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a b s t r a c t

While structural data on viruses are more and more common, information on their dynamics is much
harder to obtain as those viruses form very large molecular complexes. In this paper, we propose a new
method for computing the coarse-grained normal modes of such supra-molecules, NormalGo. A new
formalism is developed to represent the Hessian of a quadratic potential using tensor products. This
formalism is applied to the Tirion elastic potential, as well as to a G�o like potential. When combined with
a fast method for computing a select set of eigenpairs of the Hessian, this new formalism enables the
computation of thousands of normal modes of a full viral shell with more than one hundred thousand
atoms in less than 2 h on a standard desktop computer. We then compare the two coarse-grained po-
tentials. We show that, despite significant differences in their formulations, the Tirion and the G�o like
potentials capture very similar dynamics characteristics of the molecule under study. However, we find
that the G�o like potential should be preferred as it leads to less local deformations in the structure of the
molecule during normal mode dynamics. Finally, we use NormalGo to characterize the structural tran-
sitions that occur when FAB fragments bind to the icosahedral outer shell of serotype 3 of the Dengue
virus. We have identified residues at the surface of the outer shell that are important for the transition
between the FAB-free and FAB-bound conformations, and therefore potentially useful for the design of
antibodies to Dengue viruses.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Coarse-grained models have long been used for studying pro-
tein folding, aggregation, as well as largemolecular systems such as
viruses (Smit et al. (1993); Shelley et al. (2001); Nielsen et al.
(2004); Bond et al. (2004); Shillcock and Lipowsky (2005);
Tozzini (2005); Marrink et al. (2007); Shih et al. (2007); Scott et al.
(2008); Zhang et al. (2008); Riniker et al. (2012); Sinitskiy and Voth
(2013); Saunders and Voth (2013); Kar and Feig (2014); Zhang
(2015); Kmiecik et al. (2016); Marzinek et al. (2016); Reddy and
Sansom (2016); Voth (2017); Zheng and Wen (2017)). They enable
the exploration of large length scales and time scales that are
usually inaccessible for all-atom models (Saunders and Voth
(2013); Kmiecik et al. (2016)). Combined with enhanced configu-
ration search (Monte Carlo) and energy minimization methods,
Koehl), delarue@pasteur.fr
these simplified models offer the possibility to determine equilib-
rium structures and to compare folding kinetics and thermody-
namics quantities with the corresponding values obtained by
experimental techniques. The first step in coarse-graining is to use
a simplified representation of the molecular system. In their pio-
neering work from 1976, Levitt and Warshel (1976) developed the
foundation of coarse-graining for protein folding and proposed a
two-bead representation for each amino acid, namely the Ca and
the centroid of the side chain. Since then, various levels of granu-
larity have been developed, from lattice to multi-bead represen-
tations and from single atom to multiple-atom residue-level
representations (Kmiecik et al. (2016)). The positions of those beads
are either defined by known atoms (usually the Ca), or by fitting
their positions to capture the dynamics of the full molecular sys-
tems (Zhang et al. (2008, 2011); Li et al. (2016)). In this paper we are
interested in proteins and consider methods that implement
coarse-graining with a Ca-only representation.

While defining the geometry of the simplified model is impor-
tant, the main difficulty in coarse-graining is to design potential
energy functions or force fields that retain the physics of the all-
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atom explicit solvent system in terms of structure, thermody-
namics, and dynamics (Riniker et al. (2012)). Two very popular
models for representing the energy of a coarse-grained system are
the G�o-likemodels (G�o and Abe (1981); Abe and G�o (1981)) and the
Elastic Network Model (ENM) (Tirion (1996)) and its variants
(Lopez-Blanco and Chacon (2016)). The G�o potential mimics the
semi-empirical potential used in traditional molecular mechanics
(MM), with bonded and non-bonded energy terms, and a simplified
representation of the molecule with either one or two atoms per
residue. The significant difference between the G�o potential and a
standard MM potential is that the native structure of the protein, as
usually determined by X-ray crystallography, defines the ground
state of the former, while standard stereochemistry is imposed by
the latter. G�o-like models have been used extensively for studying
protein folding (for review, see for example Dill et al. (2008)). In the
ENM, a residue in a protein is usually represented by a bead located
at the position of its Ca atom. Each pair of Ca atoms within a given
cutoff distance RC is connected by a harmonic springwith a uniform
force constant throughout the molecule, whose equilibrium
conformation is set to the experimentally-determined structure.
The total potential energy of the Elastic Network is then expressed
as the sum of the simple harmonic potentials of these springs.

Coarse-graining has proved useful to study dynamics of bio-
molecules at multiple scales (Karplus (2014); Levitt (2014);
Warshel (2014)). This is particularly true within the framework of
normal mode analyses, which are designed to infer dynamics from
static structures corresponding to locally stable states (Mahajan
and Sanejouand (2015)). Cartesian Normal Modes, for example,
represent a class of movements around a local energy minimum
that are both straightforward to calculate and biologically relevant
(Noguti and Go (1982); Brooks et al. (1983); Levitt et al. (1985)). The
low-frequency part of the spectrum of normal modes is often
associated with functional transitions, for instance, between two
known states of the same macromolecule such as its apo (ligand-
free) or holo (bound) form (Tama and Sanejouand (2001)). Normal
modes have also been adapted to coarse-grained potentials. The
simple quadratic form of the latter allows for a simple decompo-
sition of the motions of the protein of interest into vibrational
modes with different frequencies. This approach has been widely
used in computational studies of macromolecules since its intro-
duction nearly two decades ago (for recent reviews, see Sanejouand
(2013), Sinitskiy and Voth (2013) and Lopez-Blanco and Chacon
(2016)).

Computing coarse-grained normal modes for a molecular sys-
tem is deceptively easy. Starting from a conformation C0 for the
molecular system, a coarse-grained potential V that is minimum at
C0, and taking a second order approximation of that potential, the
Newton's equations of motion expressed in Cartesian coordinates
lead to a generalized eigenvalue problem

Hv ¼ lMv; (1)

where H2ℝ3N�3N is the Hessian matrix of the potential V
computed at C0,M is the (diagonal) mass matrix for the system, l is
one eigenvalue and v the eigenvector associated to l. The row size
of the Hessian matrix, 3N, is equal to three times the number N of
atoms in the system. When N is small, this Hessian can be stored as
a dense matrix and the computation of its eigen pairs is straight-
forward, leading to the popularity of the method described above.
However, while the contribution of normal modes techniques to
study the dynamics of such small systems is well documented, the
challenge is to use them to analyze much bigger molecular systems,
in which case N will be large. As standard algorithms for eigen
analyses have a time complexity of OðN3Þ, they become prohibitive
for such systems and have to be adapted. For example, normal
mode techniques have been used extensively to study the dynamics
of virus outer shells (for reviews, see for example Tama and Brooks
III (2006); Dykeman and Sankey (2010); Lezon et al. (2010)).
However, most of those applications resort to a symmetry-specific
implementation that lead to smaller system sizes (Simonson and
Perahia (1992); van Vlijmen and Karplus (2005); Peeters and
Taormina (2009)), or to higher level of coarsening, as in the Rota-
tions and Translations of Blocks (RTB) method (Tama et al. (2000))
and in the block normal modemethod (Li and Cui (2002)), and only
a few have used full atom representations (Dykeman and Sankey
(2008, 2010); Hsieh et al. (2016)), at the cost of large computa-
tional needs.

This paper includes two components, a methodological devel-
opment related to normal modes, and an application of the corre-
sponding method to studying structural transitions in virus outer
shells. On the methodological side, we propose a new imple-
mentation of the computation of coarse-grained normal modes. In
particular, a new representation of the Hessian of a pairwise po-
tential is proposed using tensors. Tensor products are tools from
linear algebra that are commonly used to simplify the computation
and representation of derivatives. For example, Blondel and Karplus
(1996) used tensors to simplify the computation of derivatives of
dihedral and improper angles in molecular mechanics force fields,
showing that it even results in removal of singularities. While we
use tensor products for similar simplifications when computing the
Hessian of the elastic potential introduced by Tirion (1996) and of a
G�o-like potential (Clementi et al. (2000)), we note that we also use
the properties of such a representation and show that it leads to
faster and parallelizable implementations of Hessian vector prod-
ucts. We believe that this is a novel contribution to the field of
computational structural biology. In addition, we implement a new
method for computing some of the eigen pairs of the huge Hessian
associated with a supra molecule, based on a block Chebyshev
Davidson algorithm with inner-outer restart (Zhou (2010)). The
combination of the tensor representations for the Hessians and the
fast method for computing a fraction of the eigen pairs of those
Hessians leads to a new, fast implementation of normal modes that
is amenable to analyzing supra molecular systems. We then
compare the normal modes computed with those two potentials.
We show that while the corresponding two models for coarse-
grained normal modes capture similar motions both in fre-
quencies and direction, the G�o-like potential leads to less de-
formations of the molecule and better preserves the
stereochemistry.

