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Optimal transport (OT) has become a discipline by itself that offers solutions to a wide range of theoretical
problems in probability and mathematics. Despite its appealing theoretical properties, solving the OT problem
involves the resolution of a linear program whose computational cost can quickly become prohibitive whenever
the size of the problem exceeds a few hundred points. The recent introduction of entropy regularization, however,
has led to the development of fast algorithms for solving an approximate OT problem. The successes of
those algorithms have resulted in a popularization of the applications of OT in several applied fields such as
imaging sciences and machine learning, and in data sciences in general. Problems remain, however, as to the
numerical convergence of those regularized approximations towards the actual OT solution. In addition, the
physical meaning of this regularization is unclear. In this paper, we propose an approach to solving the discrete
OT problem using techniques adapted from statistical physics. Our first contribution is to fully describe this
formalism, including all the proofs of its main claims. In particular we derive a strongly concave effective
free energy function that captures the constraints of the optimal transport problem at a finite temperature. Its
maximum defines a pseudo distance between the two set of weighted points that are compared, which satisfies the
triangular inequalities. The temperature dependent OT pseudo distance decreases monotonically to the standard
OT distance, providing a robust framework for temperature annealing. Our second contribution is to show that the
implementation of this formalism has the same properties as the regularized OT algorithms in time complexity,
making it a competitive approach to solving the OT problem. We illustrate applications of the framework to the
problem of protein fold recognition based on sequence information only.
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I. INTRODUCTION

Computing the distance between two probability distribu-
tions defined on a metric space M is a common problem in
statistics. There are no single definitions of such a distance.
Many statistical distances have been proposed, such as the
total variation distance, the different divergence (Kullback-
Leibler, Jensen-Shannon, etc.), distances based on energy,
and so on. It is worth noting that many of those distances
are not metrics. In addition, most of them only compute a
single number when comparing two distributions. There are,
however, many applications in which it is desirable to also
generate a map, or “transport,” between the two distributions
of interest. If a cost is assigned to each of these possible maps,
attempts to find the optimal map, namely the one with the
lowest total cost, a problem referred to as the optimal transport
(OT) problem, has enabled statisticians and mathematicians to
derive a geometric structure on the space of probability distri-
butions. The importance of this problem in those two fields
may be best seen from the fact that two of its current main
contributors have recently received Fields medals, Villani in
2010 and Figalli in 2018, in addition to Kantorovich receiving
the Nobel prize in economics in 1975 for his contribution
to optimal transport and its applications in economics. In
addition, getting access to both the distance and the optimal
transport map when comparing probability measures is of

relevance to most, if not all, data science disciplines, and as
such applications of OT have exploded in recent years, in
domains such as machine learning [1], computer vision and
image analysis [2–6], linguistics [7,8], differential geometry
[9,10], geometric shape matching [11,12], and even music
transcription [13], gene expression analyses [14], and the
analysis of conformational dynamics of biomolecules [15].
Note that this is a small subset of all current applications,
listed for illustration purpose only; for more extensive reviews
of OT, we recommend [9,16–18] for reviews on the theory,
[19,20] for reviews on its computational aspects, and [1] for a
(brief) review of some of its applications.

The OT problem has been expressed in multiple forms,
starting from the work of Monge in the 1780s [21], to be
rediscovered or at least rephrased many times in the 1900s.
For the sake of clarity, let us caricature it as follows: imagine
we have N flour milling plants surrounding Paris, producing
a total of 1 tonne of flour daily, and a distribution of P
bakeries within Paris that consume a total of 1 tonne of flour
each day. Knowing the cost C(x, y) per unit weight of flour
transported from a milling plant at x to a bakery at y, the
problem is to define which milling plants should be supplying
which bakeries so as to minimize the total transportation cost.
In a more mathematical format, the milling plants and the
bakeries lie in a metric space M. The flour production of the
milling plants is represented by a probability measure μ, while
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the flour consumption is represented by another probability
measure ν. Let C(x, y) be the cost of transporting flour from x
to y, and G(x, y) the amount of flour transported from x to
y. G defines the transport plan. The optimal transport plan
minimizes the total transportation cost U defined as

U (G) =
∫∫

G(x, y)C(x, y)dxdy. (1)

The minimum of U (G) is to be found over the transport plans
that satisfy the following constraints:

∀x, y, G(x, y) � 0, (2a)

∀x,
∫

G(x, y)dy = μ(x), (2b)

∀y,
∫

G(x, y)dx = ν(y). (2c)

Constraint (2b) enforces that the total amount of flour deliv-
ered by plant x corresponds to its actual production, while
constraint (2c) enforces that the total amount of flour delivered
to bakery y corresponds to its actual need. The positivity
constraint (2a) makes the problem physical. Finding a solution
to the OT problem amounts to finding the optimal transport
plan Gopt. The corresponding minimum transport cost Umin

defines a “distance” between the two distribution measures
μ and ν. The distance has all the properties of a metric
when the cost matrix C is a metric matrix; see [17]. When
C(x, y) = d (x, y)p where d is a metric of the space M, the
distance is often referred to as the p − Wasserstein distance
Wp(μ, ν) = (Umin)1/p between the two measures. We note
that when p = 2 and the cost matrix is based on the L2

norm [i.e., C(x, y)p = ||x − y||2], the OT problem maps to the
Schrödinger bridge problem [22], for which some simplifica-
tions are possible (see for example [5]). In this paper we will
focus instead on the 1 − Wasserstein distance (i.e., with p =
1), also called the earth mover’s distance, for a more general
framework. Optimizing (1) under the constraints (2) is a linear
programming (LP) problem. While much progress has been
achieved for solving those problems [23], current practical
implementations of algorithmic solutions are roughly of order
O(n3), where n is the size of the discrete sets representing μ

and ν, with a quadratic complexity in the number of variables
considered. Such complexity levels are usually considered
problematic when n is larger than a few thousands.

The current successes of OT did not come from recent
improvements in solving LP problems. Instead, they have
been triggered by the idea of minimizing a regularized version
of Eq. (1):

U (ε, G) = U (G) − εH (G)

=
∫∫

G(x, y)C(x, y)dxdy

+ ε

∫∫
G(x, y) ln[G(x, y)]dxdy, (3)

where ε is the regularization parameter, and the second term
H (G) is an entropic barrier that enforces the positivity of the
transport plan [24] (note that other penalty functions have
been considered; see [20] for discussions). This regularized
version of optimal transport is often called the Schrödinger

problem [22]. It maps to the traditional OT problem as ε → 0;
in addition, the optimal solution at a given ε defines a distance
with metric properties, referred to as the Sinkhorn distance
[24]. The entropic penalization has the advantage that it
defines a strongly convex problem (as opposed to the original
OT problem) with a unique solution [24]. Another advantage
of the regularized OT problem is that its solution can be
found efficiently through the so-called iterative proportional
fitting procedure [25], also known as the Sinkhorn algorithm
[26] or Sinkhorn-Knopp algorithm [27]. Many variants of
those algorithms have been developed for solving regularized
OT problems; we refer to [28–30] for overviews on those
methods. Those algorithms find solutions for a given value of
the relaxation parameter ε. For small values of this parameter,
numerical issues can arise and a stabilization of the algorithm
is necessary [31]. Despite such stabilization, convergence of
a stabilized Sinkhorn-Knopp algorithm can nevertheless be
very slow when ε is small. Such small values are, however,
desirable for finding good approximations to the solution of
the original nonregularized OT problem. A popular heuristic
solution to this problem is the so-called ε scaling, where one
subsequently solves the regularized problem with gradually
decreasing values for ε (see for example [32]). To our knowl-
edge, no quantitative analyses of the convergence of such
an ε-scaling method are available. In particular, it is unclear
whether the Sinkhorn distance is monotonic with respect to ε.

Our focus in this paper is on providing an alternate frame-
work for solving the OT problem, as derived from a statistical
physics point of view, in which we fully exploit the formal
analogy of the cost function in Eq. (3) to a free energy,
with ε an analog of a temperature, T . It can be seen as a
generalization of the so-called invisible hand algorithm, which
used a similar framework for solving the assignment problem
in which the transportation plan G is encoded as a binary
matrix [33]. This paper serves as a theoretical companion
paper to Ref. [34], where we introduce the framework and
apply it to the problem of defining a distance between 2D
images. It provides the proofs of all the properties associated
with the free energy we introduce, in particular its metric
properties and its monotonic convergence to the “true” OT
distance.

The paper is organized as follows. We start with a brief
review of both the OT problem and its regularized version
in the discrete case, with some proofs related to their metric
properties. In Sec. III, we describe in detail the framework we
propose for an optimal transport at finite temperature. Proofs
of its major properties are provided in the appendices. The
following section briefly describes the implementation of the
framework in a C + + program, FreeOT. In Sec. V, we present
applications of this framework to the problem of protein fold
recognition based on sequence information only. We finally
conclude with a detailed comparison between the entropy-
regularized formulation of the OT problem and our formalism,
as well as with a discussion on future developments.

II. THE REGULARIZED OPTIMAL
TRANSPORT PROBLEM

This section provides a brief overview of the discrete op-
timal transport problem and its regularized version, covering
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definitions as well as some considerations on its implementa-
tions. More thorough presentations can be found in Ref. [20].

