BL5229: Data Analysis with Matlab Lab: Graphing and Programming

With this lab, you will do some programming as well as practice plotting

Exercise 1: Checking if a matrix is magic.

A magic square is a square that produces the same sum, when its elements are added row-wise, column-wise or diagonally (both main diagonal and anti-diagonal). A matrix is magic if it represents a magic square. For example,

 $M = \begin{bmatrix} 16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1 \end{bmatrix}$

is a magic matrix with sum = 34.

Write a small program that checks if a matrix of any size is magic.

Get program checkmagic.m from web page

Exercise 2: Challenge: sum of Fibonacci numbers.

Remember the Fibonacci sequence from Lab 1. As a reminder, it is defined as follows:

$$F_n = \begin{cases} 1, & n = 1 \\ 1, & n = 2 \\ F_{n-1} + F_{n-2}, & n \ge 3 \end{cases}$$

Write a MATLAB script that computes the sum of the Fibonacci numbers F_n , for n between 1 and a given number N, with F_n being a multiple of 2 or 5.

For example, when N = 5, only F_3 and F_5 are multiples of 2 or 5, and the sum is: $S = F_3 + F_5 = 7$.

Check your program for N = 10, 15, 20, and 30 (in which cases S = 104, 858, 10207, and 1171004).

Get program Fibosum.m from web page

Exercise 3: Analyzing biological data

A simple experiment was designed to analyze the effects of noise on gene expression within a cell: a cell has been engineered to contain two genes (which we will label as C and Y) that are

supposed to be expressed identically. In the presence of noise however, the expression levels will differ. There are two possible source of noise:

- extrinsic noise: noise related to all external factors that may affect gene expression
- intrinsic noise: noise related to the gene expression machinery itself. •

Two different experiments were conducted, each with a different type of cell. In experiment 1, data (i.e. expression levels for C and Y) were collected for 30 cells, while in experiment 2, data were available for 37 cells. The raw data are in the two files available on the web site.

Write a Matlab script for analyzing these data:

1) Generate a plot (scattered plot) of Y as a function of C for each experiment 2) Compute the levels of intrinsic, h_{int}^2 , extrinsic, h_{ext}^2 , and total h_{tot}^2 noise in each experiment. You will use the formula:

$$\eta_{\rm int}^2 = \frac{\left\langle \left(c - y\right)^2 \right\rangle}{2\left\langle c \right\rangle \left\langle y \right\rangle}; \quad \eta_{ext}^2 = \frac{\left\langle cy \right\rangle - \left\langle c \right\rangle \left\langle y \right\rangle}{\left\langle c \right\rangle \left\langle y \right\rangle}; \quad \eta_{tot}^2 = \frac{\left\langle c^2 + y^2 \right\rangle - 2\left\langle c \right\rangle \left\langle y \right\rangle}{2\left\langle c \right\rangle \left\langle y \right\rangle}$$

% Load data % load Data exp1.dat load Data exp2.dat % % get columns: % C1 = Data exp1(:,1);Y1 = Data exp1(:,2);C2 = Data exp2(:,1);Y2 = Data exp2(:,2);% % Plot both curves on the same page % figure **subplot(2,2,1)** plot(C1,Y1,'or') axis([0.5 2.5 0 4]); xlabel('C') ylabel('Y') title('Experiment 1') **subplot(2,2,2)** plot(C2,Y2,'or')

```
axis([0.5 2.5 0 4]);
xlabel('C')
ylabel('Y')
title('Experiment 2')
%
% Compute noise levels for each experiment
%
cy mean1 = mean(C1)*mean(Y1);
num1=mean((C1-Y1).^2);
den1 = 2*cy mean1;
noise int1 = num1/den1;
num1 = mean(C1.*Y1)-cy_mean1;
den1 = cy mean1;
noise ext1 = num1/den1;
num1=mean(C1.^2 + Y1.^2)-2*cy mean1;
den1 = 2*cy_mean1;
noise tot1 = num1/den1;
%
cy mean2 = mean(C2)*mean(Y2);
num1=mean((C2-Y2).^2);
den1 = 2*cy_mean2;
noise int2 = num1/den1;
num1 = mean(C2.*Y2)-cy mean2;
den1 = cy mean2;
noise ext2 = num1/den1;
num1=mean(C2.^2 + Y2.^2)-2*cy mean2;
den1 = 2*cy mean2;
noise tot2 = num1/den1;
```