We use icosahedral outer shells of Dengue viruses as very large
systems to analyze the performances of our new implementations
of coarse-grained normal modes as well as the differences between
the two coarse-grained potentials we have considered. The outer
shells of Dengue viruses are multi-protein assemblies forming an
envelope that serve as containers for the genetic material of the
viruses (Hagan (2014)). One of the most important roles of the
outer shell is to protect its contents. The outer shell also needs to
change conformation to release its content into a host cell during
infection. Thus, the stability of the outer shell and its dynamics are
key issues in the life cycle of a virus (Hagan (2014)). Many viral
outer shells are known structurally. However, much less is known
about their dynamics. We focus on the dynamics of serotype 3 of
Dengue viruses, more specifically on the changes of conformation
induced by the binding of an antibody to their outer shells, which
we will refer to as their envelopes (Fibriansah et al. (2015)).

The paper is organized as follows. In the next section, we
describe normal mode analysis for coarse grained systems. We
provide an overview of the theory, discuss the two coarse-grained
potentials considered, namely the elastic potential and the G�o
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potential, and discuss the computations of the Hessian matrices
associated with those potentials, describing a new formulation in
which thesematrices are expressed as a sum of tensor products.We
also provide a (brief) description of the method that we have
implemented for finding a small subset of the eigen pairs of a large
symmetric matrix. The following section describes the imple-
mentations of those methods into a new program, NormalGo, as
well as of the tools that we use to analyze coarse-grained normal
modes. In the Results section, we present and discuss the applica-
tions of these methods to computing the normal modes of different
conformations of the envelope of serotype 3 of Dengue virus, and
analyze the possible transitions between those conformations. We
conclude the paper with a discussion on future developments.
2. Normal mode analysis

Notations. We will use the following notations in all the
following subsections. We write the inner (dot) and outer products
of two vectors u and v as <u; v> and u5 v, respectively. Let B be a
biomolecule containing N atoms, with atom i characterized by its
position ri ¼ ðxi;yi; ziÞ. The whole molecule is then described by a
3N position vector X ¼ ðr1;…; rNÞ. For two atoms i and j of B, we
define rij ¼ rj � rj to be the vector pointing from i towards j. We set

rij ¼
����rij���� and r0ij ¼

������r0ij
��������� to be the length of rij in any conformation

X and in the ground-state conformation X0 (usually the experi-
mental structure), respectively.
2.1. Coarse-grained normal modes

The crux of normal mode analysis is to infer the dynamics of a
biomolecule from a static structure corresponding to a locally sta-
ble state (Noguti and Go (1982); Brooks and Karplus (1983); Levitt
et al. (1985)). Let us consider such a biomolecule B, with a stable
state X0 for a given potential V. In the normal mode framework, the
potential V is approximated with a second-order Taylor expansion
in the neighborhood of X0 to yield a quadratic potential:

VquadðXÞ ¼ V
�
X0
�
þ VV

�
X0
�T�

X� X0
�

þ 1
2

�
X� X0

�T
H
�
X� X0

�
(2)

where VV and H are the gradient and Hessian of V, respectively. In

this expression, VðX0Þ is a constant that can be safely ignored and V

VðX0Þ ¼ 0 under the assumption that X0 is a stable state. The
quadratic energy is then simply

VquadðXÞ ¼
1
2

�
X� X0

�T
H
�
X� X0

�
(3)

For simplicity, wewill assume that each atom is assigned a mass
of 1. The procedure described below can easily be expanded to the
more general case of different values for the masses. In Cartesian
coordinates, the equations of motion defined by the potential Vquad

are derived from Newton's equations:

d2X
dt2

¼ �H
�
X� X0

�
(4)

Writing the solution to this equation as a linear sum of intrinsic
motions (the “normal modes” of the system),
X ¼
X
k¼1

3N
akXk ¼

X
k¼1

3N
Vkakcosðukt þ dkÞ (5)

we get a standard eigenvalue problem,

HV ¼ VU (6)

The eigenfrequencies uk are given by the elements of the di-
agonal matrix U, namely u2

k ¼ Uðk; kÞ. The eigenvectors are the
columns of the matrix V, and the amplitudes and phases, ak and dk,
are determined by initial conditions. We note that (at least) the first
six eigenvalues in U are equal to 0, as they correspond to global
translations and rotations of the biomolecule.

The input to a normal mode analysis is usually the experimental
structure Xexp of the molecule of interest, most often the X-ray
structure, and recently the cryo-EM structure when the molecule is
large. For generic potentials V, such as those implemented in semi-
empirical forcefields (Nerenberg and Head-Gordon (2018)), there
are no reasons to expect that this structure is a stable conformation
for V. Modifying Xexp to reach a true minimum X0 for V is unfor-
tunately a difficult task, especially for large biomolecules. Starting

from a conformation X0 that does not satisfy VðX0Þ ¼ 0 is, however,
problematic, as it may lead to the Hessian computed at X0 to be
negative, in which case it has negative eigenvalues that are not
meaningful with respect to dynamics. To circumvent this problem,
Tirion (1996) proposed a simplified elastic potential that has a
single minimum set to be the input structure Xexp. This simple idea
has led to the popularity of coarse-grained normal mode analyses.
In the following, we review this simplified potential, and discuss
another coarse-grained G�o-like potential that exhibits similar
properties.
2.2. The Tirion elastic potential

The Elastic Network Model (ENM) was originally introduced by
Tirion (1996). It is a model that captures the geometry of the
molecule of interest in the form of a network of inter-atomic con-
nections, linked together with elastic springs. Two categories of
normal mode analyses based on ENMs are widely used today,
namely, the Gaussian Network Model (GNM) (Bahar et al. (1997);
Haliloglu et al. (1997)) and the anisotropic network model (ANM)
Tirion (1996); Atilgan et al. (2001); Tama and Sanejouand (2001).
Here we follow the latter model, in which the energy of the
molecule is equated with the harmonic energy associated with
these springs. This defines a quadratic energy on the inter-atomic
distances, defined as

VðXÞ ¼ 1
2

X
ði;jÞ

kij
�
rij � r0ij

�2
(7)

when the biomolecule is in conformation X. In this equation, kij is
the force constant of the “spring” formed by the pair of atoms i and
j. The sum includes all pairs of atoms ði; jÞ that satisfies r0ij <Rc,

where Rc is a cutoff distance. In the original ENM (Tirion (1996)),
the force constants kij are set constant for all pairs of residues. In
other models, kij vary for different pairs of atoms. For example,
Ming and Wall (2005) employed an enhanced ENM in which the
interactions of neighboring Ca atoms on the backbone of a protein
were strengthened to reproduce the correct bimodal distribution of
density-of-states from an all-atom model, while Kondrashov et al.
(2006) used a strategy in which they classified residue in-
teractions into several categories corresponding to different
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physical properties. In parallel, the values Rc differ betweenmodels.
Those values are usually considered in the range from 12 to 15 Å if
only one atom per residue (usually Ca) is considered, and in the
range from 6 to 8 Å if all atoms are considered (Eyal et al. (2006)).
We will use constant kij ¼ 1 and Rc ¼ 15 for Ca-only models.

Computing the Hessian of the elastic potential VðXÞ. Let us rewrite
the quadratic potential for the elastic network as:

VENMðXÞ ¼ 1
2

X
ði;jÞ

VijðXÞ (8)

where the summation extends to all pairs of atoms ði; jÞ that satisfy
the cutoff criterium (see above). We compute the derivatives and
Hessian of this potential in vector form.

We define the vector U1ði; jÞ such that

U1ði; jÞ ¼
 
0;…;0;

rij
rij
;0;…;0;�rij

rij
;0;…;0

!
; (9)

namely, U1ði; jÞ is a vector in ℝ3N that is zero everywhere, except at
positions i and j where it is equal to the unit vector associated with
the difference vector rij and with the difference vector rji ¼ � rij,
respectively.

Let us first analyze the pairwise potential VijðXÞ. Its gradient in
ℝ3N at a position X is given by:

VVijðXÞ ¼ kij
�
rij � r0ij

�
U1ði; jÞ (10)

and its Hessian at the same position X is given by:

HijðXÞ ¼ kij
�
rij � r0ij

� dU1ði; jÞ
dX

þ kijU1ði; jÞ5U1ði; jÞ (11)

Note that both terms in the expression of the Hessian are
matrices of size 3N� 3N. For normal mode analyzes, the gradient

and Hessian are evaluated at X0:

VVij

�
X0
�
¼ 0 (12)

and

Hij

�
X0
�
¼ kijU1ðijÞ5U1ði; jÞ (13)

The total Hessian of the elastic potential is then given by:

H ¼ H
�
X0
�
¼
X
ði;jÞ

kijU1ði; jÞ5U1ði; jÞ (14)

2.3. Normal mode analysis based on G�o-like potential

The elastic potential given by Equation (7) is a simple pairwise
geometric potential. As such, it does not account for the stereo-
chemistry of the molecule explicitly. In particular, it may not
preserve bond lengths, bond angles, and preferences in dihedral
angles, as a full atom, semi-empirical forcefield would. While it is
possible to account for those specific interactions to some extent
by modulating the values of the spring constants kij (Ming and
Wall (2005); Kondrashov et al. (2006)), an alternate approach
is to redesign the potential to include those bonded interactions
explicitly. The elastic potential is based on the native structure of
the molecular system, as it only includes pairs of atoms that are
in close contact in that native structure. The G�o-like potential has
the same foundation as it takes into account only native in-
teractions (Ueda et al. (1975); Clementi et al. (2000)). It has been
adapted to the framework of coarse-grained normal modes (Lin
and Song (2010); Na et al. (2014)). In those papers, the presen-
tation of the computation of the Hessian of their G�o-like po-
tential was somewhat complicated. We provide a simplified
derivation below, using the framework of tensor products
defined above.