We consider here the discrete version of the OT problem,
i.e., optimal transport between two discrete probability mea-
sures. We consider two sets of points S1 and S2 of size N
(for simplicity, we will assume that the two sets have the
same size; note that the formalism can easily be extended to
different sizes). Each point k in S1 (resp. S2) is assigned a
“mass” m1(k) [resp. m2(k)]. The balance condition implies
that

∑
k m1(k) = ∑

l m2(l ). For simplicity, we assume that
these two sums are equal to 1. We encode the cost of transport
between S1 and S2 as a positive cost matrix Ckl with (k, l ) ∈
[1, N]2. The discrete optimal transport problem can then be
formulated as finding a transport plan G, namely a matrix of
correspondence between points k in S1 and points l in S2 that
minimizes the total transport cost U defined as

U (G) =
∑
k,l

G(k, l )C(k, l ), (4)

where the summations extend over all (k, l ) ∈ [1, N]2. The
minimum of U is to be found for the matrices G that satisfy
the following constraints:

∀(k, l ), G(k, l ) � 0, (5a)

∀k,
∑

l

G(k, l ) = m1(k), (5b)

∀l,
∑

k

G(k, l ) = m2(l ). (5c)

Note that the first condition, (5a), extends to 0 � Gkl � 1
for all k and l , based on our assumption that the sum of the
discrete probability measures are 1 on both sets of points.
Matrices G that satisfy those conditions (5) belong to a
polytope that we note as G(S1, S2).

The solution to this problem is an optimal transport
plan Gopt and the corresponding minimum transport cost
d (S1, S2) = U (Gopt ). Note that this solution and its properties
depend strongly on the choice of the cost matrix C. In particu-
lar, if we consider three sets of points S1, S2, and S3, it is often
of interest to have C satisfy metric properties, namely that

∀(k, j, l ) ∈ [1, N]3, C(k, l ) � C(k, j) + C( j, l ),

∀(k, l ) ∈ [1, N]2, C(k, l ) = 0 ⇔ k = l. (6)

Villani [17] proved the following properties for Umin:
Property 1. The optimal transport cost d (S1, S2) is a dis-

tance between S1 and S2 that satisfies all axioms of a distance
when C is a metric matrix, as defined above.

The gluing lemma [17] is the key to proving this property.
As it will be used in the following, we write its discrete version
here.

Lemma 1 (gluing lemma). Let S1, S2, and S3 be three sets
of points, with associated mass vectors m1, m2, and m3. Let
G12 ∈ G(S1, S2) and G23 ∈ G(S2, S3) be two transport plans
between S1 and S2, and between S2 and S3, respectively. Let
G13 be the matrix defined by G13(k, l ) = ∑

j
G12(k, j)G23( j,l )

m2( j) .
Then G13 ∈ G(S1, S3); i.e., G13 is a transport plan between S1

and S3.
Solving for the transport plan that minimizes Eq. (4) under

the constraints (5) is a linear programming problem with an

O(N3) complexity. To circumvent this large computing cost
when N is large, Cuturi proposed to minimize a regularized
version of Eq. (4):

Uε (G) =
∑

kl

G(k, l )C(k, l ) + ε
∑
k,l

G(k, l ) ln[G(k, l )],

(7)

where ε is the regularization parameter, and the second term
is an entropic barrier that enforces the positivity of the Gkl

terms [24]. With the addition of the entropic term controlling
condition (5a), the two other conditions (5a) and (5b) are then
enforced by introducing new auxiliary variables λk and μl as
Lagrange multipliers,

Lε =
∑

kl

G(k, l )C(k, l ) − ε
∑
k,l

G(k, l ) ln[G(k, l )]

−
∑

k

λk

[∑
l

G(k, l ) − m1(k)

]

−
∑

l

μl

[∑
k

G(k, l ) − m2(l )

]
. (8)

Setting ∂Lε

∂G(k,l ) = ∂Lε

∂λk
= ∂Lε

∂μl
= 0, the critical points of the

Lagrangian Lε satisfy the following conditions:

G(k, l ) = Ak exp

(
−C(k, l )

ε

)
Bl ,∑

l

G(k, l ) = m1(k), (9)

∑
k

G(k, l ) = m2(l ),

where A(k) = exp( λk
ε

− 0.5) and B(l ) = exp( μl

ε
− 0.5). If we

set K the matrix defined by Kkl = exp (−Ckl
ε

), the conditions
(9) can be rewritten in vector form as

G = diag(A)Kdiag(B),

A ◦ (KB) = m1, (10)

B ◦ (KT A) = m2,

where ◦ is the Hadamard (i.e., elementwise) product. Solving
the OT problem by solving those equations leads to two main
improvements compared to the standard linear optimization
approach:

(i) The matrix G is directly computed from the vectors A
and B; this leads to a reduction of the number of variables
from N2 to 2N .

(ii) Equations (10) enable a simple iterative scheme to
compute A and B, namely, (A, B) ← (m1 � /(KB), m2 �
/(KT A)), where � is the Hadamard (elementwise) division.
This iterative scheme is known as the Sinkhorn algorithm
[26,27].

As discussed in the introduction, while these remarks lead
to a significant reduction in computing time, there remain
difficulties when solving the regularized OT problem when
ε → 0, which is required to reach the true OT distance. This
will be discussed further in the next section.
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In contrast to the nonregularized transport cost U , the
regularized transport cost Uε [Eq. (4)] does not directly define
a distance. However, it is possible to derive a distance from the
regularized OT, using the following property (adapted from
[24], in which a proof is provided):

Property 2. For ε > 0, let Gopt
ε be the transport plan

that minimizes the regularized transport cost Uε (G) over all
G ∈ G(S1, S2). Then dε (S1, S2) = ∑

k,l Gopt
ε (k, l )C(k, l ) is a

distance between S1 and S2 that is symmetric and satisfies all
triangular inequalities.

We conclude this section with a discussion of the relevance
of Properties 1 and 2, namely that the solutions of the OT and
regularized OT problems define a distance between the two
discrete measures considered. The properties associated with
distances are desirable, and we will ensure that we have them
for whichever notion of similarity we introduce. As elegantly
discussed by Mémoli [35], the triangular inequality properties
of a distance d imply that if one is interested in comparing
two continuous distributions λ and μ, and if S1 and S2 are
finite supports to sample λ and μ, then

|d (λ,μ) − d (S1, S2)| � d (λ, S1) + d (μ, S2). (11)

In practice we always have to rely on finite samples. It is clear
that the quality of the approximation of a distribution λ by
such a finite support S1 is described by d (λ, S1). Therefore
Eq. (11) indicates that comparing the discrete samples gives
a measure of similarity of the underlying continuous distribu-
tions that is as good as how those discrete samples describe
those distributions.

III. THE OPTIMAL TRANSPORT PROBLEM
AT FINITE TEMPERATURE

Let us consider a system in thermal equilibrium at a finite
temperature T . This system will sample several states, with
each state characterized by a probability that is related to the
energy of that state. The most probable state is the one with
lowest energy. Using this framework from statistical physics,
minimizing an energy function can be reformulated as the
problem of finding the most probable state of the system
it defines. Let us apply this framework to the discrete OT
problem between two sets of points S1 and S2, using all the
definitions from above. The “system” is then identified with
the different transport plans between S1 and S2 equipped with
masses m1 and m2, respectively, that satisfy the constraints of
mass balance and positivity, namely that belong to G(S1, S2).
We will slightly adapt the definition of this set by replacing the
condition that a matrix G of this set must satisfy 0 � Gkl for
all (k, l ) ∈ [1, N]2 with the condition that 0 � Gkl � 1. The
upper bound of 1 is a direct consequence of the fact that we
impose

∑
k m1(k) = ∑

l m2(l ) = 1.
Each state of the OT system is identified with a transport

plan G, and its energy U (G) is defined in Eq. (4). The
probability distribution function for this system, P(G), also
referred to as the Gibbs distribution, is defined as

P(G) = 1

Zβ (S1, S2)
e−βU (G). (12)

In this equation, β = 1/(kBT ), where kB is the Boltzmann
constant and T the temperature, and Zβ (S1, S2) is the partition

function computed over all states of the system. This partition
function is given by

Zβ (S1, S2) =
∫

G∈G(S1,S2 )
e−βU (G)dμ12, (13)

where dμ12 can be seen as the Lebesgue measure for the space
of transport plans G(S1, S2). The partition function Z is related
to the free energy of the system by

Fβ (S1, S2) = − 1

β
ln[Zβ (S1, S2)] (14)

and to the average energy Eβ (S1, S2) = 〈U (G)〉G∈G by

Eβ (S1, S2) = −∂ ln[Zβ (S1, S2)]

∂β
. (15)

We note first two important properties of the free energy and
average energy:

Property 3. For all β > 0, the free energy Fβ (S1, S2) is
symmetric and satisfies all triangle inequalities if the cost
matrix C between S1 and S2 is metric.

Property 4. For all β > 0, the free energy Fβ (S1, S2) and
the average energy Eβ (S1, S2) are monotonically decreasing
functions of β. Both converge to the traditional optimal trans-
port distance d (S1, S2).

Proof. The symmetry of Fβ (S1, S2) is a direct consequence
of the symmetry of the metric matrix C. The proof that it also
satisfies all triangle inequalities is given in Appendix A, while
the behavior of Fβ and of Eβ is analyzed in Appendix B. �

This statistical physics formulation of the optimal transport
problem is appealing. It defines a temperature dependent free
energy that satisfies metric properties when the cost function
is metric, with a monotonic dependence on the temperature (or
inverse of the temperature, β), and convergence to the actual
optimal transport distance at zero temperature. It is, however,
of limited interest in practice as the partition function and
therefore the free energy cannot be computed explicitly. We
propose a scheme for approximating these quantities using
the saddle point approximation. We will show that the cor-
responding mean field values satisfy properties similar to the
exact quantities defined above. These mean field values can
be readily computed.

