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Abstract

Coarse-grained normal mode analyses of protein dynamics rely on the idea that the

geometry of a protein structure contains enough information for computing its fluc-

tuations around its equilibrium conformation. This geometry is captured in the form

of an elastic network (EN), namely a network of edges between its residues. The nor-

mal modes of a protein are then identified with the normal modes of its

EN. Different approaches have been proposed to construct ENs, focusing on the

choice of the edges that they are comprised of, and on their parameterizations by the

force constants associated with those edges. Here we propose new tools to guide

choices on these two facets of EN. We study first different geometric models for

ENs. We compare cutoff-based ENs, whose edges have lengths that are smaller than

a cutoff distance, with Delaunay-based ENs and find that the latter provide better

representations of the geometry of protein structures. We then derive an analytical

method for the parameterization of the EN such that its dynamics leads to atomic

fluctuations that agree with experimental B-factors. To limit overfitting, we attach a

parameter referred to as flexibility constant to each atom instead of to each edge in

the EN. The parameterization is expressed as a non-linear optimization problem

whose parameters describe both rigid-body and internal motions. We show that this

parameterization leads to improved ENs, whose dynamics mimic MD simulations bet-

ter than ENs with uniform force constants, and reduces the number of normal modes

needed to reproduce functional conformational changes.
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1 | INTRODUCTION

The function of a biomolecule derives from the specific dynamics

of its structure. The need to observe and analyze such dynamics

is therefore at the core of many studies in structural molecular

biology. Unfortunately, we currently lack the experimental and

computational tools for a comprehensive representation of the

dynamics from the molecular to supra-molecular levels. Indeed,

only a few experimental techniques can collect time-resolved

structural data, and those that can are usually limited to a narrow

time range. In parallel, current computational methods such as

atomistic molecular dynamics simulations are restricted in scope,

both for time-scale (usually micro-seconds) and length-scale (with

systems of up to hundred thousand atoms), because of limitations

in computing power. To circumvent such problems, there is a

need to develop simplified, albeit accurate models to study the

dynamics of a molecule on a computer, to inform those models

based on available experimental data, and to assess their rele-

vance, correctness and usefulness. In this paper, we address some

of these issues in the context of coarse-grained normal mode

analyses (NMA) of biomolecular dynamics based on elastic net-

work models (ENM).
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1.1 | Experimental data on protein dynamics

Proteins are not static objects and occupy instead ensemble of con-

formations. Dynamics is the study of the kinetics of the transitions

between these states. They may occur on a global scale, as observed

in allostery or catalysis, or at a local scale, the so-called local flexibility.

Evidence of such local flexibility is obtained either from NMR spec-

troscopy, by analyzing the spin relaxation of individual atoms and

assigning them an order parameter, or from X-ray crystallography, by

assigning and refining a B-factor, also called the Debye–Waller factor,

to each atom to account for their mobility in the crystal (see

e.g., Reference 1). Both have proved useful for analyzing protein

dynamics (see e.g., Reference 2 for the use of B-factors, and Refer-

ence 3 for the use of order parameters). As such, there have been

many efforts to predict their values from the knowledge of the static

structure of a protein,4–9 from the sequence of the protein,10,11 or

from of the dynamics of the proteins, either derived from rigid

motions,12 from molecular dynamics simulations,13–15 or from

NMA.16–20 It is worth noting that both the NMR order parameters

and the crystallographic B-factors are not quantities that are directly

observed from an experiment. The NMR order parameter S2 is

derived from the so-called model-free approach introduced by Lipari

and Szabo,21,22 in which the motion of an atom is described as the

combination of overall rotational reorientation characterized with a

correlation time τc and internal motions described with an amplitude,

the order parameter. In parallel, a B-factor is a parameter that is intro-

duced to account for atomic displacements during the data collection

as well as conformational differences in the different unit cells of the

crystal after plunging (freezing) it in liquid nitrogen. As such, it is

dependent on the conditions in which those data were collected, if

the crystals were frozen in liquid nitrogen or not, as well as on the

refinement process of these data to derive a structure. As such

B-factors of one crystal structure cannot be directly compared to

those of another. Despite those limitations, as mentioned above, both

NMR order parameters and X-ray B-factors remain important source

of information on the dynamics of proteins. In this paper, we focus on

B-factors.

1.2 | Computational approaches to studying
protein dynamics

Probably the most natural approach to studying protein dynamics on

a computer is to assume that this dynamics follows classical

mechanics and accordingly to solve Newton's equations at the

atomic level: this is the idea behind the now ubiquitous molecular

dynamics simulations. However, such simulations are computation-

ally demanding, and despite progress in hardware, software, and

representations of the molecular system, there is an interest in

developing alternate approaches that would be applicable even on

commodity computers. A promising approach is to infer dynamics

from static structures corresponding to locally stable states,23

together with reliable coarse-graining approaches to bridge the

time-scale gap.24,25 Normal Modes, for example, represent a class of

movements around a local energy minimum that have been found in

many instances to be biologically relevant.26–30 Normal modes

based on traditional force fields can, however, be relatively difficult

to compute, as those forcefields include terms such as the vdW

interactions that are not well approximated with a quadratic term.

The ENM, introduced by Tirion in 1996, offers a particularly simple

and efficient way to circumvent this problem by building a geomet-

ric, quadratic potential with the experimental structure as its mini-

mum, allowing fast access to the collective dynamics of even large

protein complexes.31 Tirion validated her model by showing that its

low frequency modes match well with those computed from tradi-

tional normal modes on G-actin. Her observation has been con-

firmed multiple times since then. Coarse grained NMA based on the

ENM have proved useful to characterize allosteric changes in con-

formation, such as the switch undergone by hemoglobin from its

tense (T) form to its relaxed (R) form,32 to analyze conformational

transitions in DNA-based poymerases,33 to analyze global ribosome

motions,34 and to study the dynamics of viral capsids,35–38 among

others. Such coarse-grained analyses of biomolecular dynamics have

developed as a viable alternative to traditional molecular dynamics

simulations.23,39–42 It should be noted that NMA have proved also

useful in structure refinements based on experimental studies in

which dynamics is considered, such as X-ray crystallography43,44

and cryo-electron microscopy.45–47

1.3 | The physical model behind ENMs

Two categories of NMA based on ENMs are widely used today,

namely, the Gaussian Network Model48,49 and the anisotropic net-

work model (ANM).17,31,50 Here we follow the latter model, in which

the energy of a molecule is equated with the harmonic energy associ-

ated with springs attached to a set of pairs of atoms. This defines a

quadratic energy on the inter-atomic distances,

V Xð Þ¼1
2

X
i, jð Þ
kij rij� r0ij

� �2
, ð1Þ

when the biomolecule is in conformation X. In this equation, kij is the

force constant of the “spring” formed by the pair of atoms i and j, and

rij and r0ij are the distances between i and j in the conformation X,

and in the reference conformation X0, usually taken to be the crystal

structure. This model is quite simple as it relies on a very small number

of coarse-grained parameters. As such, it allows for easy computations

of coarse-grained normal modes (this will be discussed in the next sec-

tion). There are, however, two important decisions to make when

choosing those parameters that shape the model and consequently

influence its effectiveness. First, the geometry of the elastic network

(EN) needs to be specified. The potential V involves a sum over pairs

of atoms (i, j). These pairs can be selected as those that satisfy a cutoff

criterium, or as the pairs that best describe the geometric structure of

the molecule. Second, values need to be assigned to the force
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constants kij associated with those pairs of atoms. In this paper, we

study both decisions. They are discussed in the two following

paragraphs.

1.4 | The geometry of EN models

Several criteria can be used to define the set of atom pairs that are

used in Equation (1). In standard EN, the criterium is usually a cut-

off distance Rc such that atoms separated by less than this cutoff

are included in the EN. There are however no guidelines as to

which values for Rc are best and sometimes different

implementations lead to contradicting optimal values. Typical

values for Rc within ANM models are in the range 13–15 Å when

the ENM is based on Cα only.51 To avoid selecting a cutoff, it has

also been proposed to include all pairs of residues and to assign

length-dependent force constants to their corresponding springs.