The G�o-like potential only considers the Ca of all residues in the
molecule of interest. Let bi be the length of the pseudo-bond be-
tween the Cas of the consecutive residues i and iþ 1, qi be the
virtual bond angle formed by the Cas of the consecutive residues i,
iþ 1, and iþ 2, and let fi be the virtual dihedral angle formed by the
Cas of the consecutive residues i, iþ 1, iþ 2, and iþ 3.

The G�o-like potential at a conformation X is then defined as

VGðXÞ ¼ VbondðXÞ þ VangleðXÞ þ VdihðXÞ þ VnbðXÞ

¼ 1
2

X
i¼1

N�1
Kr

�
bi � b0i

�2 þ 1
2

X
i¼1

N�2
Kq

�
qi � q0i

�2 þX
i¼1

N�3 h
Kf1

�
1

� cos
�
fi � f0

i

��
þ Kf3

�
1� cos 3

�
fi � f0

i

��i

þ
X

ði< j�3Þ
ε

2
45
 
r0ij
rij

!12

� 6

 
r0ij
rij

!1035
(15)

where the superscript 0 refers to the values of the variables for the

equilibrium conformation X0. The first three terms refer to
(pseudo) bonded interactions, while the last term corresponds to
non bonded interactions. When the molecular system considered
includes multiple chains, special care is needed to only include
bonds, angles, and dihedral angles that exist within a chain. In all
computations included in this paper, we will use Kr ¼ 100ε, Kq ¼
20ε, Kf1 ¼ ε, Kf3 ¼ 0:5ε, and ε ¼ 0:36. In addition, the non-bonded
term Vnb is computed over all pairs of non-bonded atoms that
satisfy r0ij <Rg, where Rg is a cutoff distance set to 25 Å.

In the normal mode framework, the G�o-like potential VG is
approximated with a second-order Taylor expansion in the neigh-
borhood of the ground state X0:

VGMðXÞ ¼ VG

�
X0
�
þ VVG

�
X0
�T�

X� X0
�

þ 1
2

�
X� X0

�T
HG

�
X� X0

�
(16)

where VVG and HG are the gradient and Hessian of VG, respectively.

Note that based on Equation (15), VVðX0Þ ¼ 0, and VGðX0Þ ¼ �
εNNB, where NNB is the number of non-bonded pairs of atoms
considered. As the latter is independent of the conformationX (as it

only depends on X0), we can safely ignore its contribution to
normal modes. The approximate G�o-like potential VGM can then be
written as

VGMðXÞ ¼ 1
2

�
X� X0

�T
HG

�
X� X0

�
(17)

To compute the Hessian HG, we note first that VG is the sum of
four terms. As the Hessian is a linear operator, we need to
compute four Hessians, Hbond, Hangle, Hdih, and Hnb, for the bond,
angle, dihedral angle, and non-bonded terms included in VG,
respectively.

Computing the Hessian of the bond potential VbondðXÞ. The bond
potential is similar to the elastic potential discussed above, limited
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to pairs of consecutive atoms. The computation of its Hessian is
then straightforward. For an atom i, we set j ¼ iþ 1. Using the same
definition of U1ði; jÞ introduced for the elastic potential, we find,

Hbond ¼
X
i

Hij

�
X0
�
¼
X
i

KrU1ði; jÞ5U1ði; jÞ (18)

where the sum extends to all atoms i in ½1;M � 1� and where j ¼ iþ
1.

Computing the Hessian of the angle potential VangleðXÞ. Let us
consider first the pseudo angle qj formed by three consecutive Ca, i,
j ¼ iþ 1, and k ¼ iþ 2, and centered at j. Those three atoms form a
triangle (see Fig. 1A). Using the law of cosines,

r2ik ¼ r2ij þ r2jk � 2rijrjkcos
�
qj
�

(19)

we get:

cos
�
qj
� ¼ r2ij þ r2jk � r2ik

2rijrjk
;

sin
�
qj
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2
�
qj
�q
: (20)

Using Equation (20), we obtain:

vi ¼
dqj
dri

¼ �rijrjk � rjkcos
�
qj
�
rij

sin
�
qj
�
r2ijrjk

vk ¼
dqj
drk

¼ rjkrij þ rijcos
�
qj
�
rjk

sin
�
qj
�
rijr2jk

vj ¼
dqj
drj

¼ �vi � vk (21)

We define the vector U2ði; j; kÞ such that

U2ði; j; kÞ ¼
�
0;…;0; vi; vj; vk;0;…;0

�
; (22)

namely U2ði; j; kÞ is a vector in ℝ3N that is zero everywhere, except
at positions i, j ¼ iþ 1, and k ¼ iþ 2.

Let Vangle;j be the potential energy associated with qj:

Vangle;j ¼
1
2
Kq

�
qj � q0j

�2
(23)

The gradient of Vangle;j at a position X is then given by:

VVangle;jðXÞ ¼ Kq

�
qj � q0j

�
U2ði; j; kÞ (24)

and its Hessian at the same position X is given by:
Fig. 1. Bond angle (A) and dihedral angle (B) for consecutive Cas.
HjðXÞ ¼ Kq

�
qj � q0j

� dU2ði; j; kÞ
dX

þ KqU2ði; j; kÞ5U2ði; j; kÞ (25)

For normal mode analyzes, the gradient and Hessian are eval-

uated at X0:

VVangle;j

�
X0
�
¼ 0

Hj

�
X0
�
¼ KqU2ði; j; kÞ5U2ði; j; kÞ (26)

The total Hessian of the angle potential is then given by:

Hangle ¼ Hangle

�
X0
�
¼
X
i

KqU2ði; j; kÞ5U2ði; j; kÞ (27)

where the sum extends to all atoms i in ½1;M � 2� and where j ¼ iþ
1;k ¼ iþ 2.

Computing the Hessian of the dihedral angle potential VdihðXÞ. Let
us consider first the pseudo dihedral fj formed by four consecutive
Ca, i, j ¼ iþ 1, k ¼ iþ 2, and k ¼ iþ 3, and centered around the
pseudo bond j� ðjþ 1Þ. fj is the angle between the planes i� j� k
and j� k� l (see Fig. 1B). Let us define the normals rijk and rjkl to
those two planes.

rijk ¼ rij � rkj

rjkl ¼ rkj � rkl; (28)

and their 2-norms, rijk, and rjkl. The angle fj is the angle between
those two vectors and can be obtained using

cosðfÞ ¼ < rijk; rijl >
rijkrjkl

(29)

From this definition of the dihedral angle, one obtains (van
Schaik et al. (1993)).

wi ¼
dfj

dri
¼ rjk

r2ijk
rijk

wl ¼
dfj

drl
¼ � rjk

r2jkl
rjkl

wj ¼
dfj

drj
¼
 

� < rij; rjk >

r2jk
� 1

!
vi þ

< rkl; rjk >

r2jk
vl

vk ¼
dfj

drk
¼ �vi � vj � vl: (30)

We next define the vector U3ði; j; k; lÞ such that

U3ði; j; k; lÞ ¼
�
0;…;0;wi;wj;wk;wl;0;…;0

�
; (31)

namely U3ði; j; k; lÞ is a vector in ℝ3M that is zero everywhere, except
at positions i, j ¼ iþ 1, k ¼ iþ 2, and l ¼ iþ 3.

Let Vdih;j be the potential energy associated with the dihedral
angle fj:

Vdih;j ¼ Kf1

�
1� cos

�
fi � f0

i

��
þ Kf3

�
1� cos 3

�
fi � f0

i

��
(32)
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Using the chain rule, we find that the gradient of Vdih;j at a po-
sition X is given by:

VVdih;jðXÞ ¼ Kf1sin
�
fi � f0

i

�
U3ði; j; k; lÞ þ 3Kf3sin3

�
fi

� f0
i

�
U3ði; j; k; lÞ (33)

and its Hessian at the same position X is given by:

HjðXÞ ¼ Kf1sin
�
fi � f0

i

� dU3ði; j; k; lÞ
dX

þ Kf1cos
�
fi

� f0
i

�
U3ði; j; k; lÞ5U3ði; j; k; lÞ þ 3Kf3 sin 3

�
fi

� f0
i

� dU3ði; j; k; lÞ
dX

þ 9Kf3cos
�
fi

� f0
i

�
U3ði; j; k; lÞ5U3ði; j; k; lÞ (34)

For normal mode analyzes, the gradient and Hessian are eval-

uated at X0:

VVdih;j

�
X0
�
¼ 0

Hj

�
X0
�
¼ �Kf1 þ 9Kf3

�
U3ði; j; k; lÞ5U3ði; j; k; lÞ (35)

The total Hessian of the dihedral potential is then given by:

Hdih ¼ Hdih

�
X0
�
¼
X
i

�
Kf1 þ 9Kf3

�
U3ði; j; k; lÞ5U3ði; j; k; lÞ

(36)

where the sum extends to all atoms i in ½0;M � 3� and where j ¼ iþ
1;k ¼ iþ 2; l ¼ iþ 3.