Taking into account the constraints that define G(S1, S2),
the partition function can be rewritten as

Zβ (S1, S2) =
∫ 1

0

∏
kl

dG(k, l )e−β
∑

kl C(k,l )G(k,l )

×
∏

k

δ

(∑
l

G(k, l ) − m1(k)

)

×
∏

l

δ

(∑
k

G(k, l ) − m2(l )

)
. (16)

Using Fourier, we can represent a delta function as an integral
of an exponential,

δ(x) = 1

2π

∫
e−ixt dt, (17)

where the integration is usually performed along the real
axis. Introducing new auxiliary variables λ(k) and μ(l ), with
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(k, l ) ∈ [1, N]2, and omitting the unessential normalization
factors 1/(2π ), the partition function can be written as

Zβ (S1, S2)=
∫ 1

0

∏
k,l

dG(k, l )e−β
∑

kl C(k,l )G(k,l )

×
∫ ∏

k

dλ(k)e−iβ
∑

k,l λ(k)G(k,l )+iβ
∑

k λ(k)m1(k)

×
∫ ∏

l

dμ(l )e−iβ
∑

k,l μ(l )G(k,l )+iβ
∑

l μ(l )m2(l ).

(18)

We have factored out β for the variables λ(k) and μ(l ) for
consistency with the first term. Note that the integrand in Z is
now a complex function, while Z itself is a real number. The
imaginary part can be absorbed into λ and μ, i.e., λ(k) ≡ iλ(k)
and μ(l ) ≡ iμ(l ), with now λ and μ being complex variables.

Rearranging the order of integration and reorganizing the
exponential terms, we get

Zβ (S1, S2)=
∫ ∏

k

dλ(k)
∫ ∏

l

dμ(l )
∫ 1

0

∏
k,l

dG(k, l )

e−β
∑

k,l G(k,l )[C(k,l )+λ(k)+μ(l )]+β(
∑

k λ(k)m1(k)+∑
l μ(l )m2(l )).

(19)

Performing the integration over the real variables G(k, l )
(most inner integrals), we get

Zβ (S1, S2)=
∫ ∏

k

dλ(k)
∫ ∏

l

dμ(l )eβ(
∑

k λ(k)m1(k)+∑
l μl m2(l ))

×
∏
kl

1 − e−β(C(k,l )+λ(k)+μ(l ))

β(C(k, l ) + λ(k) + μ(l ))
. (20)

We rewrite this partition function as

Zβ (S1, S2) =
∫ ∏

k

dλ(k)
∫ ∏

l

dμ(l )e−βFβ (λ,μ), (21)

where Fβ (λ,μ) is a functional, or effective free energy defined
by

Fβ (λ,μ) = −
[∑

k

λ(k)m1(k) +
∑

l

μlm2(l )

]

− 1

β

∑
kl

ln

[
1 − e−β(C(k,l )+λ(k)+μ(l ))

β(C(k, l ) + λ(k) + μ(l ))

]
. (22)

Let Ḡ(k, l ) be the expected value of G(k, l ) with respect to
the Gibbs distribution given in Eq. (12). It is straightforward
from the definition of the energy U (G) and of the Gibbs
distribution that

Ḡ(k, l ) = − 1

β

∂Zβ (S1, S2)

∂C(k, l )
. (23)

It is unfortunately not possible to compute these expected
values directly from this equation, as the partition function
is not known analytically. Instead, we derive a saddle point
approximation (SPA). The SPA is computed by looking for

extrema of the effective free energy with respect to the vari-
ables λ(k) and μ(l ):

∂Fβ (λ,μ)

∂λ(k)
= 0 and

∂Fβ (λ,μ)

∂μ(l )
= 0. (24)

After some rearrangements, those two equations lead to the
following system of equations:

Ḡ(k, l ) = φ(β(C(k, l ) + λ(k) + μ(l ))), (25)∑
l

Ḡ(k, l ) = m1(k), (26)

∑
k

Ḡ(k, l ) = m2(l ), (27)

where

φ(x) = e−x

e−x − 1
+ 1

x
. (28)

Note that φ(x) is related to the Langevin function L(x) by
φ(x) = 1

2 [1 − L( x
2 )]. This function φ(x) is defined and contin-

uous for all real values x [with the extension that φ(0) = 0.5],
monotonically decreasing over R, with asymptotes y = 1 and
y = 0 at −∞ and +∞, respectively [see Appendix E for a
representation of φ(x)]. As such, it correctly constrains the
values of the transport plan G to be in the range of values
[0,1].

One can see that the variables λ(k) and μ(l ) must be
real as the transport plan is real. Another way to see this is
to recognize that the complex integral defining the partition
function [see Eq. (20)] does not depend on the choice of the
integration paths. The saddle point equations (27) indicate that
a path parallel to the real axis for each of the variables λ(k)
and μ(l ) is preferred.

We observe that Eqs. (22) and (27) are invariant under the
constant translation {λ(k) + K, μ(l ) − K}, where K is an arbi-
trary real constant. This translational degree of freedom leaves
the effective free energy Fβ (λ,μ) unchanged. To analyze the
validity of the saddle point approximation, we need to check
the existence and assess the unicity of the critical points of
this effective free energy. The following theorem shows that
Fβ (λ,μ) is weakly concave and can be made strictly concave
on a subspace of the parameter space that is easily defined.

Theorem 1. The Hessian of the effective free en-
ergy Fβ (λ,μ) is negative semidefinite with (2N − 1) neg-
ative eigenvalues and one zero eigenvalue. Furthermore,
the eigenvector corresponding to the zero eigenvalue is
(1, . . . , 1,−1, . . . ,−1) (with N 1’s, and N −1’s), and thus
corresponds to the constant translation invariance of this
energy. Setting one of the parameters λ(k) or μ(l ) as zero,
the free energy function on this restricted parameter space is
strictly concave.

Proof. See Appendix C. �
For a given value of the parameter β, the expected values

Ḡ(k, l ) that are solutions to the system of equations (27) form
a transport plan Gopt

β between S1 and S2 that is optimal with
respect to the free energy defined in (22). We can associate
with this transport plan an optimal free energy F MF

β and

an optimum energy U MF
β = ∑

k,l Gopt
β (k, l )C(k, l ). Note that

those two values are the mean field approximations of the
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exact free energy and internal energy defined in Eqs. (14) and
(15), respectively. We now list important properties of U MF

β

and F MF
β .

Property 5. For all β > 0 and cost metric matrix C, U MF
β is

symmetric and satisfies all triangle inequalities.
Proof. The symmetry of U MF

β is a direct consequence of the
symmetry of the metric matrix C. The proof for the triangle
inequalities is given in Appendix D. �

Property 6. F MF
β and U MF

β are monotonic decreasing func-
tions of the parameter β. In addition, both converge to the
optimal transport energy defined in Eq. (1).

Proof. See Appendix E. �
Theorem 1 and the two Properties 5 and 6 highlight a num-

ber of advantages of the proposed framework that rephrases
the optimal transport problem as a temperature dependent
process. First, at each temperature the optimal transport prob-
lem is turned into a strongly concave problem with a unique
solution. This problem has a linear complexity in the number
of variables, compared to the quadratic complexity of the
original problem. The concavity allows for the use of simple
algorithms for finding a minimum of the effective free energy
function [Eq. (22)]. We note also that Eqs. (27) provide
good numerical stability for computing the transport plan,
because of the ratio of exponentials. Second, the modified
problem defines an optimal distance at each temperature, that
converges to the traditional optimal transport distance when
T → 0. Finally, the convergence as a function of temperature
is monotonic.

IV. IMPLEMENTATION

We have implemented the finite temperature optimal trans-
port framework described here in a C + + program FreeOT
that is succinctly described in Algorithm 1.

Algorithm 1. FreeOT: a temperature dependent framework for
computing the optimal transport distance between two weighted set
of points.

Input: The two sets of points S1 and S2, and their associated weights
m1 and m2. Cost matrix C between S1 and S2. Initial value β0 for β

Initialize: Initialize arrays λ and μ to 0. Set ST EP = √
10. Set

β0 = β0/ST EP

for k = 1, . . . until convergence do
(1) Initialize βk = ST EP ∗ βk−1

(2) Solve nonlinear equations (27) at saddle point
(3) Compute optimal transport plan Gopt

β and U MF (βk )
(4) Check for convergence: if

|U MF (βk ) − U MF (βk−1)|/U MF (βk−1) < T OL, stop
end for

Output: The converged transport plans Gopt
β (k, l ) and the

corresponding transport costs U MF (β ).

FreeOT is based on an iterative procedure in which the
parameter β (inverse of the temperature) is gradually in-
creased. At each value of β, the nonlinear system of equations
defined by Eq. (27) is solved using an iterative Newton-
Ralphson method. At each iteration for this Newton method,
the Jacobian of the system of equations is computed, and a

linear system is solved based on this Jacobian, whose solution
provides estimates for the arrays of parameters λ and μ. These
new estimates are then used to assess how well the SPA
equations are satisfied. Once the errors on the SPA equations
fall below a tolerance TOL (usually set to 10−8), the optimal
transport plan Gopt

β and the corresponding transport energy
U MF (β ) are computed. If the latter falls within the tolerance
TOL of the corresponding value computed for the previous
β value, the procedure is deemed to have converged and the
program is stopped. Note that the converged values of λ and
μ at a given β serve as input for the following β.

The time complexity of FreeOT is dominated by step (2) in
its algorithm, namely solving the nonlinear system equations
defined by the SPA. Let us rewrite the saddle point equations
(27) as functions of the parameters λ and μ only:∑

l

Ḡ(k, l ) =
∑

l

exp −β(C(k, l ) + λ(k) + μ(l ))
exp −β(C(k, l ) + λ(k) + μ(l )) − 1

+
∑

l

1

β(C(k, l ) + λ(k) + μ(l ))
= m1(k),

∑
k

Ḡ(k, l ) =
∑

k

exp −β(C(k, l ) + λ(k) + μ(l ))
exp −β(C(k, l ) + λ(k) + μ(l )) − 1

+
∑

k

1

β(C(k, l ) + λ(k) + μ(l ))
= m2(l ).