For example, Hinsen52 and Kovacs et al.53 used force constants

with exponential distance-dependence, while Yang et al.54 devel-

oped a parameter-free ENM in which the force constants are

inversely scaled by the squared distance of separation. Note that in

all those approaches, even those based on cutoff, a larger number

of interactions are considered. An alternate method is to build a

geometric structure on the sets of positions of the atoms; the

Delaunay complex and its subsequent alpha shape filtrations are

well suited for this purpose.55

1.5 | Parameterizing the force constants

The choice of the values for the force constants is also important, as

they define the amplitude of the predicted internal motions of the

molecule of interest. In her original EN model, Tirion set the force

constants to be equal for all pairs of atoms in the ENM and selected

this value such that the density of ANM modes matches with the den-

sity of normal modes computed on the same molecule with a tradi-

tional force field.31 Nowadays, the trend is to derive the scale of the

force constants by fitting the predicted thermal displacements of each

atom to the experimental mean square fluctuations, namely the

B-factors in X-ray crystallography. Assuming different force constants

for each interactions in the ENM, and assuming that internal motions

dominate the dynamics detected with B-factors, perfect fits can be

obtained.55,56 There is a danger of overfitting,57 however, as the num-

ber of force constants is significantly larger than the number of exper-

imental values used for the fit. In addition, the implicit assumption of

the dominance of internal motions has been questioned. It is known

that B-factors are also influenced by rigid-body motions taking place

in the crystal.12 In addition, molecules in crystal experience a different

environment than when isolated in solution, and inter-atomic contacts

established in the crystal have also been shown to affect the normal

modes,58,59 although most likely to a lesser extent than rigid body

motions.60–62

1.6 | Our contribution

Our goal in this paper is to derive a method that combines the experi-

mental information on the geometry of a protein structure (i.e., its crys-

tallographic structure) with the dynamics information encoded in the

B-factors associated with that structure to build a better ENM for that

protein and therefore to derive a better model of its dynamics. This

approach deviates from standard coarse grained normal mode models

based on EN. Indeed, in our approach we build a specific model for each

protein structure of interest, while standard models are designed with

generic parameters that can be transferred from one protein to another.

In addition, while those standard models are often used to predict B-

factors, our method takes those B-factors as input. While we lose trans-

ferability, we will show that our dynamic-based EN leads to normal

modes that better match with molecular dynamics simulations than nor-

mal modes derived from generic EN models.

Our approach accounts for both elements that define an EN,

namely its geometry and the parameterization of its edges, as dis-

cussed above. Instead of defining the ENM using a cutoff for distance

pairs, we construct the Delaunay complex over the positions of the Cα

of the protein of interest. This construction is completely parameter

free. We then assign to each Cα a flexibility constant ki, and compute

the force constant of a pair (i, j) in the ENM as the harmonic mean

kij ¼
ffiffiffiffiffiffiffi
kikj

p
of their flexibilities. The flexibility constants are obtained

from a fit to the B-factors that accounts for rigid and internal motions.

The implementation and validation of this approach is a result of the

four following goals that are discussed in detail in the paper:

1. Establish mathematically the fitting procedure,

2. Evaluate the normal modes computed from the fitted force constants

by quantifying their agreement with molecular dynamics simulations,

3. Analyze the amino acid specificity of the flexibility constants, and

4. Characterize the concept of flexibilities in the context of the rigid-

ity theory of proteins.63,64

The paper is organized as follows. In the next section we provide

background on NMA and describes our fitting procedure for computing

atomic flexibility based on experimental B-factors. In the methods

section we describe the datasets and methods of analyses used in our

numerical experiments that are described in the following section. We

conclude with a general discussion on how to best parameterize coarse-

grained models to compute biologically relevant normal modes.

2 | METHODOLOGY

2.1 | Coarse grained normal mode analysis based
on the Tirion elastic network model

Let B be a protein containing N atoms, with atom i characterized by its

position Xi = (Xi1, Xi2, Xi3). The whole molecule is then described by a

3 N position vector X. For two atoms i and j of B, we set rij = jXi � Xjj
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and r0ij ¼jX0
i �X0

j j to be the Euclidean distances between them in a

conformation X and in the ground-state conformation X0 (which will

be taken to be the X-ray structure), respectively. The elastic potential

V of the biomolecule is given by Equation (1). In the normal mode

framework, this potential is approximated with a second-order Taylor

expansion in the neighborhood of the ground state X0:

V Xð Þ≈V X0
� �

þrV X0
� �T

X�X0
� �

þ1
2

X�X0
� �T

H X�X0
� �

, ð2Þ

where rV and H are the gradient and Hessian of V, respectively. Note

that based on Equation (1), V (X0) = 0 and rV (X0) = 0. The approxi-

mate elastic potential is then simply

V Xð Þ≈ 1
2

X�X0
� �T

H X�X0
� �

: ð3Þ

For simplicity, we will assume in the following that each atom is

assigned a mass of 1. The procedure can easily be expanded to

account for the exact masses of the different atom types. In Cartesian

coordinates, the equations of motion defined by the potential V are

derived from Newton's equation:

d2X

dt2
¼�H X�X0

� �
ð4Þ

Writing the solution to this equation as a linear sum of intrinsic

motions (the “normal modes” of the system), the trajectory of atom

i can be written as

Xi tð Þ¼
X3N
k¼1

Aikαkcos ωktþδkð Þ ð5Þ

we get a standard eigenvalue problem,

HE¼ EΩ ð6Þ

The eigenfrequencies ω are given by the elements of the diagonal

matrix Ω, namely ω2
k ¼Ω k,kð Þ . The eigenvectors are the columns of

the matrix E, and the amplitudes and phases, αk and δk, are determined

by initial conditions. Because of the invariance of the potential V to

rotations and translations, the first six eigenvalues of the matrix H are

equal to 0.

2.2 | Generating the elastic network

The main idea behind the concept of ENM is to define a network of

harmonic springs that capture the geometry and dynamics of the mol-

ecule of interest. In the original ENM defined by Tirion,31 the network

is defined as a set of links, with a link between two residues only if

the distance between their Cα atoms is smaller than a given cutoff

value Rc. There are however no guidelines as to which value for Rc is

best. Recently one of us proposed an alternate approach for filtering

the set of all possible pairs using the concepts of alpha shapes and

Delaunay triangulation.65 More specifically, it was found that the set

of edges included in the Delaunay triangulation of the atoms of a mol-

ecule forms an ENM that leads to good fit between the dynamics

described by its normal modes and the experimental B-factors.55 We

briefly describe the procedure for generating the Delaunay triangula-

tion; more details can be found in References 65–67.

2.2.1 | Generating the Delaunay complex

Let us define a set P of N points such that Pi is positioned at the loca-

tion of the Cα atom of residue i in the protein B. We define the square

distance πi(x) between a point x and a point Pi to be simply the

square of the Euclidean distance, πi(x) = jjx � Pijj2. The Voronoi region

Vi of the point Pi consists of all points x that are at least as close to Pi

as to any other point in P, that is, Vi ¼ x�ℝ3 πi xð Þ≤ πj xð Þ8j≠ i
�� ��

. Vi is

a convex polyhedron obtained as the common intersection of finitely

many closed half-spaces, one per point Pj≠Pi. The union of all

Voronoi regions defines the Voronoi diagram of the set of points; this

union covers the whole space. The Delaunay triangulation DT is the

dual of the Voronoi diagram. It contains all points in P. In addition, we

draw an edge between two points Pi and Pj if the two corresponding

Voronoi regions share a common face, called a Voronoi plane. Such an

edge is included in the Delaunay triangulation. Furthermore, we draw

a triangle connecting Pi, Pj, and Pk if their respective Vi, Vj, and Vk

intersect in a common line segment, called a Voronoi edge; similarly

we draw a tetrahedron between four points if their Voronoi regions

meet at a common point, called a Voronoi point. Assuming general

position of the points, there are no other cases to be considered: this

is a central property of the Delaunay triangulation. Note that for the

ENM, we only consider the edges of the Delaunay triangulation.

In the following, we will represent an ENM as N¼ V,ℰð Þ, where V
and ℰ are the sets of vertices and edges in the network, respectively.

Examples of such networks generated either with a cutoff, or with the

Delaunay construct, are shown in Figure 1.

2.3 | Parameterizing the elastic network

Each edge vij �V is assigned a force constant kij. The number of such

force constants, that is, j V j can be large, and usually significantly larger

than the number of vertices j V j in the network. As our intent is to

parameterize those force constants using experimental values on the

vertices, we believe that allowing the former to be independent vari-

ables would lead to severe risks of overfitting. Instead, we assign to

each atom (vertex) i a flexibility constant, ki, and define the force con-

stant of an edge vij as

kij ¼
ffiffiffiffiffiffiffi
kikj

q
, ð7Þ

that is, the geometry mean of the individual flexibility constants. An

advantage of using the geometric mean is that by construction, the

force constants kij are positive.
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2.4 | The Hessian and its derivatives

We introduced recently a simplified representation of the Hessian

of the quadratic potential defined in Equation (1).38,68 We present

it here briefly, as it is relevant to our procedure for fitting

B-factors.