Computing the Hessian of the non bonded potential VnbðXÞ. Let us
consider two Ca atoms from residues i and j, such that i< j� 3 and
rij <Rg . The non-bonded potential between these two atoms is

Vnb;i;j ¼ ε

2
45
 
r0ij
rij

!12

� 6

 
r0ij
rij

!1035 (37)

Using the chain rule, we find that the gradient of Vnb;i;j at a
position X is given by:

VVnb;i;jðXÞ ¼ �60ε
rij

2
4 r0ij

rij

!12

�
 
r0ij
rij

!1035U1ði; jÞ (38)

where U1ði; jÞ is the same vector in ℝ3N introduced for the elastic
potential and for the bond term of the G�o-like potential. Using
again the chain rule, its Hessian at the same position X is given
by:

Hnb;i;jðXÞ ¼
60ε
r2ij

2
413

 
r0ij
rij

!12

� 11

 
r0ij
rij

!1035U1ði; jÞ5U1ði; jÞ

� 60ε
rij

2
4 r0ij

rij

!12

�
 
r0ij
rij

!1035 dU1ði; jÞ
dX

(39)

As for the other terms, the gradient and Hessian are evaluated at

X0:
VVnb;i;j

�
X0
�
¼ 0

Hnb;i;j

�
X0
�
¼ 120ε

r2ij
U1ði; jÞ5U1ði; jÞ (40)

The total Hessian of the non-bonded potential is then given by:

Hnb ¼ Hnb

�
X0
�
¼ 120ε

X
i;j

1
r2ij
U1ði; jÞ5U1ði; jÞ (41)

where the sum extends to all atoms i and j such that i< j� 3 and
rij <Rg .
2.4. Advantages of a tensor representation of the Hessian

Expressing the Hessians of the elastic potential and of the G�o-
like potential as a (weighted) sum of tensor products provides for
simpler computations of Hessian-vector multiplications. We illus-
trate this property below.

Each of the Hessian matrices considered for the elastic potential
and of the G�o-like potential can be written as H ¼ P

l
alTl 5 Tl,

where al is a coefficient that depends on the specific Hessian
considered, and the tensor Tl is either based on pairs of non bonded
atoms, ði; jÞ, or on 2, 3, or 4 bonded atoms, starting at an atom i. Let
W be a vector in ℝ3N . The product HW is given by:

HW ¼
X
l

alðTl5TlÞW (42)

Using the property ðTl 5 TlÞW ¼ hTl;WiTl, we get:

HW ¼
X
l

al

*
Tl;W

+
Tl (43)

For the Hessians related to non-bonded terms in the potentials,
Tl ¼ U1ði; jÞ, and the 3N-dimensional dot product hU1ði; jÞ;Wi is
simply the 3-dimensional dot-product:*
U1ði; jÞ;W

+
¼ kij

r2ij

*
Xi � Xj;Wi �Wj

+
(44)

where Wi is the 3D vector containing the components of W at
indices 3iþ 1, 3iþ 2, and 3iþ 3, with a similar definition forWj. This
dot product only requires 3 multiplications. Multiplying this dot
product with U1ði; jÞ requires an additional 3 multiplications.
Similar simple expressions exist for the bonded terms of the G�o-
like potential. In addition, the computation of the product HX is
embarrassingly parallelizable, as it can be easily divided over all the
pairs of interacting atoms ði; jÞ in the molecular system for the non-
bonded terms, and over all atoms for the bonded terms.

We note that the tensor representation of the Hessians provides
an easy way to verify that those Hessians are (semi-definite) pos-
itive. Indeed, for any non zero vectors W in ℝ3N , based on equation
(43), we have:*
W;HW

+
¼
X
l

al

*
Tl;W〉2 (45)

All terms in this sum are positive, provided that the coefficients
are positive, which is true for both the elastic potential and the G�o-
like potential. Note that for both potentials H is semi-definite
positive, as it has zero as an eigenvalue, with a null space of size
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(at least) 6.

3. Implementation

Wehave implemented the differentmethods described above in
a stand-alone application, NormalGo, written mainly in Cþþ. The
source code is available upon request to the authors. In the
following, we highlight some of the elements of NormalGo that are
relevant to the analysis of large systems.

3.1. Building the network of interacting atoms

The program reads in first the conformation of a biomolecule
from a file in the PDB format (Berman et al. (2000)). Each line
starting with the “ATOM” tag within this PDB file is processed and
interpreted to inform on the positions of the atoms of the molecule.
One of the parameters provided to NormalGo enables the user to
decide between an “all-atom” representation or a coarse repre-
sentation in which only one atom is picked for each residue, its
central Ca. The latter is enforced for the G�o potential. This structural
information is then used to defined either the Elastic Network
Model for the elastic potential, or the list of interacting pairs for the
non-bonded part of the G�o potential. In its current implementation
NormalGo only allows for a simple cutoff model. Namely, the
network is defined as a set of links, with a link between two atoms
only if the corresponding interatomic distance is smaller than a
given cutoff value Rc or Rg(see section 2 above). If the number of
atoms in the molecule is N, a brute force approach to defining this
network has a complexity of OðN2Þ. This complexity can easily be
reduced to OðNÞ by using the linked-list cell MD algorithm
(Quentrec and Brot (1973)), and even reduced further by distrib-
uting the cells to be checked uniformly over the p processors
available for the computation, leading to a complexity of OðN=pÞ.
We have implemented this solution without further refinement as
the average clock time observed for a system of onemillion atoms is
of the order of a few seconds on a desktop computer, a time that is
negligible compared to the computing time required to find the
eigen pairs of the Hessian of the potential.

3.2. Computing selected eigenvalues of large symmetric real
matrices

We note first that the goal is to compute a small subset of the
eigen pairs of a large, sparse Hessian matrix H described above.
Tirion (1996) had reported that the lowest frequency normalmodes
can capture most of the dynamics of the molecular system;
therefore, we are interested in the smallest eigenvalues of H. Sec-
ond, we note that the matrix H is positive, semi-definite, both for
the elastic potential, and the G�o potential. Finally, we note that
there are not reasons for H to be diagonally dominant. In practice,
we have observed that it is not.

Themost popular methods for computing a subset of eigen pairs
of a large matrix are based on the concept of Krylov sub-space, and
more specifically on the Lanczos method (Arnoldi (1951)). The
Jacobi-Davidson method, originally introduced by Sleijpen and van
der Vorst (1996) solves the same eigenvalue problem using a
different point of view. Given a target eigenvalue t and an
approximate eigenpair ðl;uÞ close to this target, where u belongs to
a search subspace U, the idea is to expand Uwith a correction s such
that a better approximation for the eigenpair can be found in the
expanded space. This correction vector s is usually found by solving
a linear system of equations, using an iterative method that can
take time to converge (see for example Hochstenbach and Notay
(2006)). There is however an alternative approach that has
proved more efficient (Zhou and Saad (2006)) and is of interest for
normal modes calculations. The exact solution of the correction
equation for s gives an expansion vector proportional to

ðH � lIÞ�1u. Zhou and Saad (2006) noticed that this is equivalent to
applying a polynomial filtering on the current vector u by the
rational polynomial fðxÞ ¼ 1=ðx� lÞ. Applying this filtering has the
advantage of magnifying the direction of the eigenvector corre-
sponding to the Ritz value l, which is the current best approxi-
mation to a wanted eigenvalue of H. Chebyshev filtering offers an
alternative approach which was shown to improve global conver-
gence as well as robustness. The corresponding Chebyshev-
Davidson-Jacobi algorithm is fully described in Zhou and Saad
(2006). Zhou (2010) further improved this algorithm and devel-
oped a block version with inner-outer restart to improve conver-
gence and reduce its memory footprint. We have implemented this
algorithm, BlockChebDav, for computing the smallest amplitude
eigenvalues of the Hessian matrices related to either the elastic
potential, or the G�o like potential.
3.3. Analyzing the coarse-grained normal modes

3.3.1. Atomic motions and correlated motions within a biomolecule
The Boltzmann distribution associated with a coarse-grained

potential is described by a multivariate Gaussian distribution with
a covariance matrix proportional to the inverse of the Hessian H of
that potential. Because of the six rigid motions captured by the six
normal modes associated with the eigenvalue 0, the inverse of H is
not properly defined. We can, however, compute a pseudo-inverse
by ignoring those zero energy modes; this pseudo-inverse defines
the covariance matrix for internal deformations:

C ¼
X
k¼7

K 1
lk
VkV

T
k (46)

where lk and Vk are the k� th eigenvalue and eigenvector of the
Hessian H, respectively. Note that C is a 3N � 3N matrix. The
summation extends from k ¼ 7, the first non-zero mode, to K, the
highest mode considered (up to 3N).