(29)

Let us then define

Aλ(k) = −
∑

l

exp −β(C(k, l ) + λ(k) + μ(l ))
exp −β(C(k, l ) + λ(k) + μ(l )) − 1

+
∑

l

1

β(C(k, l ) + λ(k) + μ(l ))
+ m1(k) (30)

and

Aμ(l ) = −
∑

k

exp −β(C(k, l ) + λ(k) + μ(l ))
exp −β(C(k, l ) + λ(k) + μ(l )) − 1

+
∑

k

1

β(C(k, l ) + λ(k) + μ(l ))
+ m2(l ). (31)

The SPA equations become

Aλ(k) = 0, ∀k,

Aμ(l ) = 0, ∀l. (32)

Those equations form a system of 2N − 1 equations with
2N − 1 variables, N λ(k) values, and N − 1 μ(l ) values [as
a reminder μ(N ) is set to zero to ensure that the free energy
functional is concave]. Let us assume that we know an initial
solution X0 = (λ0,μ0) for this system. Taylor expansions of
the predicates (A) in the neighborhood of this solution lead to
the following system of equations:

J (X0)δX = −A(X0), (33)

where δX = (δλ, δμ) is the correction to be applied to X0,
A(X0) is the vector of values of the 2N − 1 predicates
(Aλ, Aμ) at X0, and J (X0) is the Jacobian of A taken at X0. We
note that this Jacobian J is equal to the opposite of the Hessian
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of the free energy function F . As this free energy is concave,
the Jacobian is then positive definite. It can be written in block
form:

J (X0) =
[

Dλ G′

G′T Dμ

]
, (34)

where G′(k, l ) = βφ′(β(C(k, l ) + λ(k) + μ(l ))), Dλ is the
diagonal matrix defined by Dλ(k, k) = ∑

l G′(k, l ), Dμ is the
diagonal matrix defined by Dμ(l, l ) = ∑

k G′(k, l ), and φ′(x)
is the derivative of the function φ(x) defined in Eq. (28)
(see Appendix C). The system of equations (33) can then be
rewritten as [

Dλ G′

G′T Dμ

][
δλ

δμ

]
= −

[
Aλ

Aμ

]
(35)

or equivalently as:{
Dλδλ + G′δμ = −Aλ,

G′T δλ + Dμδμ= −Aμ.
(36)

Multiplying the bottom equation by G′D−1
μ and subtracting

from the top equation, we get(
Dλ − G′D−1

μ G′T )
δλ = Ak − G′D−1

μ Al . (37)

Once this system is solved for δλ, we can solve for δμ using
the equation G′T δλ + Dμδμ = Aμ. Note that Dλ − G′D−1

μ G′T
is the Shur complement of Dμ in J . Using this representation
reduces the problem of solving a system of size (2N − 1) ×
(2N − 1) to that of solving a system of size N × N . Note that
since the Jacobian J is positive definite, the Shur complement
of Dμ in J is also positive definite. To solve the system in
Eq. (37), we have implemented both a direct method based on
an LDLT decomposition of the Shur complement and an itera-
tive method based on conjugate gradient. The performances of
these two methods will be compared below in computational
experiments.

V. COMPUTATIONAL EXPERIMENTS

A. Comparing protein sequences using finite
temperature optimal transport

We present some computational examples that illustrate the
use of our framework. We consider the problem of comparing
protein sequences. A protein sequence is usually represented
as a string of letters, where each letter corresponds to an
amino acid. This representation has proved very useful, es-
pecially in the context of sequence alignment [36,37] that
is usually performed using string-matching algorithms [38].
When comparing two sequences, these algorithms proceed
in two steps, first the generation of the alignment between
the two sequences, then the derivation of a statistical score
for that alignment. It should be noted that this score is not
a metric in sequence space. “Alignment-free” methods have
been proposed as an alternate solution to measure the similar-
ity of two protein sequences that enforce the metric property
(for a review, see [39–42]). Most of these methods compute
the frequencies of words of a fixed length, k, also denoted
as k-mers. Once the frequency distribution functions of such
k-mers have been computed for two sequences, the distance
between those two sequences is assigned to be the distance

between those distributions [40,43]. The finite temperature
optimal transport framework allows us to combine the benefits
of those two approaches. It is adapted to comparing protein
sequences as follows. We first consider a kernel for amino
acid pairs, namely a symmetric, positive definite matrix K1

such that K1(i, j) gives a quantitative value for the similarity
between amino acid of type i and amino acid of type j. To
build such a kernel, we consider the matrices representing the
raw data SM of any BLOSUM matrices, namely the raw count
of how often an amino acid of type i is substituted by amino
acid j in a set of selected protein sequence alignments [44].
This matrix is normalized by considering its row sums P(i):

P(i) =
20∑
j=1

SM(i, j),

SM2(i, j) = SM(i, j)

P(i)p( j)
. (38)

We have checked that when SM is a raw count BLOSUM
matrix, then SM2 is symmetric, positive, and definite. Smale
and colleagues [45] noticed that for a strictly positive real
number β, the matrix K1 defined as

K1(i, j) = SM2(i, j)β (39)

is also symmetric, positive, and definite. In the following, we
will use the BLOSUM62 matrix, with each element raised to
the power 0.1, as suggested by Smale et al. [45].

The second step is to define a kernel for comparing two
k-mers, namely two strings of the same length, k. Let Sk =
(s1, . . . , sk ) and Tk = (t1, . . . , tk ) be such strings. The function
K2 defined by

K2(Sk, Tk ) =
k∏

l=1

K1(sl , tl ) (40)

is a kernel on the space of strings of length k. This kernel is
normalized,

K̂2(Sk, Tk ) = K2(Sk, Tk )√
K2(Sk, Sk )K2(Tk, Tk )

, (41)

and converted into a distance, or cost C, between Sk and Tk

using

C(Sk, Tk ) =
√

2 − 2K̂2(Sk, Tk ). (42)

A pair of sequences S1 and S2 is represented with their sets of
k-mers, the cost matrix C between those k-mers, with C com-
puted as described above. The masses of the k-mers are set
uniform. The k-mers are contiguous stretches of sequences;
i.e., we do not consider gaps. In addition, k-mers may be
overlapping; i.e., there are N − k + 1 k-mers of length k for a
sequence with length N .

We focus on classifying proteins into structural folds
based on sequence information only. We considered protein
sequences from the SCOPe/ASTRAL database [46]. The
SCOPe database is designed to provide a comprehensive
description of the structural and evolutionary relationships
between all proteins whose structure is known. It defines
a classification of those protein structures at four levels,
namely class, folds, superfamilies, and families. Here we only
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FIG. 1. Discriminative power of the temperature-based optimal
transport distances for protein fold recognition. The probability of
correct classification of a protein sequence into its fold defined by
SCOPe based on the distance measure D(β ) = U MF

β (see text for
details) is plotted against β = 1/T for different sizes of the k-mers
used to represent the sequences. All the curves are arithmetic means
over 10 000 classification experiments (see text for details). Shaded
areas represent standard deviations.

considered the first two levels, as they are directly related
to structures. ASTRAL is a compendium to SCOPe that
provides databases of protein sequences and/or structures,
as well as tools useful for analyzing protein structures and
their sequences. We used a representative subset of the current
SCOPe/ASTRAL database that contains protein sequences
sharing less than 40% identity. This subset includes 12 differ-
ent folds, three for each of the four classes. Using the SCOP
terminology, we considered 3 mainly helical folds, a.1, a.25,
a.121; 3 mainly β folds, b.6, b.29, b.42; 3 α/β folds, c.1, c.66,
c.69; and three α + β folds, d.17, d.38, d.108; with 48, 46,
34, 43, 51, 30, 60, 41, 63, 46, 60, and 80 representatives,
respectively, for a total of 602 protein sequences. We refer to
this set as SCOP12.

We computed a set of matrices D(β ) for β ranging between
1000 and 1010, such that D(β )(k, l ) is the optimized transport
energy U MF

β between the two sequences Sk and Sl in the set
SCOP12. We also computed D(∞), namely the matrix of
distances at convergence (usually reached for β > 109).

In order to assess the discriminative power contained in
the different distance matrices D(β ), we considered a set of
classification tasks as follows: We randomly selected half
the sequences from each fold to form a training set and use
it for performing first-nearest-neighbor classification [where
nearest is with respect to the distance D(β )] to the remaining
sequences. By simple comparison between the class predicted
by the classifier and the actual class to which the image
belongs we obtain an estimate of the probability of correct
classification P(β ) using D(β ). We then repeat this procedure
for 10 000 random choices of the training set. In Fig. 1, we
plot P(β ) as a function of β for classification at the fold
level for different values of the size of the k-mers. Note that

TABLE I. Classification powers of different distances between
protein sequences.

Distance SCOPe Class P (SD)a SCOPe Fold P (SD)a

OT k-mer 1b 50.0 (2.4) 31.2 (2.2)
OT k-mer 5 77.2 (2.2) 68.9 (2.4)
OT k-mer 10 86.7 (1.9) 81.1 (2.1)
OT k-mer 20 90.3 (1.7) 86.2 (1.8)
OT k-mer 30 90.0 (1.8) 86.0 (2.0)
FASTAc 91.0 (1.6) 89.1 (1.6)
Bray-Curtis k-mer 1d 48.0 (2.1) 29.0 (2.3)
Bray-Curtis k-mer 5 57.2 (2.4) 45.6 (2.3)
Jaccard k-mer 1 48.0 (2.4) 30.0 (2.2)
Jaccard k-mer 5 55.0 (2.4) 43.0 (2.3)

aMean and standard deviation SD (in %) of the probability of
correct classification at the level considered, computed over 10 000
classification experiments.
bConverged OT distance.
cThe FASTA “distance” between two sequences is set to the raw
score of the alignment of the two sequences, using BLOSUM62 as a
substitution matrix, and gap penalties of −11 for opening and −1 for
extension.
dAlignment-free “distances” between two sequences computed as the
dissimilarities between the frequencies of their k-mer types. These
distances were computed using the program Alfree [42].

the lower the temperature (or alternatively the higher the
parameter β), the more discriminative the distance U MF

β . The
highest level of correct classification is already obtained for
β = 107 for all values of k-mers, i.e., much before con-
vergence to the optimal transport distance, usually reached
for β > 109. In addition, the discriminative power of the
temperature-based OT distance improves as the size of the
k-mers representing the sequences increases.