Let us rewrite the quadratic potential for the EN as:

V Xð Þ¼1
2

X
i, jð Þ
Vij Xð Þ, ð8Þ

where the summation extends to all pairs of atoms (i, j) that satisfy the

cutoff criterium (see above). We compute the derivatives and Hessian

of this potential in vector form.

We first introduce some notations. We write the inner and outer

products of two vectors u and v as (u, v) and u � v, respectively. We

define the vector Uij such that Uij ¼ 0,…,0, Xi�Xj

rij
,0,…,0, Xj�Xi

rij
,0,…,0

� �
,

namely Uij is zero everywhere, except at positions i and j where it is

equal to the normalized difference vector between the positions of

i and j.

Let us first analyze the pairwise potential Vij(X). Its gradient in ℝ3N

at a position X is given by:

rVij Xð Þ¼ kij rij� r0ij

� �
Uij, ð9Þ

and its Hessian at the same position X is given by:

Hij Xð Þ¼ kij rij� r0ij

� �δUij

δX
þkijUij�Uij: ð10Þ

Note that both terms in the expression of the Hessian are matri-

ces of size 3 N � 3 N. For normal mode analyzes, the gradient and

Hessian are evaluated at X0:

rVij X0
� �

¼0 ð11Þ

and

Hij X0
� �

¼ kijUij�Uij: ð12Þ

The total Hessian of the elastic potential is then given by:

H¼H X0
� �

¼
X
i, jð Þ
kijUij�Uij: ð13Þ

In this equation, the vectors U only depend on the ground state

conformation of the molecule, and not on the force constants k. The

derivatives of the Hessian with respect to any of those kij are then

trivially given by

dH
dkij

¼Uij�Uij: ð14Þ

Using the chain rule, the derivatives of the Hessian with respect

to the flexibility constants ki are then,

dH
dki

¼
X

jj ijð Þ � V

kj
2kij

Uij�Uij, ð15Þ

where the summation extends over all edges that include i. Note

that we have assumed that kij is non-zero, that is, that an edge is

included in the ENM if and only if it actually contributes to the

dynamics.

Expressing the Hessian as a (weighted) sum of tensor products

(Equation (13)) has the additional advantages of reducing the amount

of memory required to store the Hessian, and to provide for simpler

computations of Hessian-vector multiplications.68

F IGURE 1 Illustration of a uniform force constant ENM of the adenylate kinase (PDB code 4AKE). (A) Cartoon representation of the protein,
with the Cα atoms shown as spheres. Elastic networks (gray bonds) based on a Delaunay construct (B), or a cutoff of 14 Å(C), and 20 Å(20). Those
networks contain 1478, 3868, and 7863 edges, respectively. ENM, elastic network model
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2.5 | Calibration of the force constants using the
experimental B-factors

2.5.1 | Experimental fluctuations

In X-ray crystallography, the B-factor, or Debye-Waller factor,

describes the attenuation of x-ray scattering caused by thermal

motion. The isotropic B-factor of an atom i is related to its positional

fluctuation ΔXij j2
D E

by

Bexp
i ¼8π2

3
ΔXij j2

D E
, ð16Þ

where the brackets indicate time averages.

Complete fit

Equation (16) gives us a way to relate the experimental B-factor to

fluctuations observed in dynamics simulation. We assume first that

the atomic thermal displacements are the combination of internal and

rigid body motions,69

ΔXi ¼ΔXrigid
i þΔXint

i

¼ tþω�X0
i þΔXint

i

ð17Þ

where � indicate cross product, t is a translation vector and ω repre-

sents a rotation. We assume also that rigid-body motions and internal

motions are independent of each other,

ΔXij j2
D E

¼ ΔXij j2
D Erigid

þ ΔXij j2
D Eint

, ð18Þ

or, expressed as B-factors,

Bcalc
i ¼Brigid

i þBint
i : ð19Þ

As the same rotation and translation apply to all atoms, all the

Brigid
i depend on 10 parameters (see below), while the Bint

i depend on

the flexibility constants associated with each atom. Calibrating the

ENM therefore amounts to finding the values of those 10 parameters

and of the flexibility constants that minimize

χ2 ¼
XN
i¼1

Bexp
i �Bcalc

i

� �2
, ð20Þ

in the following, we look in more details at the contributions of rigid body

and internal motions, that is, their explicit contributions to χ2, as well as

the gradients of the latter with respect to the corresponding parameters.

2.5.2 | Rigid body motions

The contribution of rigid body motion is relatively

straightforward,69,70

Brigid
i ¼8π2

3
ΔXij j2

D Erigid
¼8π2

3
tj j2

D E
þ2 X0

i , t�ωh i
� �

þ ω�X0
i ,ω�X0

i

� �D E� �
:

ð21Þ

There are 10 parameters in this equation associated with t and ω,
which we can write as A¼ a0,a1,…,a9ð Þ,

Brigid
i ¼ a0þa1X

0
i1þa2X

0
i2þa3X

0
i3þa4X

0
i1X

0
i1þa5X

0
i1X

0
i2þa6X

0
i1X

0
i3

þa7X
0
i2X

0
i2þa8X

0
i2X

0
i3þa9X

0
i3X

0
i3:

ð22Þ

The derivatives of Brigid
i and therefore of Bcalc

i and χ2 with respect

to the 10 parameters associated with rigid motions are straightfor-

ward from this equation.

2.5.3 | Internal motions

The calculation of the mean-squared displacements in Equation (16)

necessitates to compute the inverse of the Hessian of that potential.

In the case of the potential specified in Equation (1), the Hessian is

singular; indeed, the quadratic potential V only depends on inter-

atomic distances and is therefore invariant with respect to translations

and rotations. The null space of the Hessian H is then of dimension at

least six, making H non invertible. The covariance matrix can still be

calculated as the Moore–Penrose pseudo-inverse of H, which we note

as H†. The computed B-factor associated with the internal motions

predicted by ANM, Bint
i , is then

Bint
i ¼8π2

3
tr H†

ii

� 	
, ð23Þ

where H†
ii is the 3�3 submatrix of H† at position H†(3i�2: 3i, 3i�3:

3i) in MATLAB notation.

We need expressions for the derivatives of Bint
i with respect to

the flexibility constants kj. We note first that

dBint
i

dki
¼
X

jj ijð Þ � V

kj
2kij

dBint
i

dkij
: ð24Þ

Second, from Equation (23) we see that all the Bint
i are defined

from the diagonal of the matrix H†, and as the derivatives of the diag-

onal of a matrix is the diagonal of the derivatives of that matrix, the

derivatives of Bint
i will be fully characterized from the derivatives of

H† with respect to the force constants kij. In Equation (14), we

expressed the derivatives of H with respect to kij. The following prop-

osition shows that the derivatives of H and of H† are directly related,

Proposition 1. If all the force constants kij are strictly positive,

dH†

dkij
¼�H† dH

dkij
H† ð25Þ
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Proof. See Appendix.

Replacing Equation (14) into Equation (25), we get

dH†

dkij
¼� H†Uij

� 	� H†Uij

� 	 ð26Þ

Let Nc be the multiplicity of the zero eigenvalue of H. Then,

H†Uij ¼
X3N

k¼Ncþ1

ek ,Uij

� 	
λk

ek ð27Þ

where e and λ are the eigenvectors and eigenvalues of H, respectively.

2.5.4 | Optimization

The two previous subsections provide the full framework for comput-

ing the contributions of rigid motions and internal motions to the

atomic position fluctuations, as well as the derivatives of those fluctu-

ations with respect to the parameters of the contributions, namely the

10 parameters ak for the rigid motions and the N parameters ki for

the internal motions. It is then possible to optimize those parameters

so that the computed fluctuations match with the experimental B-

factors by minimizing the χ2 given in Equation (20). As the derivatives

are known explicitly, we can use the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm, a quasi-Newton method to perform this

optimization. We use the L-BFGS-B variant of this algorithm,71 as it

requires limited amount of memory and enables simple bound con-

straints on the variables that are optimized. This is important as we

can then enforce positivity for the flexibility constraints and for a0

that is expected to be positive.

3 | METHODS

3.1 | Data sets

To test the parameterization procedure described above, we used the

dataset of proteins originally used by Xia et al.55 for a similar studies

of fitting B-factors using NMA. This dataset contains 70 non-

redundant proteins (see supplement S4 of Xia et al.,55) whose struc-

ture has been solved by X-ray crystallography, with resolution better

than 2.7 Å. These proteins vary in size from 40 amino acids to

298 amino acids.