The submatrix Cii of size 3� 3 of C defines the internal motion of
atom i. In particular, the mean squared thermal fluctuation of i is
given by:

fi ¼
�
Dr2i

	
¼ kBT

mi
trðCiiÞ; (47)

where kB is the Boltzmann's constant, T is the temperature
considered, and mi the mass of atom i. Note that fi is related to the

thermal B-factor by Bi ¼ 8p2

3 fi.
To compute the correlation of the motions of two atoms i and j, a

cross correlation matrix, CCM, is computed, following Ichiye and
Karplus (1991):

CCMij ¼
tr
�
Cij
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCiiÞtr

�
Cjj
�q (48)

The values CCMij range from �1 to þ 1, with a negative value
indicating an anticorrelated motion, and a positive value identi-
fying a positively correlated pattern of dynamics between the two
atoms considered.
3.3.2. Identifying important residues in structural changes as
captured by normal modes

To identify the residues that are critical to the dynamics
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captured by a normal mode (also called mechanical “hot-spot res-
idues”), we use a structural perturbation method (SPM) (Zheng
et al. (2005, 2007)). The basic premise of SPM is that, for a given
mode k, the dynamic importance of the i-th residue can be assessed
by the response to a local perturbation of the potential at i. The
perturbation, which in the context of coarse-grained models is
realized by small changes in the force constants of those springs
(bonded, or non-bonded) that connect i to its neighbors, is similar
to a point mutation in probing experiments. This perturbation, or
response, is measured in terms of a normalized score Si;k given by

Si;k ¼
N

2u2
k

X
j

<Vk;HijVk > (49)

whereN is the total number of atoms in the molecule, u2
k and Vk are

the k� th eigenvalue and eigenvector of the Hessian H of the
coarse-grained model, respectively, and the summation extends
over atoms j that are in contact with i, according to the model
considered. Note that each term in this sum can be computed easily
using Equation (45).
3.3.3. Comparing two sets of eigenvectors
Eigenvectors provide the direction of motions described by

normal modes. Different conformations of a molecule lead to
different internal motions and therefore different eigenvectors.
Comparing those allows then to identify modes that are robust to

conformational changes. Let VA and VB be two sets of eigenvectors
computed from the same potential V over two different confor-

mations XA and XB of a biomolecule. The similarity Ikl between two

eigenvectors VA
k and VB

l is defined as the cosine between their
direction:

Ikl ¼ <VA
k ;V

B
l > (50)

Note that eigenvectors have unit norm.
In addition, we compute the effective number of normal modes

computed from VB that are involved in the description of one mode

VA
k as follows (Brüschweiler (1995); Nicolay and Sanejouand

(2006))

Neff Ak ¼ exp

"
�
X
l¼1

K

aI2kllog
�
aI2kl
�#

(51)

where the normalization factor a satisfies a
P
l¼1

K
I2kl ¼ 1, and K is the

number of modes considered. In effect, Neff Ak is the number of

modes from VB that have a non-zero overlap with VA
k ; it ranges

from 1 to K.
The same analysis can be performed when the two sets of ei-

genvectors VA and VB are computed from the same conformation X,
with two different coarse-grained potentials. The modes that are
identified as conserved in two different models for the energy of
the same molecule form the robust modes of the system (Nicolay
and Sanejouand (2006)).
3.3.4. Mapping conformational changes onto normal modes
Let us consider a molecular system Swith N atoms for which we

have two conformations, XA and XB. The change in structure be-
tween those two conformations is captured by a displacement

vector, D, such that D ¼ XB � XA.
Let us now consider a set of K normal modes for S computed
from its conformation XA. These normal modes have been
computed based on the eigenvalues U and eigenvectors V of the
Hessian of a coarse-grained potential V. Under the normal mode

model, the dynamics of XA can be described as a linear super-
position of the fundamental motions described by those eigen-

vectors. The corresponding dynamics that will bring XA closer to XB

is obtained by assigning the weights W of the modes in this su-
perposition through projections of the displacement vector onto
the eigenvectors:

W ¼ VtD (52)

The contribution of mode k to this optimal collective change of
conformation can then be measured as the absolute value of the
cosine of the angle between the displacement, and the direction of
the mode, given by column Vk in the matrix V:

Ok ¼ jhVk;Dij
jjVkjjjjDjj

(53)

Ok takes values between 0 and 1, with small values indicating that
the mode i contributes little to the conformational change, while
large values indicate a significant contribution. We note thatP
k¼1

3N
O2
k ¼ 1, as the Vk are normalized to 1 and are orthogonal to each

other. Then, SOK ¼ P
k¼1

K
O2
k is a measure of the contribution of the

first K normal modes to the total overlap between the normal

modes of XA and the displacement between XA and XB.
Using the optimal weights defined in equation (52), the new

conformation XA
K of S obtained by applying K of the 3N modes of XA

is given by:

XA
K ¼ XA þ

X
k¼1

K

wkVk; (54)

where wk ¼ WðkÞ. With some basic linear algebra, taking into ac-
count the orthogonality of the eigenvectors, it can be shown that

the coordinate root mean square (cRMS) distance between XA
K and

the target conformation XB, denoted cRMSK , is given by:

cRMS2K ¼ cRMS
�
XA;XB

�2 
1�

X
k¼1

K

O2
k

!
(55)

where cRMSðXA;XBÞ2 is the square of the coordinate RMS between

XA and XB, computed as jjXB�XAjj2
N ¼ jjDjj2

N , after application of an

optimal rigid body transformation of XB onto XA to minimize this
RMS value. Note that the more we include normal modes, the
smaller cRMSK becomes.

4. Results and discussions

We present results associated with the two topics of this paper,
namely an analysis of the new program NormalGo that was
developed for computing coarse-grained normal modes of supra-
molecular systems, including a comparison of the two coarse-
grained potentials we have implemented, the elastic potential
and a G�o-like potential, and applications of NormalGo to study the
structural transitions induced by the binding of antibody fragments
onto the envelope of serotype 3 of Dengue virus. All normal modes
calculations are performed with standard values for the force
constants of the interatomic networks, namely kij ¼ 1 for all edges
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ði; jÞ in the elastic networks, and the force constants of the G�o po-
tential set according to Na and colleagues (Lin and Song (2010); Na
et al. (2014); see Methods for details). We note that those values
could be optimized to provide better fit with dynamics observed
experimentally. Such optimizations are beyond the scope of this
paper.

All experiments described below were conducted on an Apple
computer with an Intel i7 4 GHz processor with 4 cores (and two
hyperthreads per core) and 64 Gb of RAM. The program NormalGo
was compiled using the Intel icpc and ifort compilers for its Cþþ
and Fortran components, respectively, and linked against the Intel
MKL library for all BLAS and LAPACK procedures that are used
within the code.
4.1. The molecular system

DENV is a member of the flaviviridae family. There are four se-
rotypes known for DENV. The particles for those different strains
share a common structural fold, with their outer shells, or enve-
lopes, having icosahedral symmetry. Those envelopes are formed of
60 asymmetrical units, with each unit containing three copies of
the E (i.e. envelope) protein (493 residues in serotype 3 of DENV)
and three copies of the M (i.e. membrane) protein (74 residues in
DENV3). The high resolution cryo-EM structures of all four sero-
types are available in the Protein Data Bank (Zhang et al. (2012);
Kostyuchenko et al. (2013, 2014); Fibriansah et al. (2015);
Kostyuchenko et al. (2016); Sirohi et al. (2016)). Here we focus on
the structure of the mature form of serotype 3 of DENV, available at
two different temperatures in the PDB database, with codes 3J6S
and 3J6T for its conformations at 28 �C and 37 �C, respectively
(Fibriansah et al. (2015)). A cartoon representation of the two
structures is given in Fig. 2. In this structure, each asymmetrical
unit contains 1695 residues (3� 493 E protein residues and 3� 72
M protein residues) that are formed of 13226 atoms. The full en-
velope includes 60 copies of this unit, for a total of 101,700 residues.
The structure of the envelope of DENV 3 is also known when it is
complexed with FAB fragments reflecting the effects of antibody
binding to a viral outer shell, PDB code 3J6U (Fibriansah et al.
(2015)).

We emphasize that the envelopes were studied using the empty
protein shells only, following previous studies of viral particles
using normal modes (Tama and Brooks III (2002, 2005); Rader et al.
(2005); Chennubotla et al. (2005); Kim et al. (2003); Polles et al.
(2013)). This setting is expected to be satisfactory as the stability
of the empty envelope is guaranteed by the geometric construction
of the coarse-grained model, which makes up for the missing sta-
bilizing interactions of the coat proteins and RNA. We note that the
Fig. 2. Outer shells of Dengue serotype 3. Space filling, Ca model of the mature form of the
complex with human antibody 5J7 Fab (PDB code 3J6U). The envelope includes 180 copies o
inside the envelope. The three E proteins from each asymmetric unit are colored green, ora
using Pymol (http://www.pymol.org).
latter were not resolved in the cryo-EM structures we considered.
We extracted from the three PDB files mentioned above all

copies of the E and M proteins. As only the Ca atoms were present
in the three PDB files, we got three conformations of the viral en-
velope of DENV3, referred to as DENV3-28C, DENV3-37C, and
DENV3-FAB, each with 101,700 atoms.
4.2. Computing a subset of the normal modes of very large virus
outer shells

Computational methods applied to molecular systems that rely
on second order analyses of a potential, usually in the form of a
Hessian, are often limited to small systems, because of the time and
space complexity necessary to manage such a Hessian. This is un-
fortunately the case for normal mode calculations. The simplified
coarse-grained models considered here enable applications of
methods that scale linearly with the number of atoms, as they rely
on short range interactions only through the introduction of a
cutoff. This does not solve however the time complexity associated
with computing even a small number of normal modes of such
elastic networks when the size of the system becomes large. To
assess the importance of this problem, we computed the first 1000
modes associated with the Tirion elastic potential and the G�o-like
potential for the DENV3-37C envelope using two different eigen-
value algorithms, the popular Lanczos method, and the Block
Chebyshev Jacobi Davidson method described in the Implementa-
tion section above. Comparisons of the computing times required
by those two methods are provided in Fig. 3.