In Table I, we report the probabilities of correct classifica-
tions for D(∞) at the SCOPe class and fold levels at different
k-mer sizes, and compare them with the success rates of the
alignment-based method FASTA [47] and of two alignment-
free methods that compare the distributions of k-mers using
either Jaccard index distance or the Bray-Curtis dissimilarity
[48].

FASTA is a standard procedure in bioinformatics for com-
paring protein sequences that is based on dynamic program-
ming. It proceeds in two steps, first with the generation of the
alignment between the two sequences, then with the deriva-
tion of a score for that alignment. It relies on a weighting
scheme to measure the cost of matching pairs of amino acids.
Many such weights have been proposed, from substitution
matrices such as the BLOSUM matrices [44], to matrices
that capture physicochemical properties of amino acids [49].
Using this score, an alignment is derived following a dynamic
programming algorithm, either the local method of Smith
and Waterman [50] or the global method of Needleman and
Wunsch [51]. This alignment is then scored by summing the
individual weights of the matching pairs of amino acids and
adding penalties for the presence of gaps. In our experiments,
we have used the BLOSUM62 matrix, for consistency with
the results based on optimal transport (see above), and gap
penalties of −11 for opening and −1 for extension (the default
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values when using the BLOSUM62 matrix). We used the
SSEARCH tool within FASTA that is based on the Smith
and Waterman dynamic programming method. The “distance”
between two sequences is then set to the raw score of the
alignment. It should be noted that this score is not a metric
in sequence space.

As alternates to dynamic programming methods such as
FASTA, many “alignment-free” methods have been proposed
over the past three decades (for a review, see [39–41]). Most
of these methods compute first the frequencies of words of
a fixed length within a protein sequence, k, usually denoted
as k-mers. Once the frequency distribution functions of such
k-mers have been computed for two sequences, the distance
between those two sequences is assimilated to the distance
between those distributions, using different definitions of
distance [40]. We have considered two such methods based
on two different distances, the Jaccard index distance and
the Bray-Curtis dissimilarity. The Jaccard distance is based
on the presence or absence of k-mer types in the sequences.
Briefly, let us consider two sequences S1 and S2, and let us
consider that there are N types of possible k-mers in each
of these sequences (for example, if k = 2 then N = 202). We
then compare the two sequences by computing four indices
M11, M10, M01, and M00, representing the number of types of
k-mers that are found in S1 and S2, in S1 but not in S2, in S2 but
not in S1, and neither in S1 nor in S2, respectively. The Jaccard
distance between the 2 sequences is then

dJ (S1, S2) = M01 + M10

M01 + M10 + M11
.

In contrast to the Jaccard distance, the Bray-Curtis dissimilar-
ity measure takes onto account the actual number of k-mers of
each type. If there are Xi k-mers of type i in S1 and Yi k-mers
of the same type i in S2, then

dBC (S1, S2) = 1 − 2

∑
i min(Xi,Yi )∑

i(Xi + Yi )
.

Note that the Jaccard distance induces a metric on the se-
quence space, while the Bray-Curtis distance does not. We
used the program Alfree [42] to compute these string-based,
alignment-free distances between sequences.

In Table I, we report the probabilities of correct classi-
fications for D(∞) at the SCOPe class and fold levels at
different k-mer sizes, and compare them with the success rates
of the alignment-based method (FAST) and of two alignment-
free methods (Jaccard and Bray-Curtis) presented above. As
already illustrated in Fig. 1, the discriminative power of the
OT distance increases as the size of the k-mers increases up
to 20, and reaches a plateau after that. The corresponding
optimal OT distance for k-mers of size 20 is equivalent to the
discriminative power of the Smith and Waterman alignment
method. The significant difference however is that the OT
distance is an actual distance, while the Smith and Waterman
score is not. The two alignment-free methods based on k-mer
frequencies within the sequences show significantly lower
performances on this data set.

The experiments described above highlight the classifica-
tion powers of the finite temperature OT distance that we have
introduced. Interestingly, when we compute the OT distance
between two sequences, we also derive the optimal transport
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FIG. 2. Optimal transport plans between concanavalin A (hori-
zontal axis) and peanut lectin (vertical axis), for k-mer sizes of 3
(a) and 10 (b). The local alignments of the two domains of these
sequences, as well as the domain swap, appear clearly from the
transportation plans.

plan between the k-mers of those two sequences. In Fig. 2, we
show visual representations of the optimal transport plan G for
the optimal transport between the sequence of concanavalin
A (PDB code 2cnaA, 237 amino acids) and of a peanut lectin
(PDB code 2pelA, 232 amino acids) for two k-mer sizes, 3 and
10. The FASTA alignment between those two sequences does
not identify a single alignment; instead it finds that region
1-115 of concanavalin A aligns well with region 114:229 of
lectin A, while region 2-102 of lectin A aligns well with
region 124-227 of concanavalin A: there has been a domain
swap between the two sequences. Clearly, the transportation
plan between the two sequences captures that domain swap,
especially for large k-mer sizes. This visualization of the
transport plan is akin to the concept of dot plot representation
of the similarity between two sequences [52].

B. Computing time

As described in the Implementation section above, the
main computing cost of our implementation of the finite
temperature optimal transport problem, FreeOT, is associated
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with solving the nonlinear set of equations corresponding to
the SPA at each value of β. We solve this system of equation
using an iterative Newton-Ralphson method. At each iteration,
we solve a linear system of equation based on the Jacobian of
the nonlinear equations. As described in the Implementation
section, this system can be rearranged to be of size N × N ,
where N is the number of points considered. We considered
two methods for solving this system. First, we use a direct
method with which we decompose the matrix describing the
system using an LDL decomposition, as implemented in the
program “dsysv” from the LAPACK packages [53]. The cor-
responding time complexity is expected to be O(N3). Second,
we implemented an iterative conjugate gradient (CG) method.
Each iteration of the CG methods involves two matrix-vector
multiplications, which are of order O(N2). The CG method
will converge in at most N iterations, and in many cases in
many less iterations. As such, it is expected to be faster than
the direct method if the total number of CG iterations is small.
We refer to these two implementations as FreeOT(direct) and
FreeOT(iter).

Based on Theorem 1 and the two Properties 5 and 6,
FreeOT is expected to provide a fast and robust solution to
the OT problem. To check that this is indeed the case, we
have compared FreeOT with our own implementation of the
entropy-regularized approach to the OT problem. The latter,
dubbed EntropyOT, is based on a log-domain stabilization and
eta-scaling heuristic [32] and an overrelaxation scheme [54].
These two modifications to the original algorithm of Cuturi
[24] are expected to improve convergence of the iterative
scaling algorithm, as well as robustness for small values of
the relaxation parameter ε through the use of logarithmic sta-
bilization. We have experimented with applications of FreeOT
and EntropyOT to compare protein sequences, as described
above. We have compared each sequence in the SCOP12
data set defined above against five other sequences of similar
lengths. The computing time for one sequence is then reported
as the average over those five neighbors. Each comparison is
made based on the BLOSUM62 matrix, with the size of the
k-mers set to 1. The optimization is performed until conver-
gence, i.e., until the relative change in the energy falls below
a tolerance of 10−6. Such convergence is usually reached
for β = 1011 (or equivalently for ε = 10−11 for EntropyOT).
All computational experiments were performed on an iMac
computer with a 4.0 GHz Intel Core I7 processor, with 64 GB
of memory. The computing times for FreeOT (both the direct
and iterative versions) and EntropyOT are plotted against the
sizes of the protein sequences in Fig. 3.

With the exceptions of only small sequences, both versions
of FreeOT are found to be faster than EntropyOT. We have
assigned this difference to the fact that EntropyOT was found
to slow down significantly for very small ε values. While
convergence with high precision may not be needed, we
observe that FreeOT is free of those convergence problems.

The running times for FreeOT based on the direct linear
solver are consistent with an O(N3) time complexity, while
the equivalent running times for the iterative CG solver are
consistent with an O(N2). Note that those running times
are reported for the full procedure that includes scaling the
β parameter from a small value (high temperature) to a
large value (low temperature). Interestingly, the differences
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FIG. 3. Time complexity for FreeOT and EntropyOT. The run-
ning times for the finite temperature procedure (FreeOT) and for
the entropy-regularized procedure (EntropyOT, blue circles) used
for comparing two sequences are plotted against the size of the
sequences, including two options for the inner solver of the linear
system of equations (see text for details), namely a direct solver
(black circles) or an iterative conjugate gradient solver (red circles).
The corresponding solid lines shows the best fit to a cubic polynomial
for the direct solver data, and to a quadratic polynomial for the
iterative solver. The timings are computed on a single Intel Core I7
processor running at 4.0 GHz with 64 GB of RAM.

between the two solvers is small for the sizes of protein
sequences considered here. In fact, up to size 400, the direct
solver is found to be faster than the iterative solver. This is due
to the fact that we are using an efficient, parallelized version of
“dsysv” from LAPACK that uses all 8 cores available on the
computer on which we ran those experiments. For those small
values of N , the apparent time complexity of the parallelized
direct solver is of order O(N2). When N becomes larger, the
apparent complexity becomes closer to O(N3), and then the
iterative solver becomes faster.

