
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Suppose that we are fitting $N$ data points ( $x_{i} y_{i}$ ) (with errors $\sigma_{\mathrm{i}}$ on each data point) to a model $Y$ defined with $M$ parameters $a_{j}$ :

$$
Y\left(x ; a_{1}, a_{2}, \ldots, a_{M}\right)
$$

The standard procedure is least squares: the fitted values for the parameters $a_{j}$ are those that minimize:

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-Y\left(x ; a_{1}, \ldots, a_{M}\right)}{\sigma_{i}}\right)^{2}
$$

Where does this come from?
(—)
$\qquad$
$\qquad$

## Model Fitting

$\qquad$

Let us work out a simple example. Let us consider we have $N$ students, $S_{1}, \ldots, S_{N}$ $\qquad$ and let us "evaluate" a variable $x$ for each student such that
$\qquad$
We want an estimator of the probability $p$ that a student owns a Ferrari.
The probability of observing $x_{i}$ for student $S_{i}$ is given by: $\qquad$

$$
f\left(x_{i}, p\right)=p^{x_{i}}(1-p)^{1-x_{i}}
$$

The likelihood of observing the values $x_{i}$ for all $N$ students is:

$$
L(p)=f\left(x_{1}, \ldots x_{N} ; p\right) \approx f\left(x_{1} ; p\right) \ldots f\left(x_{N} ; p\right)
$$

## Model Fitting

$\qquad$

$$
L(p)=p^{\sum^{x_{i}}}(1-p)^{n-\sum^{x_{i}}}
$$

$\qquad$

The maximum likelihood estimator of $p$ is the value $p m$ that maximizes $L(p)$ :

$$
p_{m}=\underset{p}{\operatorname{argmax}} L(p)
$$

This is equivalent to maximizing the logarithm of $\mathrm{L}(\mathrm{p})$ (log-likelihood):
$\log (L(p))=\log (p) \sum_{i=1}^{N} x_{i}+\log (1-p)\left(n-\sum_{i=1}^{N} x_{i}\right)$

## Model Fitting

$$
\frac{\partial \log (L(p))}{\partial p}=\left(\frac{1}{p}\right) \sum_{i=1}^{N} x_{i}-\left(\frac{1}{1-p}\right)\left(n-\sum_{i=1}^{N} x_{i}\right)=0
$$

Multiplying by $p(1-p)$ :
$\left(1-p_{\mathrm{m}}\right) \sum_{i=1}^{N} x_{i}-p_{m}\left(n-\sum_{i=1}^{N} x_{i}\right)=0$
$\sum_{i=1}^{N} x_{i}-p_{m} \sum_{i=1}^{N} x_{i}-p_{m} n+p_{m} \sum_{i=1}^{N} x_{i}=0$

$$
p_{m}=\frac{\sum_{i=1}^{N} x_{i}}{n} \longleftarrow \underbrace{\substack{\text {. }}}_{\substack{\text { This is the most intuitive value.... and it matches } \\ \text { with the maximum likelihood estimator. }}}
$$

$\qquad$
$\qquad$
$\qquad$

## Maximum Likelihood Estimators

Let us suppose that:
$>$ The data points are independent of each other

- Each data point has a measurement error that is random, distributed as a

Gaussian distribution around the "true" value $Y\left(x_{i}\right)$ : $\qquad$
$f\left(y_{i} ; Y\right)=\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]$
The likelihood function is:

$$
\begin{gathered}
L(Y)=f\left(y_{1}, \ldots, y_{N} ; Y\right) \approx f\left(y_{i} ; Y\right) \ldots f\left(y_{N} ; Y\right) \\
L(Y)=\prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-Y\left(x_{i}\right)}{\sigma_{i}}\right)^{2}\right]\right\}
\end{gathered}
$$



$\qquad$

Fitting data to a straight line $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\longrightarrow$ $\qquad$

Fitting data to a straight line $\qquad$ This is the simplest case:

$$
Y(x)=a x+b
$$

Then:

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-a x_{i}-b}{\sigma_{i}}\right)^{2}
$$

$\qquad$
$\qquad$
The parameters $a$ and $b$ are obtained from the two equations:

$$
\begin{aligned}
& \frac{\partial x^{2}}{\partial a}=0=-2 \sum_{i=1}^{N} \frac{x_{i}\left(y_{i}-a x_{i}-b\right)}{\sigma_{i}^{2}} \\
& \frac{\partial x^{2}}{\partial b}=0=-2 \sum_{i=1}^{N} \frac{y_{i}-a x_{i}-b}{\sigma_{i}^{2}}
\end{aligned}
$$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Fitting data to a straight line $\qquad$

We are not done!

$$
\begin{aligned}
\sigma_{a}^{2} & =\frac{S}{S S_{x x}-S_{x}^{2}} \\
\sigma_{b}^{2} & =\frac{S_{x}}{S S_{x x}-S_{x}^{2}}
\end{aligned}
$$

$\qquad$
Uncertainty on the values of a and b : $\qquad$
$\qquad$
Evaluate goodness of fit:
-Compute $\chi 2$ and compare to $\mathrm{N}-\mathrm{M}$ (here $\mathrm{N}-2$ ) $\qquad$
-Compute residual error on each data point: $Y\left(x_{i}\right)-y_{i}$
-Compute correlation coefficient $R^{2}$
$\qquad$
(2) $\qquad$


$\qquad$

General Least Squares $\qquad$
Define design matrix A such that $\quad A_{i j}=\frac{x_{i}\left(x_{i}\right)}{\sigma_{i}}$

$$
\begin{array}{llll} 
\\
X_{1}() & X_{2}() & \ldots & \left.X_{\mathrm{x}(1)}\right)
\end{array}
$$

$\qquad$
$\qquad$

General Least Squares
Define two vectors $\boldsymbol{b}$ and a such that $\quad b_{i}=\frac{y_{i}}{\sigma_{i}}$
and $\boldsymbol{a}$ contains the parameters
Note that $\chi^{2}$ can be rewritten as:

$$
\chi^{2}=|A \boldsymbol{a}-\boldsymbol{b}|^{2}
$$

The parameters a that minimize $\chi^{2}$ satisfy:
$\left(A^{T} A\right) \boldsymbol{a}=A^{T} \boldsymbol{b}$
These are the normal equations for the linear least square problem.
How to solve a general least square problem:

1) Build the design matrix $A$ and the vector $b$
2) Find parameters $a_{1}, \ldots a_{M}$ that minimize

$$
\chi^{2}=|A \boldsymbol{a}-\boldsymbol{b}|^{2}
$$

(usually solve the normal equations)
3) Compute uncertainty on each parameter $a_{j}$ :
if $C=A^{\top} A$, then
$\sigma\left(a_{j}\right)^{2}=C^{-1}(j, j)$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

## Robust estimation of parameters

$\qquad$

Least squares modeling assume a Gaussian statistics for the experimental data points; this may not always be true however. There are other possible $\qquad$ distributions that may lead to better models in some cases.

One of the most popular alternatives is to use a distribution of the form: $\qquad$

$$
\rho(x)=e^{-|x|}
$$

Let us look again at the simple case of fitting a straight line in a set of data points $\left(t_{p}, Y_{j}\right)$, which is now written as finding $a$ and $b$ that minimize: $\qquad$ $Z(a, b)=\sum_{i=1}^{N}\left|Y_{i}-a t_{i}-b\right|$
$\mathrm{b}=$ median $(\mathrm{Y}$-at) and a is found by non linear minimization
$\qquad$
$\qquad$

$\qquad$