Nine proteins were considered for comparing atomic position

fluctuations observed in MD simulations and in the parameterized

normal modes, three α proteins, 1AH7, 1LRV, 153L, three β proteins,

1AQB, 1AG6, 1JPC, and three α + β proteins, 1A2P, 1AHQ, and

1PLR. These proteins vary in size from 100 to 259 residues. The MD

trajectories were downloaded from the Molecular Dynamics Extended

Library MODEL resource,72 available at http://mmb.pcb.ub.es/

MoDEL/. All the MD simulations were performed using AMBER8.0,73

with param99 molecular force field and tip3P water model.74 These

simulations were performed on the monomeric protein, over 10 ns.

More details on the simulations can be found at the MODEL

web page.

3.2 | Metrics for comparing experimental and
computed B-factors

We use both correlation coefficients (CC) and root-mean square

deviations (RMSD) as metrics for comparing B-factors. The CC are

computed as Pearson's correlation coefficients,

CC¼

PN
i¼1

Bexp
i �dBexp

� �
Bcalc
i � dBcalc


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Bexp
i �dBexp

� �2PN
i¼1

Bcalc
i �dBcalc


 �2
s , ð28Þ

where Bexp
i and Bcalc

i are the experimental and computed B-factors for

atom i, respectively, and dBexp and dBcalc are the corresponding averages

over the N atoms considered.

The RMSD is defined as

RMSD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Bexp
i �Bcalc

i

� �2
N

vuuut
ð29Þ

Note that the optimization procedure described in the Section 2

is set to minimize this RMSD between experimental and computed B-

factors.

3.3 | Atomic fluctuations from MD simulations

The covariance matrix CMD of atomic fluctuations during an MD simu-

lation is derived from the snapshots along the trajectory as a sample

statistic,

CMD ¼ 1
M�1

XM
m¼1

Xm� bX� �
� Xm� bX� �

, ð30Þ

where X is the vector of dimension 3 N specifying the coordinates of

the atoms of the molecule, Xm is the value of that vector at the con-

formation m in the trajectory which has been rotated and translated

to minimize its cRMS to the experimental structure, M is the total

number of conformations in the trajectory, and bX is the mean confor-

mation over the trajectory

bX¼ 1
M

XM
m¼1

Xm: ð31Þ
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3.4 | Comparing MD simulations and NMA

Both NMA and MD capture the dynamics of a molecule. This dynamic

can be represented with atomic fluctuations and the covariance of

those atomic fluctuations, computed as a covariance matrix. To assess

how well ENM and MD match, we assume that the trajectories

they generate follow multivariate normal distributions. This

assumption is justified for ENM, and only approximate for MD simula-

tions. Referring to those distributions as DENM ¼N μENM,CENMð Þ and

DMD ¼N μMD,CMDð Þ for ENM and MD, respectively, where μ is the

mean conformation and C the covariance matrix, we use the

Bhattacharyya distance75 to evaluate their similarities,

DB DENM,DMDð Þ¼1
8

μENM�μMDð ÞTC�1 μENM�μMDð Þ

þ1
2
ln

detCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detCENMdetCMD

p , ð32Þ

where C¼ CENMþCMD
2 . Note that in this expression of the Bhattacharrya

distance, the first term is related to the Mahalanobis distance, while

the second term is related to the Jensen-Bregman LogDet diver-

gence.76 Computation of the latter term requires caution, as the

covariance matrices are not full rank (due to their invariance with

respect to rigid motions) and therefore their determinants are zero.

We apply the rank normalization introduced by Fuglebakk et al.57,77

to correct for this rank deficiency.

For convenience we will report the similarity as the

Bhattacharyya coefficient (BC),

BCð DENM,DMDð Þ¼ e�DB DENM,DMDð Þ: ð33Þ

This coefficient is between 0 and 1, with 0 indicating poor similar-

ity, and 1 indicating perfect match, reached when the two distribu-

tions are identical.

3.5 | Overlaps between normal modes and
structure displacements

Let us consider a molecular system S with N atoms for which we have

two conformations, A and B. The conformational change between

those two conformations is captured by a displacement vector, D,

such that D = B � A.

Let us now consider a set of k normal modes for S in conformation

A. These normal modes have been computed based on the eigenvalues

λ and eigenvectors e of the Hessian of an EN for A. Under the normal

mode model, the dynamics of A can be described as a linear superposi-

tion of the fundamental motions described by those eigenvectors. The

corresponding dynamic that will bring A closer to B is obtained by

assigning the weights W of the modes in this superposition through

projections of the displacement vector onto the eigenvectors:

W¼ EtD, ð34Þ

where E is the matrix of eigenvectors. The contribution of mode i to

this optimal collective change of conformation can then be measured

as the absolute value of the cosine of the angle between the displace-

ment, and the direction of the mode, given by its eigenvector ei:

Oi ¼ ei,Dh ij j
eik k Dk k : ð35Þ

Oi takes values between 0 and 1, with small values indicating that

the mode i contribute little to the conformational change, while large

values indicate a significant contribution. We note that
P3N
i¼1

O2
i ¼1, as

the ei are normalized to 1 and are orthogonal to each other. Then,

SOk ¼
Pk
i¼1

O2
i is a measure of the contribution of the first k normal

modes to the total overlaps between the normal modes of A and the

displacement between A and B. Note that when k = 3 N, SOk = 1.

3.6 | Packing density

Following Halle,4 the local packing density ni of an atom i in a protein

can be computed from the X-ray structure by first defining a radial

distribution function gi(r) as (see equation (6) in Reference 4):

gi rð Þ¼
1
4πr

X
j

e
�

r�r0
ij

� �2

2σj �e
�

rþr0
ij

� �2

2σjffiffiffiffiffiffiffiffiffi
2πσj

p
r0ij

, ð36Þ

where σj is the mean-square displacement of atom j, r0ij is the distance

between atom j and atom i in the X-ray structure, and the sum

extends over all non-hydrogen atoms j that are within a distance Rc of

i. The contact density ni is then given by:

ni ¼
ðRc

0

4πr2gi rð Þdr

X
j

ffiffiffiffi
σi

p

2πr0ij
e
�

Rcþr0
ij

� �2

2σj �e

Rc�r0
ij

� �2

2σj

0BB@
1CCAþ1

2
erf

Rcþ r0ij

� �2
2σj

þ1
2
erf

Rc� r0ij

� �2
2σj

0BB@
1CCA:

ð37Þ

4 | RESULTS AND DISCUSSION

Coarse-grained normal mode analysis popularized by Tirion31 are

based on a simple elastic potential that is quadratic, with the crystal

structure at its minimum, and defined over a geometric structure com-

puted over the molecule of interest, the ENM. Here we focus on the

construction of this ENM and its parameterization using experimental

B-factors, as well as on the validity of such parameterization. In all

computer experiments, NMA were performed based on a coarse-
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grained representation of the proteins that only consider the Cα atom

of each of its residues. We note that other coarse grained models are

available25; the CA-only model is the most common model used for

coarse-grained NMA. All NMA computations are performed using our

own program, FitNMA, written in C++. The source code for FitNMA

is available at https://www.cs.ucdavis.edu/�koehl/Projects/

index.html.

4.1 | Building and parameterizing elastic network
models

We tested three different types of geometric ENMs, one based on

the Delaunay triangulation of the positions of the Cα atoms in the pro-

tein of interest, and the two other based on a distance cutoff Rc. In

the first ENM, referred to as DEL, a pair of Cα atoms is included if it

forms an edge of the Delaunay triangulation, while in the two others,

the same pair is included if the distance between their positions is

smaller than Rc. We considered two values for Rc, that is, 14 Å, which

is within the range of values (13–15) usually considered for Cα-based

ENMs,51 and a larger cutoff of 20 Å. The corresponding ENM are

referred to as EL14 and EL20, respectively. Each ENM was then

parameterized with respect to the experimental isotropic B-factors of

the Cα from the crystal structure, using the procedure described in

Section 2. Briefly, Cα i of the protein is assigned a flexibility constant

ki. The link between two Cα i and j in the ENM is then assigned a force

constant kij that is the geometric mean of the flexibility constants of

i and j. Normal modes are computed based on the corresponding

ENM, and the corresponding atomic fluctuations are compared to the

experimental B-factors, taking into account possible rigid motions.

The flexibility constants and the parameters associated to the rigid

motions are then adjusted until the experimental and computed

atomic fluctuations match, in the least square sense.