Both FreeOT and EntropyOT include a scaling of their
regularization parameter, β and ε, respectively. This scaling is
akin to an annealing procedure. As the values of the variables
λ and μ at one value of the regularization parameter are used
as input to the next value of the regularization parameter
considered, it is expected that convergence at this new step
will be faster. To check whether this is true, we repeated those
calculations by resetting the variables to 0 at each step, and
compared the number of iterations needed to converge at each
value of the relaxation between the scaling version, and reset
version of FreeOT and EntropyOT. Most experiments using
EntropyOT failed due to numerical instabilities for ε < 10−5.
In contrast, FreeOT was able to converge even with reset of
the variables, over the whole range of β values. The average
numbers of iterations for the regular and reset version of
FreeOT (both based on the iterative solver) are shown in
Fig. 4.

For the regular version of FreeOT we see significant fluc-
tuations for the number of iterations over the 602 sequences
considered for β in the range [104, 107]. Above 107, this
number remains small and constant (5). In comparison, the
number of iterations needed at each β step increases as
β increases when the variables are reset for each β value
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FIG. 4. Convergence of the nonlinear solver in FreeOT for suc-
cessive values of β. The number of Newton-Ralphson iterations
needed for solving the SPA conditions is plotted against the value
of β, for the standard implementation of FreeOT with transfer of
variables between two consecutive β values (in black), and for the
reset version of FreeOT in which the variables are reset to 0 at
each value of β. The solid line corresponds to the arithmetic means
over the 602 sequence comparison experiments (see text for details).
Shaded area represents standard deviations.

[FreeOT(reset)]. The ranges of values observed over all exper-
iments are large for large values of β, highlighting difficulties
to converge for those values. Notwithstanding, all computa-
tions converge, even with β = 1011, thereby validating the
stability of FreeOT.

VI. DISCUSSION

In this paper, we have proposed a statistical physics frame-
work to solve the discrete optimal transport problem. Given
two sets of weighted points S1 and S2, and a cost matrix
between those sets, assumed to be metric, we have shown
first that the free energy computed over the polytope of all
possible transport plans between those two sets defines a
temperature dependent distance between the sets that satisfies
the symmetry and triangular inequality properties of a metric.
While the free energy cannot be computed exactly, it can
be estimated using a saddle point approximation. The saddle
point approximation is derived by constructing a weakly con-
cave effective energy function that captures the constraints of
the optimal transport problem. This effective energy function
is parameterized by temperature. Its maximum defines an op-
timal transport plan. We have shown that the transportation en-
ergy corresponding to this transport plan defines a temperature
dependent distance between the two sets of points considered.
We proved also that this energy decreases monotonically as
a function of β (the inverse of temperature) to the standard
optimal energy distance, providing a robust framework for
temperature annealing. We described an application of our
framework in bioinformatics, in which we have rephrased the
problem of comparing two protein sequences as an optimal
transport problem. We have shown that with this formulation
we can derive an actual distance between two sequences, as

well as a “transport plan” between the two sequences that is
akin to a dot plot between those sequences.

The starting point that defined the OT problem is the
original problem of Monge [21]: finding a one-to-one as-
signment between points in a source domain and points in a
target domain, knowing the cost of pairing points from the
two domains. As originally phrased by Monge, however, the
OT problem was deceptively simple. It proved hard to fully
characterize, such as validating the existence of a solution
and how this solution can be characterized. It was only when
this problem was relaxed by Kantorovich [55], to the form
described in Eqs. (1) and (2) (namely with a transport plan that
does not require a one-to-one assignment but allows for split-
ting), that a better mathematical characterization was made
possible. In particular, the problem could then be described as
a linear problem and it became possible to prove the existence
of a solution that can be characterized using techniques from
convex optimization. Since Kantorovich, there have been
many ways in which the OT problem has been described,
sometimes simplified for specific cost functions, and analyzed
(see for example [16–18,20]). It is worth mentioning for
example the “invisible hand algorithm” [33], which solves
the assignment problem (namely the Monge formulation of
the OT problem) using a statistical physics approach similar
to the one we have proposed here for the more general
relaxed OT problem. Of direct relevance to our framework,
however, is the entropy-regularized formulation of the OT
problem proposed by Cuturi [24] that has significantly helped
popularize OT and increased the range of its applications. This
formulation is briefly described in Sec. II. Both the entropy-
regularized OT and the statistical physics framework we have
introduced considered a modified optimization problem in
which the original cost function of the OT problem is either
supplemented with an entropy term for the regularized OT or
replaced with a physical free energy function in our formula-
tion. The modified optimization problems are both solved over
two sets of unconstrained real continuous variables, which we
write here as λ(k) and μ(l ), where the indices k and l run
over the points in the source domain, S1, and target domain,
S2, respectively. While the two formulations, regularized OT
and our framework, have different functionals, their solutions
share a similar set of equations to describe how the continuous
variables λ(k) and μ(l ) are computed. Namely, the optimal
transport plan G is written as a function of the cost matrix C
and of the parameters λ(k) and μ(l ),

G(k, l ) = g(α(C(k, l ) + λ(k) + μ(l ))), (43)

which are then computed by satisfying the constraints,∑
l

G(k, l ) = m1(k), (44)

∑
k

G(k, l ) = m2(l ). (45)

In both formulations, the optimal transport plan is a function
of a parameter α, with α = 1/ε, the weight given to the
entropic term in the regularized OT, and α = β = 1/(kBT ),
i.e., the inverse of the temperature, in our statistical physics
formalism. The similarities end there, and we will discuss now
the differences and their impact on solving the OT problem.
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First, the mapping g between the variables λ(k) and μ(l )
and the transport plan differs significantly between the two
approaches, with

g(x) = g1(x) = e−x (46)

for the regularized OT, and

g(x) = φ(x) = e−x

e−x − 1
+ 1

x
(47)

for our formulation. Both mapping functions ensure that the
entries G(k, l ) of the transport plan remain positive. The func-
tion g1(x) however is not bounded above, while the function
φ(x) ensures that G(k, l ) belongs to [0,1]. This constraint,
built in the construction of the functional free energy we have
introduced, provides better control over the variations of G
during the optimization. It is unclear how a similar constraint
can be considered for the regularized OT problem.

Second, the finite temperature OT framework is numeri-
cally more stable than the regularized OT. The ratio of expo-
nentials in the definition of φ(x) makes this function numeri-
cally more stable than g1(x). This question of numerical sta-
bility is of concern as the value of α is increased in an attempt
to get close to the traditional OT problem (both formulations
compared here map to the traditional OT problem when α →
+∞). For the regularized problem, log-domain stabilizations
have been proposed [32], though those stabilizations still need
improvement for large α, i.e., small ε, or small regularization.
For the framework proposed here, we have run routinely
computations with α (i.e., β, the inverse of temperature) on
the order of 1011 without numerical instabilities.

The key advantage of the regularized OT formulation that
it can be solved at “lightning speed,” paraphrasing the title of
the paper that introduced it [24]. Indeed, it can be solved with
a time complexity of O(N2), compared to the O(N3) for the
linear programming solution of the traditional OT problem.
We have shown that the finite temperature OT problem can
also be solved with a time complexity of O(N2) at each
temperature. We have shown also that the procedure is similar
to an annealing process as the temperature decreases, with no
loss of numerical stability, or increase in computing time for
very small values of the temperature. We note that there is still
room for improvement. The time complexity of O(N2) of our
procedure is the result of the application of an iterative conju-
gate gradient method for solving the linear systems that appear
when resolving the SPA conditions. Our current version of
this method is naive, with a simple diagonal preconditioner.
We will explore more sophisticated preconditioners, as well
as other iterative methods, in future work.

Formulating the OT problem with the addition of a temper-
ature parameter has many advantages, in addition to the ones
described above. In particular, it enables annealing (referred
to as scaling in statistics) with respect to the temperature.
While this is of advantage when solving numerically the OT
problem, it also fits well with other simulation techniques such
as Monte Carlo sampling to analyze for example the polytope
of possible transport plan G and therefore recover the true
values of the free energy of the system and its internal energy,
as defined in Eqs. (14) and (15). We will pursue this in future
studies.

Finally, we note that the OT problem considered in this
paper assumes that the two sets of points considered are
embedded in the same metric space, namely that we can build
the cost matrix C that connect them. If those two sets of
points were discrete representations of two three-dimensional
shapes, it would be difficult to generate such a cost matrix
between them as those shapes are not “registered”; i.e., the
correspondence between the spaces in which they are embed-
ded may not be known. Situations like this have led to an
extension to the optimal transport problem with the notion
of Gromov-Wasserstein distances between metric measured
spaces [35]. We believe that the concept of finite temperature
optimal transport can be extended in the same way into a finite
temperature Gromov-Wasserstein distance. We are currently
working on this problem.
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APPENDIX A: PROOF OF PROPERTY 3: METRIC
PROPERTIES OF THE FREE ENERGY

We prove that the free energy defined in Eq. (14) satisfies
all triangular inequalities. Let us consider three sets of points
S1, S2, and S3, in a metric space M with associated mass
vectors m1, m2, and m3, respectively. For a pair (i, j) of those
sets, we associate a cost matrix Ci j derived from the distance
d on M and a transport plan polytope G(Si, S j ). Recall that
any matrix Gi j in this polytope satisfies the three conditions

∀(k, l ), 0 � Gi j (k, l ) � 1,

∀k,
∑

l

Gi j (k, l ) = mi(k),

∀k,
∑

k

Gi j (k, l ) = mj (l ). (A1)

The partition function for all possible transport plans between
Si and S j is given by

Zβ (Si, S j ) =
∫

Gi j∈G(Si,S j )
dμi j exp[−βUi j (Gi j )], (A2)

where Ui j (Gi j ) = ∑
kl Ci j (k, l )Gi j (k, l ). The corresponding

free energy is given by

Fβ (Si, S j ) = − 1

β
ln[Zβ (Si, S j )]. (A3)

We first note that the volume of the transport plan polytope
G(Si, S j ) for any (i, j) ∈ [1, 3]2 is smaller than 1. Indeed,
taking into account the nature of this polytope, we have∫

G∈G(Si,S j )
dμi j =

∫ 1

0

∏
kl

dG(k, l )
∏

k

δ

(∑
l

G(k, l )−mi(k)

)

×
∏

l

δ

(∑
k

G(k, l ) − mj (l )

)
. (A4)
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As the G(k, l ) are integrated between 0 and 1, and as the con-
straints set by the delta functions restrain the space of possible
transport plans, we have indeed that 0 �

∫
G∈G(Si,S j )

dμi j � 1.
We can prove the triangular inequality of the free energy

defined in Eq. (A3) using the same proof strategy as used for
the standard optimal transport distance. We consider a “glued”
partition function Zg

beta(S1, S3) between S1 and S3:

Zg
β (S1, S3)=

∫
G12∈G(S1,S2 )

∫
G23∈G(S2,S3 )

dμi jdμi j

× exp

⎛
⎝−β

∑
i jk

C13(i, k)
G12(i, j)G23( j, k)

m2( j)

⎞
⎠.