As a reminder, the envelope of DENV3-37C includes 101,700 Ca
atoms. Its elastic network for the Tirion potential was computed
using a cutoff Rc ¼ 15 Å. It includes 2948042 edges; its corre-
sponding Hessian contains 53,980,056 non-zero values (only
8,844,126 values need to be stored when the tensor representation
of this Hessian is used). The non-bonded network for the G�o-like
potential was computed using a cutoff Rg ¼ 25 Å. We note that the
initial implementation of the G�o-like potential did not consider a
cutoff and included all pairs of Ca atoms in the molecule of interest
(Lin and Song (2010); Na et al. (2014)). We cannot use the same
strategy for a large molecule and therefore implemented a cutoff,
that was set arbitrarily large. The corresponding non-bonded
network includes 10856528 edges, approximately 3.5 times more
than in the elastic network for the Tirion potential.

The Lanczos method is the most common method used to
compute a small subset of eigenvalues and eigenvectors of a Hes-
sian for normal mode calculations. We have used here what is
considered its most robust implementation, ARPACK, with default
values for its parameters, and setting the size of the Krylov search
envelope of Dengue Serotype 3 at 28 �C (PDB file 3J6S), at 37 �C (PDB file 3J6T), and in
f both the E protein and the M protein. We omit the latter in the display as they point
nge, and blue. The FAB fragments are shown in cyan. All three panels were generated

http://www.pymol.org


Fig. 3. Computing the first 1000 normal modes for coarse-grained potentials applied on a virus outer shell. A. The total CPU times for two potentials, Elastic and G�o, and two
methods for computing eigenvalues of a large symmetric matrix, namely the Lanczos method and the Block Chebyshev-Davidson method, are plotted against the number of ei-
genvalues computed. B. The speedups (computed as the ratio of total CPU time over clock time) are plotted against the same number of eigenvalues computed. All calculations were
performed on an Intel i7 4 GHz processor with 4 cores, and two (hyper) threads per core.
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space to be twice the number of requested eigenvalues, namely 2�
1000. We find that the Lanczos method becomes inefficient for
large viral systems, especially when a “large” number of eigen pairs
is needed. The approximate total CPU time to compute the first
1000 modes for the whole DENV3 viral envelope is 65000 s, with a
clock time of 16500 s (approximately 4.5 h) for the Tirion potential,
and 240,000 s, with a clock time of 60,000 s (approximately 16.5 h)
for the G�o-like potential. Of concern is the limited speedup induced
by parallelization of the Hessian matrix products and by the use of
optimized BLAS and LAPACK routines. This speedup is of the order
of 4 for both potentials, compared to an ideal value of 8 on the
desktop computer that was used.

The Chebyshev-filtered, block version of the Jacobi Davidson
method, BlockChebDav, was found to be significantly more per-
formant. It was run with a block size kblock set to 16, a Chebyshev
polynomial order of 100, and the total size for the search space set
to 2000. Using this method, the approximate CPU time to compute
the first 1000 modes for the whole DENV3 viral envelope is 9500 s,
with a clock time of 1800 s (approximately 0.5 h, i.e. a speedup of a
factor 9 compared to the Lanczos method) for the Tirion potential,
and 30,200 s, with a clock time of 4800 s (approximately 1 h
20min, i.e. a speedup of a factor of 12 compared to the Lanczos
method) for the G�o-like potential. The use of a block procedure in
BlockChebDav enables efficient parallelization as all the Hessian-
vector multiplications can be distributed efficiently over the
different processors and as all matrix-matrix products benefit from
optimized BLAS3 routines. The corresponding speedup is of the
order of 6.5 for the G�o-like potential, and 5.2 for the Tirion po-
tential, both compared to an ideal value of 8. The difference be-
tween the two potentials comes from the difference in the size of
their corresponding Hessian matrices. As mentioned above, the
Hessian for the G�o like potential contains close to 3.5 times more
non-zero values than the Hessian for the Tirion potential. As
matrix-vector products are highly parallelized using the tensor
representations of the Hessians, and their contributions to the total
computing costs are higher for the G�o-like potential, we observe a
better speedup ratio.
4.3. Comparing the normal modes computed with the Tirion
potential and the G�o like potential

The Tirion elastic potential and the G�o like potential are both
coarse-grained, geometric based potentials that can be used to
compute collective motions within biomolecules, as captured by
normal modes. They are both constructed such that any confor-
mation of the molecular system under study is compared to a
reference structure for that system, taken to be the input experi-
mental conformation. For both potentials this input conformation
defines their unique minimum. However, their similarities stop
there. The Tirion potential only included pairwise interactions, with
no distinction of local, and non-local contacts. The G�o like potential
is formed of a combination of local interactions and global in-
teractions, with the former including pair-wise and higher order
interactions, namely three-atom terms for bond angles, and four-
atom terms for dihedral angles. Even the non-bonded terms in
the G�o like potential differ from the pair-wise terms in the Tirion
potential as they are represented with a 12-10 Lennard-Jones
functional, rather than with a Hooke potential. While both poten-
tials are first approximated with a second-order Taylor expansion
prior to being used for normal mode analysis, it is unclear whether
they capture the same dynamics for the system of interest. In this
section, we compare the normal modes generated by those po-
tentials on viral outer shells, focusing on the spectra of their ei-
genvalues, the differences (and similarities) of their eigenvectors,
the dynamics they generate, and the geometric deformations that
can result from these coarse-grained models.
4.3.1. Eigenvalue spectra for the Tirion potential and the G�o like
potential

In Fig. 4 we compare the frequencies of the first fifty normal
modes of the Tirion potential and the G�o-like potential of the E-
protein, and of the full envelope of DENV3-37C. The E protein in-
cludes 393 Ca atoms, while the whole envelope is comprised of
101,700 atoms. The potentials were computed as described in the
previous section. As expected, the first six frequencies are found
equal to zero, for all systems considered, as those frequencies
correspond to the rigid motions (three translations and three ro-
tations). The spectra of frequencies of the normal modes computed
for the full virus envelope are shifted towards lower frequencies
compared to the E-protein alone, indicating the presence of more
collective motions in protein oligomers. Of significance is the
presence of degeneracies in the spectra of the full envelope, namely
repeating frequencies with order 1, 2, 3, 4, or 5, as expected from
the icosahedral symmetries of the envelopes. The same



Fig. 4. Normal modes of DENV3. The frequencies of the first fifty normal modes of one E-protein (panel A) and of the full viral envelope (panel B) of DENV3 are plotted against the
mode number, for both the elastic potential (black), and the G�o-like potential (red). Note in (B) the similarity between the two spectra, both in terms of degeneracies of the modes,
and in terms of relative differences between the frequencies. For both panels the frequencies are in arbitrary units, as the force constants that define the potentials are also in
arbitrary units.

Fig. 5. Comparing the eigenvectors associated with the Tirion potential and the G�o potential. (A) and (B) Overlaps (computed as dot products) between the eigenvectors of the
Hessian of the elastic Tirion potential (y axis), and the G�o-like potential (x axis) for one E protein in DENV3-37C, and for the corresponding full viral envelope.(C) and (D) The
effective number of elastic Tirion modes needed to describe one G�o mode, as a function of the G�o mode number, for one E protein, and for the full viral envelope.
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degeneracies are observed with both potentials. Overall, these two
potentials lead to normal modes with eigen frequencies of similar
magnitude, and similar spectra, at least in the low frequency range,
despite being computed with significantly different models and
parameters.
4.3.2. Comparing the eigenvectors of the Hessians of the Tirion
potential and G�o like potential

The spectra shown in Fig. 4 provide a comparison of the ei-
genvalues of the Hessians of the two coarse grained models,
namely of the frequencies of the normal modes of the molecule of
interest. Of similar significance, we compared the corresponding
eigenvectors of the Hessians, i.e. the directions of those normal
modes. Fig. 5 illustrates their similarities and differences.