We performed the analysis on a set of 70 high resolution protein

structures (see Section 3). The proteins included in this set are diverse,

with sizes varying from 40 amino acids to 298 amino acids. In Figure 2,

we compare the distributions of correlation coefficients CC and RMSD

between experimental and compute B-factors at convergence of the

fitting procedure, for all three types of ENMs. Overall, the fits are

nearly perfect for all three types of ENM, with the average values for

CC over the set of proteins are 0.999, 0.98, and 0.993 for DEL, EL14,

and EL20, respectively, and the corresponding average RMSD values

are 0.27, 0.70, and 0.30 Å2, respectively. There are however a few out-

liers for the two ENMs based on cutoffs, for which the fitting proce-

dure fails. We focus here on the two most significant ones for the

computation based on a cutoff of 14 Å namely the apo structure

(i.e., no iron) of a phenylalanine hydrolase of chromobacterium violaceum

(PDB code 1LTU), and a methyltransferase from salmonella typhimurium

(PDB code 1AF7) (see Figure 2). The structures of those two proteins

and the corresponding ENMs are illustrated in Figure 3.

It is known that ENMs based on cutoff values are capable of rep-

roducing experimental B-factors well for globular proteins.51 Indeed,

such ENMs capture well their packing densities which play a dominant

role in their dynamics. In contrast, it has been observed that such

cutoff-based ENMs often fail for protein with an irregular shape.55

We observe the same behavior here with the two proteins 1LTU and

1AF7 (1LTU was already identified as an outlier55). Both include a long

flexible segment at their N-terminal region. Using a cutoff distance of

14 Å or even 20 Å, the cutoff-based ENMs only follow locally those

long segments, while the Delaunay-based ENM provides a better con-

nection of those segments with the rest of the proteins, thereby all-

owing for a better representation of their dynamics, as observed

when fitting the B-factors. The same observations apply to the other

outliers (results not shown).

There is another advantage in using a Delaunay-based ENM

rather than a cutoff based ENM, as illustrated in Figure 4. The DEL

ENM contains a significantly smaller number of edges than the EL14

and EL20 ENMs (on average a factor of 3 and 6.2 less, respectively),

while still capturing the geometry of the molecule, as vouched by its

ability to reproduce experimental B-factors (see above). We believe
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F IGURE 2 Boxplots of the correlation coefficients (left) and of the RMSD (right) between the computed B-factors and the experimental
B-factors over the set of 69 proteins in our dataset, for the three types of ENM, based on Delaunay triangulation, based on a cutoff Rc = 14 Å,
and based on a larger cutoff Rc = 20 Å. While the fits are relatively consistent for all three types of ENM, note the presence of a few outliers for
the ENMs based on cutoffs. The two main outliers, 1LTU and 1AF7 are identified (see text for details). ENM, elastic network model

KOEHL ET AL. 1651

https://www.cs.ucdavis.edu/%7Ekoehl/Projects/index.html
https://www.cs.ucdavis.edu/%7Ekoehl/Projects/index.html
https://www.cs.ucdavis.edu/%7Ekoehl/Projects/index.html


that this is due to the fact that cutoff-based ENMs contain a lot of

redundant information, while by construction Delaunay edges are

more independent. This was already observed for distance-based sta-

tistical potentials for proteins.78

The results presented above hint at using the Delaunay-based

ENM to capture correctly the geometry of a protein structure. To

parameterize this Delaunay-based ENM, we have used the procedure

described in Section 2. In this procedure, the computed B-factors, as

well as their derivatives with respect to the atomic flexibility con-

stants are all based on the Moore-Penrose pseudo inverse H† of the

Hessian H of the quadratic potential, see Equations (23) and (27). This

pseudo inverse is computed over all non-zero eigenvalues of H and

their corresponding eigenvectors. Including all those eigenvalues

comes at a computational cost as illustrated in Figure 5.

Our model includes the contributions of rigid motions and inter-

nal motions when computing atomic position fluctuations. It is based

on 10 parameters for the rigid motions and N parameters, the atomic

flexibilities ki, for the internal motions. Those parameters are

optimized such that the computed fluctuations match with the experi-

mental B-factors. This is a non-linear optimization, which we solve

using an iterative BFGS procedure (see Section 2 above). Each

iteration involves computing the Moore-Penrose pseudo inverse of

the Hessian matrix H, which is obtained from the eigen-

decomposition of H, as well as its derivatives with respect to the

atomic flexibilities ki. We used the LAPACK routine dsyev to perform

the eigen-decomposition. Dsyev assumes that the matrix H is dense;

as such, this computation depends on the number of atoms, and not

the size of the EN. The situation is different for the derivatives. From

Proposition 1 and Equation (24), computing those derivatives scales

linearly with the number of edges in the EN. In Figure 5(A), we do

observe the impact of the size of the EN on the computing per itera-

tion of the nonlinear optimization, as Delaunay-based EN that contain

significantly less edges lead to much shorter computing time. The

same effect is observed for the overall computing time (Figure 5(B)),

but with some outliers. Indeed, some parameterizations of large cutoff

based EN can be less demanding in computing time, as those parame-

terizations require less iterations. On average, each optimization

requires 2000 iterations (with convergence defined with the norm of

the derivative vectors is below 10�4).

The overall computing cost of parameterizing the EN of a protein

is large: it takes on average 300 s on an Intel Core i7 processor with

eight cores running at 4.00 GHz for the Delaunay-based EN, and

F IGURE 3 The optimized ENMs of a phenylalanine hydrolase (PDB code 1LTU), top, and of a methlytransferase (PDB code 1AF7). These
proteins illustrate differences between the Delaunay-based ENM, and the cutoff-based ENMs, as for both of them the parameterization of the
ENMs based on experimental B-factors failed for the cutoff-based ENMs. From left to right: Cartoon representation of the protein, elastic
network (gray bonds) based on a Delaunay construct, and elastic network (gray bonds) based on a cutoff of 20 Å. The Delaunay networks contain
2030 and 1934 edges for 1LTU and 1AF7, respectively, while the corresponding cutoff-based networks with Rc = 20 Å contain 13,809 and
12,141 edges, respectively. ENM, elastic network model
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2500 s for the cutoff-based EN. A significant fraction of the cost

comes from the full diagonalization of the Hessian matrix at each iter-

ation of the optimization of the parameters. We tested if it is possible

to only include a fraction of the eigenpairs of the Hessian matrix,

those corresponding to the smallest eigenvalues that are related to

the largest collective internal motions.31 Results are shown in

Figure 6, for the Delaunay-based ENM. Similar results are observed

for the cutoff-based ENMs (results not shown). We note however

that using only a fraction of the eigenpairs of the Hessian H when

computing its Moore-Penrose pseudo-inverse H† and its derivatives is

a major approximation that significantly reduce the performance of

the parameterization of the ENM. While the performance increases

(i.e., increased CC and reduced RMSD) as the number of modes

increases, it remains that good parameterization is only observed

when all modes are included.

4.2 | Appraising the parameterized ENMs

Validation of normal mode analysis based on coarse grained ENMs is

usually performed by comparing the atomic fluctuations induced by

those normal modes with the crystallographic B-factors. Such a com-

parison is futile in our setting, as the ENMs have been parameterize

such that they reproduce those experimental B-factors (nearly)

exactly. We rely instead on comparison with MD simulations, as well

as by measuring how well the parameterized normal modes can cap-

ture conformational changes.

Coarse-grained NMA and MD simulations are two techniques

that simulate the dynamics of a molecule computationally. While the

former is based on a simplified geometric model of the protein (the

ENM) and a simplified quadratic potential, the latter are based on usu-

ally detailed, anharmonic potentials that have been parametrized

semi-empirically (note that coarse-grained MD simulations have been

developed, e.g., Levitt79). As MD simulations are usually more detailed

and often considered to reproduce correctly experimental results,

many have resulted in benchmarking different ENM models for NMA

against MD (see References 57,80–83, among others). We repeat

their analyses here to benchmark our parameterized ENMs.

We used a dataset of nine proteins, three from each structural

class (mainly α, mainly β, and α + β). For all those structures, we use

MD simulations previously published and available at the Molecular

Dynamics Extended Library MODEL resource.72 All those simulations

were performed using AMBER, with the param99 forcefield and the

tip3p water model. Most of those simulations were performed over
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10 ns, with the exception of Lyzozyme (PDB code 153 L), with a total

simulation time of 100 ns, and barnase (PDB code 1A2P), with a simu-

lation time of 13.5 ns. For all simulations, we superimposed all frames

in their trajectory to the PDB structure to remove rigid motions. We

then computed a mean structure, and the covariance of the atomic

fluctuations, as described in the Section 3. For the NMA analyses, we

generated the Delaunay-based ENM and the cutoff-based ENM (with

Rc = 20 Å) starting from the mean MD structure, and parameterized

those ENMs using the experimental B factors from the PDB structure.