(A5)

Let A = ∑
i jk C13(i, k) G12(i, j)G23( j,k)

m2( j) . As the cost matrices are
derived from the distance on the metric space in which S1, S2,
and S3 are embedded, we have

C13(i, k) � C12(i, j) + C23( j, k), (A6)

for all (i, j, k), and therefore,

A �
∑
i jk

C12(i, j)
G12(i, j)G23( j, k)

m2( j)

+
∑
i jk

C23( j, k)
G12(i, j)G23( j, k)

m2( j)
. (A7)

Note that ∑
i jk

C12(i, j)
G12(i, j)G23( j, k)

m2( j)

=
∑

i j

C12(i, j)G12(i, j)

m2( j)

∑
k

G23( j, k)

=
∑

i j

C12(i, j)G12(i, j)

m2( j)
m2( j)

=
∑

i j

C12(i, j)G12(i, j) = U12(G12). (A8)

Similarly,

∑
i jk

C23( j, k)
G12(i, j)G23( j, k)

m2( j)
= U23(G23). (A9)

Combining Eqs. (A7), (A8), and (A9), we get

A � U12(G12) + U23(G23), (A10)

from which we derive

exp (−βA) � exp [−βU12(G12)] exp [−βU23(G23)]. (A11)

Therefore,

Zg
β (S1, S3) � Zβ (S1, S2)Zβ (S2, S3). (A12)

Note that the “glued” partition function Zg
β (S1, S3) is com-

puted over all transport plans between S1 and S3 that are glued
from transport plans between S1 and S2 and between S2 and

S3. Those transport plans form a subset of all transport plans
between S1 and S3. Therefore,

Zg
β (S1, S3) � Zβ (S1, S3). (A13)

Combining Eqs. (A12) and (A13), we get

Zβ (S1, S3) � Zβ (S1, S2)Zβ (S2, S3). (A14)

This inequality on the partition functions translates to the
following inequality for the free energy,

Fβ (S1, S3) � Fβ (S1, S2) + Fβ (S2, S3), (A15)

which concludes the proof that F satisfies all triangular in-
equalities.

APPENDIX B: PROOF OF PROPERTY 4: MONOTONICITY
OF THE FREE ENERGY AND AVERAGE ENERGY

Let us consider two sets of points S1 and S2 in a metric
space M with associated mass vectors m1 and m2, respec-
tively. We associate with this system a cost matrix C and a
transport plan polytope G(S1, S2). Recall that any matrix G in
this polytope satisfies the three conditions in Eq. (5). The free
energy Fβ of this system is related to its internal energy Eβ

and entropy Sβ through the general relation Fβ = Eβ − T Sβ ,
where T is the temperature and β = 1/(kBT ).

The internal energy is the thermodynamic average of the
energy U and is given by

Eβ = 〈U (G)〉G∈G(S1,S2 ) = d (βFβ )

dβ
, (B1)

while the entropy is given by

Sβ = β2 dFβ

dβ
= −dFβ

dT
. (B2)

An important implication of these relations is that

dEβ

dβ
= −(〈U 2〉 − 〈U 〉2), (B3)

where the thermodynamics averages 〈 〉 are computed over
the polytope G(S1, S2). The quantity on the left is minus the
variance of the energy and is therefore negative, for all values
of β. As a result, the internal (or average) energy of the system
decreases as β increases. As U (G) is positive (as both the
cost matrix C and the transportation plan G are positive),
Eβ is positive: it has a limit when β → ∞. This limit is the
traditional optimal transport distance d (S1, S2) (see Sec. II).

The entropy is negative. Indeed, the total number of states
at an energy U is given by

N (U ) = eSβ (U ) =
∫

G∈G(Si,S j )
δ

(
U −

∑
kl

G(k, l )C(k, l )

)
dμi j .

(B4)

The volume of the polytope G(Si, S j ) is smaller than 1 (see
Appendix A),

N (U ) = eSβ (U ) � 1, (B5)

and therefore Sβ (U ) � 0. As this is true for all values of U ,
we have Sβ (T ) � 0, ∀T . The free energy is related to the
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entropy by

dFβ

dT
= −β2 dFβ

dβ
= −Sβ (T ). (B6)

Therefore
dFβ

dβ
= Sβ (T )

β2
� 0. (B7)

Therefore the free energy of the system decreases as β in-
creases. Its limit for β → ∞ is the same as the limit of Eβ ,
namely, the optimal transport distance d (S1, S2).

APPENDIX C: PROOF OF THEOREM 1: CONCAVITY
OF THE EFFECTIVE FREE ENERGY

We first prove that the effective free energy Fβ (λ,μ) is
weakly concave, by showing that its Hessian H is negative
semidefinite. H is a symmetric matrix of size 2N × 2N , such
that its rows and columns correspond to all N λ values first,
followed by all N μ values. Let φ′ be the derivative of the
function φ, i.e.,

φ′(x) = e−x

(e−x − 1)2
− 1

x2
. (C1)

We note first that φ′(x) ∈ [−1
12 , 0), ∀x ∈ R, i.e., that φ′(x) is

always strictly negative. We define the matrix G′ such that

G′(k, l ) = φ′(β(C(k, l ) + λ(k) + μ(l ))). (C2)

From Eqs. (27), we obtain

H (k, i) = ∂2Fβ (λ,μ)

∂λ(k)∂λ(i)
= βδki

∑
l

G′(k, l ), (C3)

H (k, l ) = ∂2Fβ (λ,μ)

∂λ(k)∂μ(l )
= βG′(k, l ), (C4)

H (l, m) = ∂2Fβ (λ,μ)

∂μ(l )∂μ(m)
= βδlm

∑
k

G′(k, l ), (C5)

where δ are Kronecker functions, the indices k and i belong to
[1, N], and the indices l and m belong to [1, N].

Let x = (x1, x2) be an arbitrary vector of size 2N . The
quadratic form Q(x) = xT Hx is equal to

Q(x) =
∑
i,k

x1(k)H (k, i)x1(i) + 2
∑
k,l

x1(k)H (k, l )x2(l )

+
∑
l,m

x2(l )H (l, m)x2(m)

= β
∑
k,l

x1(k)2G′(k, l ) + 2β
∑
k,l

x1(k)G′(k, l )x2(l )

+β
∑
k,l

x2(l )2G′(k, l )

= β
∑
k,l

[x1(k) + x2(l )]2G′(k, l ). (C6)

As G′(k, l ) is based on the function φ′ that is strictly negative,
the summands in the equation above are negative for all k and
l , and therefore Q(x) is negative for all vectors x. The Hessian
H is negative semidefinite. As a consequence Fβ (λ,μ) is
(weakly) concave.

As Q(x) is a sum of negative terms, it is 0 if and only if
all the terms are equal to 0. This means that ∀(k, l ), x1(k) +
x2(l ) = 0. This is realized when all the coordinates to x1 are
equal and set to a parameter K , and all the coordinates to
x2 are equal and set to −K . Therefore 0 is an eigenvalue of
H , with eigenvector x = (1, . . . , 1,−1, . . . ,−1). This eigen-
vector corresponds to the translation invariance for the free
energy. It can be removed by setting one of the parameters
λ(k) or μ(l ) to zero; the free energy functional Fβ (λ,μ) on
this restricted parameter space is then strictly concave.

APPENDIX D: PROOF OF PROPOSITION 5: METRIC
PROPERTIES OF THE FINITE TEMPERATURE

TRANSPORT ENERGY

Similarly to Appendix A, let us consider three sets of points
S1, S2, and S3 in a metric space M with associated mass
vectors m1, m2, and m3, respectively. For a pair (i, j) of those
sets, we associate a cost matrix Ci j derived from the distance
d on M and a transport plan polytope G(Si, S j ). Let Gopt

i j be
the optimal transport plan between Si and S j that satisfies
the saddle point equations (27) at a set value for β, and let
U MF

i j be the associated mean field optimal transport cost, i.e.,

U MF
i j = ∑

kl Ci j (k, l )Gopt
i j (k, l ). Gopt

i j and U MF
i j depend on β.

