## BL5229: Data Analysis with Matlab Lab: Graphing and Programming

With this lab, you will do some programming as well as practice plotting

## Exercise 1: Checking if a matrix is magic.

A magic square is a square that produces the same sum, when its elements are added row-wise, column-wise or diagonally (both main diagonal and anti-diagonal). A matrix is magic if it represents a magic square. For example,
$M=\left[\begin{array}{rrcc}16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1\end{array}\right]$
is a magic matrix with sum $=34$.
Write a small program that checks if a matrix of any size is magic.
Get program checkmagic.m from web page

## Exercise 2: Challenge: sum of Fibonacci numbers.

Remember the Fibonacci sequence from Lab 1. As a reminder, it is defined as follows:
$F_{n}=\left\{\begin{array}{cc}1, & n=1 \\ 1, & n=2 \\ F_{n-1}+F_{n-2}, & n \geq 3\end{array}\right.$
Write a MATLAB script that computes the sum of the Fibonacci numbers $F_{n}$, for n between 1 and a given number N , with $F_{n}$ being a multiple of 2 or 5 .

For example, when $N=5$, only $F_{3}$ and $F_{5}$ are multiples of 2 or 5 , and the sum is: $S=F_{3}+F_{5}=7$.
Check your program for $N=10,15,20$, and 30 (in which cases $S=104,858,10207$, and 1171004).

Get program Fibosum.m from web page

## Exercise 3: Analyzing biological data

A simple experiment was designed to analyze the effects of noise on gene expression within a cell: a cell has been engineered to contain two genes (which we will label as C and Y ) that are
supposed to be expressed identically. In the presence of noise however, the expression levels will differ. There are two possible source of noise:

- extrinsic noise: noise related to all external factors that may affect gene expression
- intrinsic noise: noise related to the gene expression machinery itself.

Two different experiments were conducted, each with a different type of cell. In experiment 1 , data (i.e. expression levels for C and Y ) were collected for 30 cells, while in experiment 2, data were available for 37 cells. The raw data are in the two files available on the web site.

Write a Matlab script for analyzing these data:

1) Generate a plot (scattered plot) of $Y$ as a function of $C$ for each experiment
2) Compute the levels of intrinsic, $\mathrm{h}_{\text {int }}{ }^{2}$, extrinsic, $\mathrm{h}_{\text {ext }}{ }^{2}$, and total $\mathrm{h}_{\text {tot }}{ }^{2}$ noise in each experiment. You will use the formula:

$$
\eta_{\mathrm{int}}^{2}=\frac{\left\langle(c-y)^{2}\right\rangle}{2\langle c\rangle\langle y\rangle} ; \quad \eta_{e x t}^{2}=\frac{\langle c y\rangle-\langle c\rangle\langle y\rangle}{\langle c\rangle\langle y\rangle} ; \quad \eta_{\text {tot }}^{2}=\frac{\left\langle c^{2}+y^{2}\right\rangle-2\langle c\rangle\langle y\rangle}{2\langle c\rangle\langle y\rangle}
$$

```
% Load data
%
load Data_exp1.dat
load Data_exp2.dat
%
% get columns:
%
C1 = Data_exp1(:,1);
Y1 = Data_exp1(:,2);
C2 = Data_exp2(:,1);
Y2 = Data_exp2(:,2);
%
% Plot both curves on the same page
%
figure
subplot(2,2,1)
plot(C1,Y1,'or')
axis([0.5 2.5 0 4]);
xlabel('C')
ylabel('Y')
title('Experiment 1')
subplot(2,2,2)
plot(C2,Y2,'or')
```

```
axis([0.5 2.5 0 4]);
xlabel('C')
ylabel('Y')
title('Experiment 2')
%
% Compute noise levels for each experiment
%
cy_mean1 = mean(C1)*mean(Y1);
num1=mean((C1-Y1).^2);
den1 = 2*cy_mean1;
noise_int1 = num1/den1;
num1 = mean(C1.*Y1)-cy_mean1;
den1 = cy_mean1;
noise_ext1 = num1/den1;
num1=mean(C1.^2 + Y1.^2)-2*cy_mean1;
den1 = 2*cy_mean1;
noise_tot1 = num1/den1;
%
cy_mean2 = mean(C2)*mean(Y2);
num1=mean((C2-Y2).^2);
den1 = 2*cy_mean2;
noise_int2 = num1/den1;
num1 = mean(C2.*Y2)-cy_mean2;
den1 = cy_mean2;
noise_ext2 = num1/den1;
num1=mean(C2.^2 + Y2.^2)-2*cy_mean2;
den1 = 2*cy_mean2;
noise_tot2 = num1/den1;
```