The covariance matrices are then simply the Moore-Penrose pseudo

inverses of the Hessian matrices of the parameterized energy of the

ENM. As both NMA and MD simulations capture dynamics as varia-

tions around the mean MD structure, the Bhattacharyya distance

between their distributions of conformations is reduced to the Jensen

Bregman LogDet divergence that directly measures the similarities

between the covariance matrices of the distributions (see Section 3).

The similarities are reported as Bhattacharyya coefficients BC that

vary between 0 and 1, with 0 indicating no similarity, and 1 perfect

similarity. Results for the 9 proteins are shown in Table 1.

In their evaluations of ENMs using a comparison with MD simula-

tions, Fuglebakk et al.57 stated that “It is however not clear that

agreement between atomic fluctuations of models imply agreement

between their covariance structures”, to finally reach the conclusion

that “the ENM models that agree best with B-factors model collective

motions less reliably and recommend against using B-factors as a

benchmark.” Here we show in contrast to these findings that parame-

terization of the ENM using the experimental B-factors improve the

similarity of the covariance matrices computed from MD and com-

puted from the ENM. As seen in Table 1, the improvement is often

small but systematic, and can be large, such as the plastocyanin from

spinach (PDB code 1AG6), a compact small β protein. Interestingly,

the improvement is always more significant for the cutoff-based

ENM. The covariance of the parameterized Delaunay-based ENM

remains, however, more similar to the covariance of the MD simula-

tions than the covariance of the cutoff-based ENMs, with one excep-

tion, barnase (PDB code 1A2P).

4.3 | Capturing conformational changes with
normal modes

One of the main applications of coarse-grained NMA based on ENM

is to study functional conformational changes. By studying proteins

for which multiple structures have been resolved in different confor-

mations (such as open and closed states, apo and holo forms with

respect to a ligand), it has been shown that the low frequency normal

modes of the ENMs correlate well with the functional conformational

changes32,50,84–86 It is this somewhat surprising observation (as ENM

computations are only valid for very small deviations around the equi-

librium) that has popularized coarse-grained NMAs based on ENMs.

Here we assess if parameterizing the ENM using the experimental

B-factors help when attempting to capture conformational changes in

proteins using a small number of normal modes. We used a data

set of 31 pairs of protein structures originally designed by Bastolla

and Dehouck.86 The list of protein pairs can be found in Table S1

of the supporting information of their paper.86 Each pair corre-

sponds to two distinct structures of the same protein chain, rep-

resenting a conformational change that is relevant for its function.

The coordinate root-mean-square deviation (cRMS) between struc-

tural pairs ranges from 0.35 to 34.4 Å. One structure in each pair

is considered as the initial conformation. For each protein, we build

its Delaunay-based ENM and consider two versions of this ENM,

one in which all edges are assigned a force constant of 1, DEL-1,

and one in which the force constants are parameterized using the

experimental B-factors using the procedure described above, DEL-

opt. We then assess how the modes associated with these ENMs

can be used to map the conformational changes of the structures.

We use the overlap between the modes and the conformational

displacement to assess this mapping. The overlap is cumulative

with respect to the number of modes that are considered (see Sec-

tion 3). We then estimate the number of modes N80 that is

needed to reach 80% overlap between the normal modes and the

conformational changes. The numbers N80 obtained for DEL-1 and

DEL-opt are compared in Figure 7.
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In most cases, the number of normal modes needed to represent

the conformational changes for the proteins considered is less for the

parameterized ENM than for the constant ENM. This result, while

supporting the rationale for parameterizing ENMs using experimental

information on dynamics, should still be considered with caution at

this stage, as it is provided for illustration here. This analysis should be

repeated on a much larger number of proteins.

4.4 | Amino acid flexibility constants

The procedure described in this paper performs a parameterization of

the force constants associated with the edges of the ENM describing

the protein. Instead of refining directly those force constants, we

express them as the geometric average of the flexibility constants of

the residues that form those edges. From a computational perspec-

tive, this has the advantage of reducing significantly the number of

degrees of freedom in the optimization process from O(N2) to O(N),

which is of significance as the experimental information used for the

parameterization is of order O(N). Introducing more degrees of free-

dom than constraints would significantly increase the risk of over-

fitting. The question now is to see if there is some meaning to the

actual parameters that are refined, namely the constants ki for resi-

dues i, which we have dubbed as ‘flexibility constants.” To better

understand those parameters, we have analyzed their values for all

residues in our dataset of proteins, with the exception of 1AMM, and

compared them with similar analyses of the corresponding B-factors,

which are much better understood. Note that we have removed the

protein with PDB code 1AMM, that is, the bovine eye lens protein

gamma B Crystallin, as its structure was determined at 150 K; as such,

its B-factors are significantly lower and cannot be compared directly

with those of proteins whose structures were studied at a higher tem-

perature. We have used the values derived from the parameterization

of the Delaunay-based ENMs of those proteins. We also computed

the accessible surface areas (ASA) of all residues in those proteins,

using the procedure introduced by Le Grand and Merz.87 We report

the results of those analyses per amino acid type. We use the median

as a statistics, as the underlying distributions are not symmetric (see

e.g., Vihinen et al.88 for illustrations of the distributions of B-factors).

Note that we did not normalize the values of B-factors, flexibility con-

stants, and ASA, as originally suggested by Karplus and Schulz89; while

we agree that there might be biases in those values, we are more

interested in qualitative average behaviors. Results of our analyses are

presented in Figure 8.

B-factors as reported in protein crystal structures reflect the fluc-

tuation of an atom about its average position. A large B-factor is usu-

ally indicative of high mobility of the corresponding residue, usually

within its side chain. B-factors have been analyzed to define a

TABLE 1 Bhattacharyya coefficients
comparing MD Covariances with
Covariances predicted from NMA with
different ENMs

Class PDB ID Nres DEL-1a DEL-opta EL20-1a EL20-opta

α 1AH7 245 0.87 0.88 0.75 0.77

α 1LRV 233 0.61 0.74 0.46 0.74

α 153 L 185 0.89 0.90 0.67 0.88

β 1AQB 175 0.85 0.87 0.73 0.81

β 1AG6 100 0.80 0.90 0.77 0.82

β 1JPC 109 0.84 0.85 0.64 0.83

α + β 1A2P 109 0.87 0.90 0.77 0.91

α + β 1AHQ 134 0.90 0.91 0.66 0.90

α + β 1PLR 259 0.84 0.87 0.56 0.86

Note: The highest coefficients are highlighted in bold. Note that the largest the coefficient, the more

similar the covariance matrices from MD and from NMA are.

Abbreviation: ENM, elastic network model.
a1 indicates that all the edges of the ENM were assigned the same force constant, 1, while “opt”
indicates instead that the ENM was parameterized using the experimental B-factors.
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F IGURE 7 The N80s, that is, the number of modes needed such
that the overlap between normal modes and conformational changes
reaches 80% are compared for normal modes based on constant force
Delaunay-based ENM (DEL-1) and based on a Delaunay-based ENM
parameterized with experimental B-factors (DEL-opt). The dotted line
represents the first diagonal. Points below the diagonal indicate that
less normal modes computed from the DEL-opt ENM are needed to
represent conformational changes. ENM, elastic network model
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flexibility scale for amino acids,88–90 which in turn can be used to pre-

dict protein flexibility, as well as disordered regions in proteins.91 Intu-

itively it is expected that residues with high mobility are more

accessible to the solvent.9 This is indeed observed in our dataset of

proteins, as illustrated in Figure 8(A). The hydrophobic residues,

whose median accessibilities are low, have low median B-factors. In

contrast, the hydrophilic residues, especially the large charged resi-

dues Lysine and Glutamate, are on average highly accessible and

highly mobile, that is, with large B-factors. Surprisingly, the flexibility

constants exhibit an opposite behavior, as illustrated in Figure 8(B).

For most amino acids, there is a nearly linear relationship between the

k constants and ASAs, but with a negative slope, that is, accessible

residues have lower flexibility constants. The five hydrophobic

residues V, I, L, M, and F, are exceptions to this relationship, as they

have on average low accessibility and low flexibility constants.