A normal mode k captures the collective motion of the atoms of
a system. This information is given in the form of a vector Vk, i.e. an
eigenvector of the Hessian of the potential considered, such that
VkðiÞ defines the relative contribution of atom i to the collective
motion. Two different models for the coarse-grained potential lead
to two different Hessians, and therefore to two different sets of

eigenvectors, VE
k and VG

k , for the Elastic Tirion potential, and for the
G�o-like potential, respectively. We first compare those two sets of
eigenvectors by computing all pairwise dot products between
them; results are shown in Fig. 5A and B for one E protein in
DENV3-37C, and for the corresponding full virus envelope,
respectively. For the E protein alone, only a fraction of the eigen-
vectors are conserved between the two coarse-grained models,
while for the full viral envelope, the similarities between the two
models extend to a much larger number of eigenvectors. To further
quantify the differences between the two different coarse grained
models, we computed the effective number Neff of Tirion modes
that are needed to describe one G�o mode k using Equation (51). In
effect, Neff provides the number of non-zero overlaps between the
G�omode k and all Tirionmodes. A small number forNeff means that
this mode k is conserved between the two models, or, using the
terminology of Nicolay and Sanejouand (2006), that k is a robust
mode, while a large number for Neff indicates that mode k is only
diffusely present in the Tirion modes. For the E protein alone, the
first 8 non-zero modes are nearly perfectly conserved between the
twomodels, with Neff below 1.5, and 19 non-zeromodes have a Neff

value below 5. The diffusion of the G�o modes within the Tirion
modes however grows really fast, with Neff larger than 50 for G�o
modes with indices larger than 50. In contrast, the modes for the
full envelope are much better conserved between the two models,
with 260 modes among the first 1000 G�o modes having an Neff

below 5, and all those first 1000modes with Neff below 50.We note
however that the different behaviors observed on the E protein
alone, and on the full viral envelope are not inconsistent with each
other: the first 20 non zero modes of the E protein represent
approximately 2% of the full spectrum of modes, while the first 261
modes for the full envelope also represent approximately 1% of the
corresponding full spectrum.
4.3.3. Correlated dynamics of E proteins under two coarse grained
normal mode models

The comparisons between the Tirion and the G�o normal modes
presented above focus on the eigenvalues and eigenvectors of the
corresponding Hessian matrices. However, ultimately, these com-
parisons should be focused on directly checking for differences in
the corresponding motions observed in the molecular system un-
der study. This is done in Fig. 6, in which we compare the cross
correlation matrices for the dynamics of one isolated E protein, and
of one E protein as part of the full envelope of DENV3-37C, for the
two coarse grained normal mode models.
The cross correlationmatrices (CCMs) computed from the Tirion

and the G�o normal modes are remarkably similar for both systems:
for the E protein alone, the max-distance between the CCMs for the
Tirion and the G�o is 0.4, while for the full envelope, the same max-
distance is 0.2. In the previous section, we had shown that there are
only 20 G�o modes that are robust for the E protein alone; the fact
that the corresponding CCMs are well conserved between the two
models re-emphasize the importance of the low frequency modes
for describing the dominant, correlated motions in a protein. These
matrices resemble those obtained on DENV1, and on the Zika virus
(Hsieh et al. (2016)). Briefly, the CCMs for the E protein alone reveal
significant positive correlations within each of the three domains I,
II, and III. Domains II and III exhibit both positive and negative
correlations in their atomic fluctuations, while the motions of
domain I are only weakly correlated to themotions of domain II and
III. When the dynamics of the E protein are studied in the context of
the full envelope, the same positive correlations are observed
within each of the three domains. However, the interactions be-
tween the domains change significantly. In the full envelope, the
dynamics of domain I is strongly correlated to the dynamics of
domain III, as opposed to being anti-correlated in the E protein
alone.

4.3.4. The G�o model leads to less deformation of the structure
during normal mode dynamics

The previous three subsections have shown that the Tirion
model and the G�o model lead to very similar low-frequency normal
modes for a molecular system, which then leads to similar corre-
lated motions within this system. The question arises then as to
which of these two models should be used, if they are so similar. To
answer this question, we applied normal mode mapping to the
structural changes between two known conformations of a protein,
following the model originally proposed by Petrone and Pande
(2006). We repeated their analyses for DENV3, and studied the
structural changes in its envelope between its mature form at 28 �C,
DENV3-28C, and its mature form bound with FAB fragments,
DENV3-FAB (see Fig. 2 above). We computed the first 4000 modes
of DENV3-28C, using both the Tirion model and the G�o model. We
then assessed how those modes can be used to map the confor-
mational changes. The mapping was measured using a coordinate
RMS between the conformation generated by combining the
normal modes, and the target conformation (see section 3.3.4
above). In parallel, we monitored the resulting deformations in
the lengths of the Ca-Ca pseudo bonds within the intermediate
structures that are generated. Results are shown in Fig. 7.

As we keep adding modes to the computed collective motions
mapped onto the conformational changes between the structures
of DENV3-28C and DENV3-FAB, the cRMS between the mapped
conformation and the target conformation decreases. Overall, this
cRMS decreases from 2.79 to 1.43 Å, for both the Tirion model and
the G�o model. We note that we do not expect these cRMS values to
drop to 0, even if we were to include all normal modes. Normal
modes only capture collective, harmonic motions. In addition,
Cartesian normal modes based on a simple potential such as the
elastic potential, when weighted with possibly large amplitudes,
are likely to stretch the structures in non-physical ways. This is
where the two coarse-grained normal mode models were found to
differ the most. The first 1000 modes lead to the largest drop in the
cRMS value. Over these 1000modes, the Ca-Ca pseudo bond length
is distorted on average by 0.2 Å with the Tirion model, and by only
0.025 Å for the G�o model. For even larger number of modes, the
distortion increases significantly for the Tirion model, reaching on
average 0.6 Å, while the same distortion never goes above 0.3 Å for
the G�omodel. As the latter explicitly contains terms that ensure the



Fig. 6. Correlated motions in the DENV3-37C E protein. Cross Correlation Matrices (CCM) obtained from the first 1000 modes for the E protein alone and the E protein in the
whole envelope for two coarse-grained normal mode models, the Tirion model, and the G�o-like model. Those plots show correlations between the motions of Ca atoms. Both axes of
a matrix are the residue index within the E protein. Each cell in a matrix shows the correlation between the motions of two residues (Ca atoms) in the protein on a range from �1
(anticorrelated, blue) to 1 (correlated, red), with 0 conferring no correlation. In panel E, the E protein is shown in cartoon mode. The color code for the structure in E) as well as for
the X and Y axes of the CCM plots follows the standard designation of the E protein domains I (red), II (yellow) and III (blue). The transmembrane domain is shown in purple. Panel E
was generated using Pymol.
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preservation of local, pseudo-bond properties of the molecule, it is
not surprising that it does better in maintaining the local geometry.
We will therefore only use the G�o model in the remaining part of
this study.

4.4. Structural transitions in mature forms of DENV3 induced by
binding of FAB fragments

DENV, a member of the Flaviridae family, is one of the most
important viruses that target humans. It is estimated that 400
million people worldwide are infected by DENV every year, with
approximately 100 millions of those showing direct signs of in-
fections, with diverse levels of severity (Bhatt et al. (2013)). As
mentioned above, the nucleocapsid of DENV is surrounded by a
lipid bilayer membrane, itself surrounded by an external envelope
consisting of 180 E proteins and 180M proteins. E proteins play an
important role in the entry of the virus into the host cell as it fa-
cilitates the fusion of the virus with the host cell membrane (Modis
et al. (2004)). Mapping of potential epitopes, i.e. antibody bind
sites, on the E protein is therefore crucial for vaccine development.
Here we propose a dual approach to understanding antibody
binding to E proteins. Instead of directly searching for residues that
may bind to an antibody, we identify those residues in the E protein
that are indirectly important for antibody binding by studying the
structural transition between a FAB-free conformation of the DENV
envelope, and a FAB-bound conformation of the same virus. Those
residues are essential for allowing structural changes. We use
DENV3, as the structure of the mature form of its envelope is



Fig. 7. cRMS between the best mapped conformation and the target conformation (right axis) for the transition between DENV3-37C and DENV3-FAB (which has FAB fragments
bound to it, see Fig. 2) (right axis, red), and average distortion of the Ca-Ca pseudo bond length (left axis, blue) as a function of the normal mode number, for the elastic, Tirion
normal mode model (A), and the G�o normal mode model (B).

Fig. 8. Overlaps between normal modes and conformational changes for the transition between the mature form of DENV3 at 28 �C and the same mature form with FAB fragments
bound to it (panel A), and for the transition between the mature form of DENV3 at 37 �C and the same FAB-bound conformation (panel B). The normal modes were computed based
on the FAB-free structures, using the G�o coarse-grained model. Modes are indexed based on increasing frequencies. The indices of the key modes (i.e. those with contribution higher
than 5%) are provided. Panels C and D show “porcupine plots” of the large-scale collective motions associated with mode 44 for DENV3 at 28 �C (panel C) and with mode 52 for
DENV3 at 37 �C, shown on one E-protein dimer. The orientation and length of the blue cones indicate the direction and the relative amplitude of motion of the Ca atoms. The
porcupine plots were generated using Pymol.
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known at two different temperatures, 28 �C (DENV3-28C) and 37 �C
(DENV3-37C), and the structure of its envelope is also knownwhen
it is complexed with FAB fragments (DENV3-FAB).