We omit it here for clarity of presentation.
Based on the definitions above, the energy associated with

Gopt
13 is

U MF
13 =

∑
kl

C13(k, l )Gopt
13 (k, l ). (D1)

As the cost matrix is metric,

C13(k, l ) � C12(k, j) + C23( j, l ) (D2)

for any j in [1, N] (i.e., j is an index for a point in S2), and
therefore

U MF
13 �

∑
kl

C12(k, j)Gopt
13 (k, l ) +

∑
kl

C23( j, l )Gopt
13 (k, l )

�
∑

k

C12(k, j)
∑

l

Gopt
13 (k, l )

+
∑

l

C23( j, l )
∑

k

Gopt
13 (k, l ). (D3)

Note that Gopt
13 (k, l ) ∈ G(S1, S3), i.e., satisfies the transport

constraints. Therefore,

U MF
13 �

∑
k

C12(k, j)m1(k) +
∑

l

C23( j, l )m3(l ) (D4)

for all j ∈ [1, N]. We rewrite this equation as

U MF
13 � A( j) (D5)

for all j ∈ [1, N], where we have defined A( j) =∑
k C12(k, j)m1(k) + ∑

l C23( j, l )m3(l ).
Let us now consider the “glued” transport plan Gg

13 defined
as

Gg
13(k, l ) =

∑
i

Gopt
12 (k, i)Gopt

23 (i, l )

m2(i)
. (D6)
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Based on the gluing lemma, Gg
13 ∈ G(S1, S3). As such,

m1(k) =
∑

l

Gg
13(k, l ), ∀k,

m3(l ) =
∑

k

Gg
13(k, l ), ∀l. (D7)

Replacing in the expression of A( j), we get

A( j) =
∑

k

C12(k, j)
∑

l

Gg
13(k, l )

+
∑

l

C23( j, l )
∑

k

Gg
13(k, l )

=
∑
k,l

[C12(k, j) + C23( j, l )]Gg
13(k, l )

=
∑
k,l

[C12(k, j) + C23( j, l )]
∑

i

Gopt
12 (k, i)Gopt

23 (i, l )

m2(i)
.

(D8)

The set of real numbers {C12(k, j) + C23( j, l )} with j ∈ [1, N]
is finite. According to the well ordering principle, it has a
minimum element with index j0 such that

C12(k, j0) + C23( j0, l ) � C12(k, i) + C23(i, l ), ∀i. (D9)

Then,

A( j0) �
∑
k,i,l

[C12(k, i) + C23(i, l )]
Gopt

12 (k, i)Gopt
23 (i, l )

m2(i)

�
∑
k,i,l

C12(k, i)
Gopt

12 (k, i)Gopt
23 (i, l )

m2(i)

+
∑
k,i,l

C23(i, l )
Gopt

12 (k, i)Gopt
23 (i, l )

m2(i)
� U MF

12 + U MF
23 .

(D10)

Since U opt
13 � A( j) for all j [Eqn. (D5)], U opt

13 � A( j0), and
therefore

U MF
13 � U MF

12 + U MF
23 , (D11)

which concludes the proof that U MF satisfies all triangular
inequalities.

APPENDIX E: PROOF OF PROPOSITION 6:
MONOTONICITY AND LIMITS OF FMF (β) AND UMF (β)

Let us consider two sets of points S1 and S2 in a metric
space M with associated mass vectors m1 and m2, respec-
tively. We associate with this system a cost matrix C and a
transport plan polytope G(S1, S2). In Appendix B we have
established that the exact free energy and internal energy
defined in Eqs. (14) and (15), respectively, are monotonic
functions of the parameter β, and converge to the actual
optimal transport distance d (S1, S2) when β → ∞. Here we
consider the approximation of those quantities obtained with
the saddle point approximation, namely the mean field values
F MF and U MF , and show that they satisfy the same properties.

The effective free energy Fβ (λ,μ) defined in Eq. (22) is
a function of the cost matrix C and of real unconstrained
variables λ(k) and μ(l ). For sake of simplicity, for any (k, l ) ∈
[1, N]2, we define

xkl = C(k, l ) + λ(k) + μ(l ). (E1)

The effective free energy is then

Fβ (λ,μ) = −
[∑

k

λ(k)m1(k) +
∑

l

μl m2(l )

]

− 1

β

∑
kl

ln

(
1 − e−βxkl

βxkl

)
. (E2)

As written above, Fβ (λ,μ) is a function of the independent
variables β, λ(k), and μ(l ). However, under the saddle point
approximation, the variables λ(k) and μ(l ) are constrained by
the conditions

∂Fβ (λ,μ)

∂λ(k)
= 0,

∂Fβ (λ,μ)

∂μ(l )
= 0, (E3)

and the free energy under those constraints is written as
F MF (β ). In the following, we will use the notations dF MF (β )

dβ

and ∂F MF (β )
∂β

to differentiate between the total derivative and

partial derivative of F MF (β ) with respect to β, respectively.
Based on the chain rule,

dF MF (β )

dβ
= ∂Fβ (λ,μ)

∂β
+

∑
k

∂Fβ (λ,μ)

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂Fβ (λ,μ)

∂μ(l )

∂μ(l )

∂β
. (E4)

Using the constraints (E3), we find that

dF MF (β )

dβ
= ∂Fβ (λ,μ)

∂β
, (E5)

namely that the total derivative with respect to β is in this
specific case equal to the corresponding partial derivative,
which is easily computed to be

dF MF (β )

dβ
= 1

β2

∑
kl

[
ln

(
1 − e−βxkl

βxkl

)
+ βxklφ(βxkl )

]
,

(E6)

where φ(x) = e−x

e−x−1 + 1
x , as defined in Eq. (28). Let f (x) =

ln( 1−e−x

x ) + xφ(x). In Fig. 5, we represent the two functions
φ(x) and f (x). As mentioned in the main text of the paper,
φ(x) is monotonically constrained in the interval [0,1] and
therefore correctly represents the possible values for the corre-
sponding transport plan. The function f (x) is continuous and
defined over all real values x [with the extension f (0) = 0]
and is bounded above by 0, i.e., f (x) � 0, ∀x ∈ R.

As

dF MF (β )

dβ
= 1

β2

∑
kl

f (βxkl ), (E7)
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FIG. 5. The two functions φ(x) and f (x).

we conclude that

dF MF (β )

dβ
� 0, (E8)

namely that F MF (β ) is a monotonically decreasing function of
β. In addition, we note that F MF (β ) is the mean field approx-
imation of the true free energy Fβ and that this approximation
becomes exact when β tends to ∞. Therefore,

lim
β→∞

F MF (β ) = lim
β→∞

F (β ) = d (S1, S2), (E9)

where d (S1, S2) is the traditional optimal transport distance
between the two sets of points S1 and S2.

Let

Uβ (λ,μ) =
∑

kl

CklGβ (k, l ) (E10)

and the corresponding mean field approximation of the inter-
nal energy at the saddle point

U MF (β ) =
∑

kl

CklG
opt
β (k, l ). (E11)

Before computing dU MF (β )
dβ

, let us first notice that by replacing
Eq. (E2) into (E6), we get

β
dF MF (β )

dβ
= −F MF (β ) −

∑
k

λ(k)m1(k) −
∑

l

μlm2(l )

+
∑

kl

xklφ(βxkl ). (E12)

F MF is the value of the free energy at the saddle point of the
free energy functional and is associated with a transport plan
Gopt

β that satisfies Eqs. (27). Therefore,

β
dF MF (β )

dβ
= −F MF (β ) −

∑
kl

λ(k)Gopt
β (k, l )

−
∑

kl

μlG
opt
β (k, l ) +

∑
kl

xkl G
opt
β (k, l ).

(E13)

Therefore,

β
dF MF (β )

dβ
= −F MF (β ) −

∑
kl

[xkl − λ(k) − μ(l )]Gopt
β (k, l )

= −F MF (β ) +
∑

kl

C(k, l )Gopt
β (k, l )

= −F MF (β ) + U MF (β ). (E14)

Note that this equation can be rewritten as

U MF (β ) = F MF (β ) + β
dF MF (β )

dβ

= d (βF MF (β ))
dβ

; (E15)

i.e., it extends the relationship (B1) known between the true
free energy and the average energy to their mean field coun-
terparts.

Based on the chain rule,

dU MF (β )

dβ
= ∂Uβ (λ,μ)

∂β
+

∑
k

∂Uβ (λ,μ)

∂λ(k)

∂λ(k)

∂β

+
∑

l

∂Uβ (λ,μ)

∂μ(l )

∂μ(l )

∂β
. (E16)

Let us compute all partial derivatives in this equation:

∂Uβ (λ,μ)

∂λ(k)
= ∂Fβ (λ,μ)

∂λ(k)
+ β

∂

∂λ(k)

(
∂Fβ (λ,μ)

∂β

)

= ∂Fβ (λ,μ)

∂λ(k)
+ β

∂

∂β

(
∂Fβ (λ,μ)

∂λ(k)

)
= 0, (E17)

where the zero is a consequence of the SPA constraints.
Similarly,

∂Uβ (λ,μ)

∂μ(l )
= ∂Fβ (λ,μ)

∂μ(l )
+ β

∂

∂μ(l )

(
∂Fβ (λ,μ)

∂β

)

= ∂Fβ (λ,μ)

∂μ(l )
+ β

∂

∂β

(
∂Fβ (λ,μ)

∂μ(l )

)
= 0. (E18)
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Finally,

∂Uβ (λ,μ)

∂μ(l )
= 2

∂Fβ (λ,μ)

∂β
+ β

∂

∂β

(
∂Fβ (λ,μ)

∂β

)

= 2
∂Fβ (λ,μ)

∂β

+β

(
−2

β

∂Fβ (λ,μ)

∂β
+ 1

β2

∑
kl

βx2
klφ

′(βxkl )

)

=
∑

kl

βx2
klφ

′(βxkl ). (E19)

As x2
kl is always positive and φ′(x) is always negative, we have

dU MF (β )

dβ
= ∂Uβ (λ,μ)

∂μ(l )
� 0, (E20)

and the function U MF (β ) is a monotonically decreasing func-
tion of β. In addition, we note that U MF (β ) is the mean field
approximation of the true internal energy Eβ and that this
approximation becomes exact when β tends to ∞. Therefore,

lim
β→∞

U MF (β ) = lim
β→∞

E (β ) = d (S1, S2), (E21)

where d (S1, S2) is the traditional optimal transport distance
between the two sets of points S1 and S2.
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