 0.2 43.4 ± 25.0 63.7 ± 1.5 76.0 ± 53.9
defended ✓ ✓ 75.0 ± 0.3 39.0 ± 18.8 74.0 ± 0.3 41.4 ± 27.0

Table A12. Per category results for MoCo-v3, ViT-B, and poison rate 1.0%. Detailed results for Table 2.

	1 . Introduction
	2 . Related Work
	3 . Threat Model
	4 . Defending with PatchSearch
	5 . Experiments
	5.1 . Main Results
	5.2 . Ablations

	6 . Conclusion
	A . Appendix
	A.1 . Additional Ablations
	A.2 . Implementation Details
	A.3 . Per Category Results