We computed the first 4000 normal modes of the two mature
forms using the G�o model, as described above, and assessed how
those modes can be used to map the conformational changes with
the two other forms of the envelope. We note first that those
changes of conformation are relatively modest: the cRMS between
DENV3-28C and DENV3-FAB is 2.79 Å, while the cRMS between
DENV3-37C and DENV3-FAB is 1.64 Å (in comparison, the cRMS
between DENV3-28C and DENV3-37 is 2.74 Å). The mapping be-
tween normal modes and conformational changes is measured
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using an overlap value (see section 3.3.4). Results are shown in
Fig. 8.We find that for the transition DENV3-28C to DENV3-FAB, the
main conformational changes occur in the lowest frequencymodes,
i.e. within the first 200 modes. These modes contribute 84% of the
transition; this number increases only to 86% when all 4000 modes
are included. This transition is therefore dominated by a few highly
collective modes. The transition DENV3-37C to DENV3-FAB is more
diffuse and requires more modes. In this case, the first 200 modes
contribute 27% to the transition; this number increases to 44%
when the 4000 modes are included. It is therefore expected that
many more localized motions (i.e. those with higher frequencies)
drive this transition.

From Fig. 8, we identify mode 44 as the dominant mode for the
DENV3-28C to DENV3-FAB transition (representing 76% of the
transition), and mode 52 as the dominant mode for the DENV3-37C
to DENV3-FAB transition (representing 21% of the transition). Those
modes lead to similar motions within one E protein and its closest
Fig. 9. SPM response scores for all residues in a raft of DENV3 (that contains 6 E-proteins) f
The higher those response scores, the more important the residues are for the motion captu
and DENV3-37C (panel D), with the residues with the highest SPM response scores, referred
Panel E: cartoon representation of the E protein dimer (from PDB code 1UZG), with the o
DENV3-28C, and in cyan for those from DENV3-37C. The molecular images were generated
neighbour, as illustrated with the porcupine plots in panels C and D
of Fig. 8. From those modes it is possible to identify the important
residues, also called “hot-spot residues” using a structural pertur-
bationmethod (SPM) (Zheng et al. (2005, 2007)). The basic premise
of this technique is that, for a given mode, the dynamic importance
of the i-th atom can be assessed by computing the response to a
local perturbation in the potential at i, using Equation (49). We
computed those response scores over a whole raft of the DENV3
envelope, which contains 6 E proteins, for the two dominant modes
identified above. Results for all residues in the unit are shown in
Fig. 9, while the hot-spot residues, i.e. those with the highest
response scores, are listed in Table 1.

The E proteins of DENV3 form local structures within the virus
envelope, referred to as raft. A raft includes six E proteins forming 3
dimers arranged in a parallel manner, resulting from the combi-
nation of two asymmetrical units. The whole envelope contains 30
such rafts. In mode 44 of DENV3-28C, the SPM response is
or normal mode 44 of DENV3-28C (panel A), and for mode 52 of DENV3-37C (panel C).
red by the normal modes. Structures of the assymmetric unit of DENV3-28C (panel B)
to as host-spot residues, that point outward highlighted using a sphere representation.
utward pointing hot-spot residues represented as spheres, in magenta for those from
using Pymol.



Table 1
Important residues in the transition from FAB-free to FAB-bound conformations of
DENV3.

E Protein domain a DENV3-28C b DENV3-37C c

Domain I Ile172, Leu173 Gly152, Asn153
Domain II Gln77, Gly78, Glu79
Domain III Asp339, Asp340, Gln341 Asn383

Gly342, Lys343, Ala344
Asn346, Gly372, Glu373
Lys392, Gly393

Trans Membrane Phe400 Ile396, Gly397, Lys398
Met399, Phe400, Thr403
Ala404, Val423, Gly424
Gly425, Val426, Leu427
Cys477, Ile478

a See Fig. 6 for a definition of the domains. Important residues that faces outward,
i.e. away from the lipid membrane of the nucleocapsid, are highlighted in bold.

b Only those residues whose SPM scores are above 3.1.
c Only those residues whose SPM scores are above 6.3.
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conserved between the two subunits of a raft (see Fig. 9A). Defining
hot-spot residues as those whose response scores are higher than
3.1, we find that most of those residues points towards the inner
membrane that sits on top of the nucleocapsid, as illustrated in
Fig. 9B, and listed in Table 1. There is however a pocket of residues
within domain I of E protein that points outward, with high
response scores, namely Ile172, Leu173 (and to a lesser extent their
immediate neighbors in the sequence). It is interesting to notice
that none of those residues directly interact with the FAB fragments
(see Table 1 of Fibriansah et al. (2015)). However, they do play a key
role in allowing these FAB fragments to bind to the viral envelope.

In mode 52 of DENV3-37C, the SPM response is again conserved
between the two subunits of a raft (see Fig. 9C). Setting a cutoff of
6.3 to define hot-spot residues, we find that most of those residues
point towards the inner membrane, just like for DENV3-28C (see
Fig. 9C, and Table 1). However, in the case of DENC3-37Cwe observe
three pockets of residues that point outward and that have high
response scores. Those pockets are centered around residues
Gly152 and Asn153 of domain I, residues Gln77, Gly78, and Glu79 of
domain II, and residue Asn383 of domain III. As observed with
DENV3-28C, none of those residues directly interact with the FAB
fragments (Fibriansah et al. (2015)).

5. Concluding remarks

Our interests in this paper are three fold. First, we proposed a
new formalism for characterizing the Hessian of a coarse-grained
quadratic potential using tensor products. This formalism can be
used for computing normal modes of very large viral systems. This
formalism is developed for the pairwise potential originally pro-
posed by Tirion (1996), as well as for a G�o like potential (Clementi
et al. (2000); Lin and Song (2010)). When combined with a fast
method for computing some eigenpairs of the Hessian, this new
formalism enables the computation of up to 1000 normal modes of
a full viral envelope with more than 100,000 atoms in less than 1 h
and 30min (clock time) on a standard desktop computer. Second,
we compared the two coarse-grained potentials mentioned above
with respect to the eigenvalues and eigenvectors of their Hessians,
as well as the collective motions they generate. We have shown
that, despite significant differences in their formulations, the Tirion
and the G�o like potentials capture very similar dynamics charac-
teristics of the molecules under study. However, the G�o like po-
tential should be preferred as it leads to significantly less local
deformations in the structure of the molecule during normal mode
dynamics. This is probably due to the fact that the Go-like potential
has bond, angle, and torsion angle terms that are designed to
preserve the geometry of the molecule. Finally, we used coarse-
grained normal mode analysis based on the G�o like potential to
characterize the structural transitions that occur when FAB frag-
ments bind to the envelope of serotype 3 of the Dengue virus. Using
the concept of Structural Perturbation Method (SPM), we have
identified residues at the surface of the envelope that are important
for the transition between the FAB-free and FAB-bound confor-
mations, and therefore important for the binding of antibodies to
Dengue viruses.

The tensor formalism for computing the Hessians of the Tirion
and G�o like potential allows for simplified representations of
those Hessians, and more importantly for better parallelization of
Hessian - vector multiplications. However, the most important
improvements for computing some eigen pairs of those Hessians
came from the implementation of the Block Chebyshev Jacobi
Davidson (BlockChebDav) algorithm (Zhou (2010)). We have
recently tested other recent algorithms for computing those eigen
pairs and found BlockChebDav to be the most efficient (P. Koehl,
submitted). We do not exclude however that there are other al-
gorithms available that may result in even further improvements.
In addition, the current implementation of BlockChebDav is found
to be limited to computing the first 5000 eigen pairs of a (very
large) Hessian. We will need new implementations if more eigen
pairs are needed; we are currently looking at solutions to this
problem, such as the spectrum slicing methods (Lin et al. (2016)).

The new representation of the Hessian of a quadratic poten-
tial, combined with the fast method BlockChebDav for computing
a subset of the normal modes associated with the Hessian, is a
general formalism that can be applied to any large molecular
system. In this paper, we have applied it to the outer shells of
viral systems. In those specific cases, the computations of normal
modes could have been simplified by using either the symmetry
properties of the outer shells (Simonson and Perahia (1992); van
Vlijmen and Karplus (2005); Peeters and Taormina (2009)), or by
looking for specific relationships between the normal modes of
the full viral shells and those of its components (Na and Song
(2018)). We argue here that such simplifications are not neces-
sary, opening the doors to studying the dynamics of general large
molecular systems using normal modes.

The G�o like potential considered here is identical to the po-
tential introduced by Lin and Song (2010), with two differences.
First, we rewrote completely the computation of its Hessian, as it
is significantly simplified using the tensor representation. Sec-
ond, we introduced a cutoff for the non-bonded terms in the
potential, that was not used in the original implementation. The
value given to that cutoff, namely 25 Å, is somewhat arbitrary
and should be studied in details. This G�o potential was found to
better preserve local geometry of the molecules during normal
mode dynamics. However, in this paper we have only looked at
modest ranges of motion for those normal modes. Internal co-
ordinate normal modes (Noguti and Go (1982); Levitt et al.
(1985); Lopez-Blanco et al. (2011)) combined with G�o potential
would certainly be even more robust to deformation. It is unclear
at this stage if they can be adapted to studying very large mo-
lecular systems.

Using the coarse-grained normal mode analysis based on the G�o
like potential, we were able to identify hot-spot residues of the
envelope of DENV3, namely residues that are important for the
conformational transition involved in the binding of FAB fragments
to the surface of the envelope. Further analysis is needed to ensure
that these “dynamically important” residues are conserved among
all DENV epitopes, but in principle this prediction of epitopes
should be useful for the design of neutralizing antibodies in gen-
eral. We plan to make this tool available on a web page in the near
future.
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