4.5 | Flexibility versus B-factors

In a landmark paper, Halle4 proposed that B-factors, or more spe-

cifically atomic mean square displacements (AMSDs), can be

predicted solely on the basis of packing density. Subsequent stud-

ies have shown that the same idea applies to NMR, that is, pack-

ing density is a predictor for NMR order parameters, S2
.
5,8 In

Halle's model, referred to as LDM for local density model, each atom

i of a protein is characterized with an AMSD σi, which is related to the

B-factor Bi according to Bi = 8π2σi/3. This AMSD is expected to be

related to the local packing of i, defined based on its contact density,

ni, that is, the number of (non-hydrogen) atoms within a spherical

region centered on i. Namely,

σi ¼ 3
2λ

1
ni
, ð38Þ

where λ is a scaling parameter that accounts for temperature. The

atomic density ni (see Equation (37)) is itself a function of the σk of

the atoms k in the neighborhood of i, that is, a spherical region of size

Rc. The ni and σi are then computed self-consistently using Equa-

tions (37) and (38), as described by Halle.4 At convergence, the com-

puted σi are scaled such that their mean value over a protein is equal

to the mean experimental AMSD over the same protein. Halle showed

that the resulting scaled converged σi reproduce accurately the

corresponding B-factors on a set of 38 proteins. We repeated his cal-

culations on our set of 70 proteins, using Rc = 7.32 Å as suggested by

Halle, and found similar results (see Table 2, row a), albeit with lower

accuracy. The difference is most likely due to the fact that we did not

account for crystal contacts in our calculations, while Halle did.

Do our atomic flexibility constants also relate to packing density,

or based on Halle's results, do they correlate well with B-factors? Our

results seem to indicate that this is not the case, both for the

Delaunay based EN and for the cutoff based EN at least on our

dataset of 70 proteins (see rows b and e of Table 2, respectively for

the correlations to the B-factors). The corresponding mean correlation

coefficients between packing density, nk, and flexibility constants, kk,

are 0.06 ± 0.09 (with a range �0.27 to 0.28) for the Delaunay based

EN, and �0.15 ± 0.14 (with a range �0.57 to 0.20), for the EL20

cutoff-based EN, that is, poor correlations in both cases. These obser-

vations allow us to better understand the flexibility constants we have

introduced. Unlike packing density that captures the local environ-

ment of an atom, the atomic flexibility constant is an intrinsic dynamic

property of the atom itself. It is the local network, namely the list of

edges in the EN that connect to an atom k that defines the local envi-

ronment of an atom. To test if this is the case, we have assigned to

each atom i a frequency Ωi
92 such that

Ω2
i ¼

XN ið Þ

j¼1

kij ¼
XN ið Þ

j¼1

ffiffiffiffiffiffiffi
kjki

q
, ð39Þ
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where the summation extends over all atoms j such that ij is an edge

in the EN considered. We computed Ωi for all Cα atoms of all proteins

in our dataset, for the Delaunay based EN and the cutoff based EN,

with constant, or optimized values for the force constants kij. Results

are shown in Table 2 on rows c and d for the Delaunay based EN, and

on rows f and g for the cutoff-based EN. As expected, the inverse of

the frequencies Ω correlate well with the B-factor values, indicating

that these frequencies capture the impact of the local environment of

an atom on its dynamics. We note that the frequencies computed

from the optimized force constants show stronger correlations with

the B-factors than the frequencies computed from constant force

constants (rows c vs. d and rows f vs. g). This may not be too surpris-

ing as the optimization is based on the B-factors.

4.6 | Parameterized ENs capture rigidity

The differences between B-factors and flexibility constants suggest

that the latter do not actually characterize residue mobility, as

suggested in the name we gave them. We investigated the connection

between flexibility constants and mobility within the broader frame-

work of rigidity of proteins. Jacobs, Thorpe and collaborators

pioneered the use of rigidity-based methods in protein flexibility anal-

ysis.63,64,93 Their analysis is based on graph theory. They start by

designing a constraint network on the protein of interest, much akin

to the ENMs considered here, but with the significant difference that

the constraint network is designed to capture the energetics of the

protein, rather than its geometry. The constraint network includes all

covalent bonds and strong hydrogen bonds within the protein of

interest. They then run an algorithm, dubbed the 3D Pebble game, to

count the degrees of freedom within this constraint network. From

the listing of degrees freedom, the algorithm identifies “all the rigid

and flexible substructures in the protein, including over-constrained

regions (with more bonds than are needed to rigidify the region) and

under-constrained or flexible regions, in which internal motions can

occur", paraphrasing the authors' descriptions of their algorithm.63

With this underlying definition of flexibility and rigidity, we mapped

the positions of residues with large flexibility constants on the par-

titioning of a protein structure into rigid and flexible regions obtained

with the 3D Pebble game algorithm for two proteins, barnase (PDB

code 1A2P), and a ligand-free HIV protease (PDB code 1HHP). We

use the implementation of the 3D Pebble game from the software

package ProFlex developed by the group of Leslie Kuhn at Michigan

State University, and available at the URL https://kuhnlab.natsci.msu.

edu/software/proflex/. The residues with large flexibility constants

were identified from the parameterized Delaunay-based ENMs for

those two proteins. Results are shown in Figure 9. Clearly, for those

two proteins all residues with large flexibility constants fall within the

regions defined as flexible by ProFlex. From the definition of flexibility

in the theory behind ProFlex, those regions are under-constrained and

then prone to internal motions. The parameterized ENMs implicitly

capture this flexibility by assigning large force constants in those

regions, with those large force constants allowing for concerted

motions as described by the normal modes of the ENMs. It is there-

fore more appropriate to refer to the parameterized constants ki as

flexibility constants for the residues.

5 | CONCLUDING REMARKS

Coarse-grained NMA rely on the idea that the geometry of a protein

structure contains enough information for computing its fluctuations

around its equilibrium conformation. This geometry is captured in

the form of an EN, that is, a network of edges between residues in

the protein structure. A spring is then associated with each of these

edges. The normal modes of the protein of interest are then identi-

fied with the normal modes of the corresponding EN. Constructing

the EN and parameterizing this network remain topics of research

and development in the computational biology community. In this

paper, we advocate for using the edges of the Delaunay triangulation

of the points representing the Cα atoms of the protein as the EN,

and for parameterizing this Delaunay-based EN such that its dynam-

ics match with the experimental B-factors of the Cα atoms. Both

comes with some sacrifice in simplicity, but with benefits that we

highlight below.

Computing a three dimensional Delaunay triangulation is more

complex and more onerous in computing time than simply selecting

the edges of an EN based on their lengths. A Delaunay-based EN,

however, has several advantages, some of which are highlighted in

Figure 3. First, it is completely parameter-free: there is no need to

define a cutoff value for selecting edges. Second, it leads to a much

smaller EN in terms of number of edges. Finally, it is able to capture

even long range contacts in the protein. The advantages of including

long range interactions has been advocated before.57 Other geometric

constructions could replace the Delaunay triangulation, such as alpha

shapes.65 Such alpha shapes have already been considered for build-

ing ENs.55 Finally, we note that many implementations of Delaunay

TABLE 2 Indicators for predictions of Cα B-factors

Modela Predictor hCCib Range of CC

a LDM Density nk 0.57 ± 0.12 0.22–0.83

b DEL-opt Flexibility constant 0.53 ± 0.14 0–0.8

c DEL-opt Frequency Ω 0.65 ± 0.19 0–0.9

d DEL-1 Frequency Ω 0.14 ± 0.09 0–0.48

e EL20-opt Flexibility constant 0.43 ± 0.23 �0.34 to 0.83

f EL20-opt Frequency Ω 0.77 ± 0.16 0.16–0.97

g EL20-1 Frequency Ω 0.54 ± 0.15 0.16–0.82

aLDM is the local density model of Halle.4 DEL and EL20 are elastic

networks (EN) based on the Delaunay complex and a 20 Å cutoff,

respectively, with 1 indicates that all the edges of the EN were assigned

the same force constant, 1, while “opt” indicates instead that the EN was

parameterized using the experimental B-factors.
bCorrelation coefficients between the experimental B-factors and the

inverse of the predictor values for all Cα. Results are given as mean value

± one standard deviation over the set of 70 proteins.
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triangulation algorithms are available, thereby mitigating the difficul-

ties associated with their complexities.

An appealing aspect of coarse grained NMAs comes from the sim-

plicity of their implementations. Besides the constructions of the EN

described above, their parameterization is often simple, as a constant

force constant is assigned to each edge, as prescribed by Tirion.31

Here we advocate for parameterizing instead the EN such that its

dynamic leads to atomic fluctuations that match with experimental

B-factors. Most current models for fitting the EN to the B-factors are

based on the assumption that the atomic displacements captured by

B-factors result from internal motions of the protein structure. How-

ever, B-factors are known to be influenced by rigid-body motions tak-

ing place in the crystal.12 In addition, contacts between molecules in

the crystal are known to affect atomic fluctuations,58,94 such are other

effects like twinning and lattice disorders.95 We have chosen to focus

on and include in our model the contribution of rigid-body motions, as

several studies indicate that their effects are more important than

those resulting from crystal contacts.60–62 In addition, we were careful

in reducing the risk of overfitting in this process by attaching a vari-

able to each atom, and not to each edges in the network. We have

shown that such a parameterization leads to improved NMAs, as it

defines dynamics that is close to MD simulations (see Table 1), as well

as it reduces the number of normal modes needed to reproduce func-

tional conformational changes (Figure 7). In addition, the atomic con-

stants defined in the parameterization process are found to be related

to the concept of flexibility introduced in the protein rigidity theory

introduced by Thorpe and co-workers (see Figure 9).

The optimized normal mode model we propose is protein-specific,

derived from the geometry of its static structure (in our study the

X-ray structure), as well as from its dynamics as captured by the

B-factors associated with the structure. Those B-factors, however, are

indirect measures of dynamics and are subject to the refinement

methods used to obtain them. There are options to circumvent this

limitation. Diamond96 and Kidera and Go97 for example proposed

independently to express the Debye–Waller factors directly in terms

of normal modes, thereby allowing for atomic motions to be treated

as anisotropic and concerted. In their models, the amplitudes

(Diamond) or the amplitudes and directions (Kidera and Go) of those

normal modes become parameters that are then refined against the

experimental structure factors. Both models are derived from “stan-
dard” normal mode models, that is, derived from a semi-empirical

force-field. This idea was later expanded to the use of EN-based nor-

mal mode models (see e.g., Delarue and Dumas43). We see a potential

extension of our method in this direction. Instead of parameterizing

the EN based on B-factors, we would use instead directly the experi-

mental structural factors. Conversely, the Debye–Waller factors in the

structure refinement would be written as functions of the force con-

stants of the EN that models the dynamics of the protein, instead of

the amplitudes and directions of their normal modes. We are currently

exploring this extension of our model.

We reckon the increase in computational costs that comes with

our procedure. We have expressed the parameterization of the EN as

a nonlinear optimization problem whose parameters are the variables

associated with rigid motions and the atomic flexibility constants

associated with internal motions. While we are able to find analytical

expressions both for the function that we minimize and for its deriva-

tives, each iteration of the quasi Newton algorithm we use for the

optimization is costly in computing time, as it requires that the Hes-

sian of the quadratic potential of the elastic potential be diagonalized,

and that all eigen pairs be computed. While this process can be para-

llelized, it remains a O(N3) process. We have tried to remove the

requirement of using all eigen pairs, but found that this removal leads

to loss of performance (Figure 6). While the computation cost remains

manageable for most protein structures available in the PDB (i.e., with

up to 1000 residues), it can become an issue for larger protein com-

plexes, such as viral envelopes. We are currently working on strate-

gies for reducing significantly the computational cost of our

procedure.

F IGURE 9 Rigidity analysis of Barnase (PDB code 1A2P), left, and of the ligand-free aspartyl protease of HIV-1 (PDB code 1HHP), right. The
rigid and flexible regions of the proteins, as identified by the program ProFlex from the Leslie Kuhn group (see text for details) are shown in blue
and pale yellow, respectively. The edges of the parameterized Delaunay-based ENM are shown in red. Residues with large flexibility constants are
highlighted with orange spheres. ENM, elastic network model
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APPENDIX A.

Let us first reintroduce some notations. H is the Hessian of the qua-

dratic potential defined in Equation (1). We have shown68 that H can

be written as

H¼
X
i, jð Þ
kijUij�Uij, ðA1Þ

where the vector Uij is defined as Uij ¼
0,…,0, Xi�Xj

rij
,0,…,0, Xj�Xi

rij
,0,…,0

� �
. The derivatives of the Hessian with

respect to any of the kij are given by

dH
dkij

¼Uij�Uij: ðA2Þ

As the fluctuations in atomic positions are related to the inverse

H† of the Hessian matrix H (see Equation (23)), we also need the

derivatives of this inverse. In the main text, we have stated the follow-

ing proposition:

Proposition 1. If all the force constants kij are strictly positive,

dH†

dkij
¼�H† dH

dkij
H†, ðA3Þ

Which we validate here.

Proof. The matrix H can also be written as

H¼
X3N
k¼1

λkek�ek , ðA4Þ

where λ and e are the eigenvalues and eigenvectors of H, respectively.

Note that that some of the λk may be zero, that is, the null space of

H may not be empty. To account for this possibility, we prove the

proposition separately in the case of an empty null space, and in

the case of a null space with finite dimension.

Case 1: All eigenvalues of H are non-zero

This is the easiest case and the proof of Proposition 1 is simple.

As all the eigenvalues are non-zero, the matrix H is invertible and

its Moore Penrose inverse is its actual inverse. Therefore,

HH† ¼ I, ðA5Þ

where I is the 3 N � 3 N identity matrix. Deriving this equation by

kij, we get,

dH
dkij

H†þH
dH†

dkij
¼0, ðA6Þ

therefore,

dH†

dkij
¼�H† dH

dkij
H†, ðA7Þ

which concludes the proof of Proposition 1 for this specific case.

Note that this case will not occur if the Hessian is based on Car-

tesian coordinates; it will occur, however, if the potential is com-

puted based on internal degrees of freedom.

Case 2: Some eigenvalues of H are zero

As mentioned above, this is the general case when the potential

and its Hessian are based on Cartesian coordinates. Indeed, as

the potential is only function of interatomic distances, it is invari-

ant with respect to rotations and translations, and therefore its

Hessian will have (at least) 6 zero eigenvalues. For generality, we

will define as Nc the multiplicity of the eigenvalue 0 of H. The

pseudo inverse of H is then given by:

H† ¼
X3N

k¼Ncþ1

1
λk
ek�ek: ðA8Þ

When H is not full rank, Equation (A5) does not hold anymore.

Indeed,

HH† ¼
X3N
k¼1

X3N
l¼Ncþ1

λk
λl

ek�ekð Þ el�elð Þ

¼
X3N
k¼1

X3N
l¼Ncþ1

λk
λl

ek ,elð Þek�el

¼
X3N

k¼Ncþ1

ek�ek

 !
,

ðA9Þ
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where the last equality comes from the fact that the eigenvalues

e form an orthonormal base. We rewrite this equation as

HH† ¼ I�
XNc

k¼1

ek�ek , ðA10Þ

where I is the 3 N � 3 N identity matrix. Note that this is a known

result for Moore-Penrose inverses. The proof used in the case of a

matrix H that is full rank then does not apply in the case under consid-

eration. To prove Proposition 1, we use instead a more general rela-

tionship between the derivatives of H and of its Moore-Penrose

inverse originally derived by Golub and Pereyra.98

dH†

dkij
¼�H† dH

dkij
H†þH†2 dH

dkij
I�HH†� 	þ I�HH†� 	 dH

dkij
H†2: ðA11Þ

This formula is adapted from Golub and Pereyra98 in the specific case

of H and H† real, symmetric. In this equation, the first term on the

right is the term we want. There are two additional terms, which we

note as B and C, with

B¼H†2 dH
dkij

I�HH†� 	
,

C¼ I�HH†� 	 dH
dkij

H†2:

We need to prove that B = C = 0. As C = BT, it is enough to prove

that B = 0.

Let us first notice that

H†2 ¼
X3N

k¼Ncþ1

X3N
l¼Ncþ1

1
λkλl

ek�ekð Þ el�elð Þ

¼
X3N

k¼Ncþ1

1

λ2k
ek�ek ,

ðA12Þ

as the eigenvectors e are orthonormal. Replacing Equations (A2),

(A10), and (A11) into the definition of B, we get,

B ¼
X3N

k¼Ncþ1

XNc

l¼1

1

λ2k
ek�ekð Þ Uij�Uij

� 	
el�elð Þ

¼
X3N

k¼Ncþ1

XNc

l¼1

1

λ2k
ek ,Uij

� 	
el,Uij

� 	
ek�el

¼
X3N

k¼Ncþ1

ek ,Uij

λ2k
ek

 !
�
XNc

l¼1

el,Uij

� 	
el

 !
:

ðA13Þ

Let el be an eigenvector in the null space of H. Then,

Hel ¼0 ðA14Þ

Using Equation (A1), we get

X
i, jð Þ
kij Uij�Uij

� 	
el ¼0 ðA15Þ

or

X
i, jð Þ
kij el,Uij

� 	
Uij ¼0 ðA16Þ

Taking the inner product with el, we get

X
i, jð Þ
kij el ,Uij

� 	2 ¼0: ðA17Þ

As we have assumed that all the kij are strictly positive, the inner prod-

ucts (el, Uij) have to be zero, for all pairs ijð Þ�V (i.e., the set of edges

in the ENM), and for all l �{1, …, Nc}. Replacing in the right most term

in Equation (A13), we find that B = 0, which concludes the proof.
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