
8/25/17 

1 

Data Modeling 
Patrice Koehl 

Department of Biological Sciences 
National University of Singapore 

 

http://www.cs.ucdavis.edu/~koehl/Teaching/BL5229 
koehl@cs.ucdavis.edu 

Data Modeling 

 

Ø Data Modeling: least squares 
 
Ø Data Modeling: robust estimation 

Data Modeling 

 

Ø Data Modeling: least squares 
 
Ø Data Modeling: robust estimation 



8/25/17 

2 

Least squares 

Suppose that we are fitting N data points (xi,yi) (with errors σi on each 
data point) to a model Y defined with M parameters aj: 

€ 

Y (x;a1,a2,...,aM )
The standard procedure is least squares: the fitted values for the  
parameters aj are those that minimize: 

€ 

χ2 =
yi −Y (x;a1,...,aM )
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Where does this come from? 

Model Fitting 

Let us work out a simple example. Let us consider we have N students, S1,…,SN 
and let us “evaluate” a variable xi for each student such that: 
 
xi= 1 if student Si owns a Ferrari, and xi= 0  otherwise. 
 
We want an estimator of the probability p that a student owns a Ferrari.  
 
The probability of observing xi for student Si is given by: 
 
  f (xi, p) = p

xi (1− p)1−xi

The likelihood of observing the values xi for all N students is: 

L(p) = f (x1,…xN ; p) ≈ f (x1; p)… f (xN ; p)

Model Fitting 

L(p) = p xi∑ (1− p)n− xi∑

The maximum likelihood estimator of p is the value pm that maximizes L(p): 

pm = argmax
p

L(p)

This is equivalent to maximizing the logarithm of L(p) (log-likelihood): 

log(L(p)) = log(p) xi
i=1
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∑ + log(1− p) n− xi
i=1
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Model Fitting 

∂ log(L(p))
∂p
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Multiplying by p(1-p): 

This is the most intuitive value… and it matches 
with the maximum likelihood estimator. 

Let us suppose that: 
Ø The data points are independent of each other 
Ø Each data point has a measurement error that is random, distributed as a 
   Gaussian distribution around the “true” value Y(xi): 
 
 
 
 
The likelihood function is: 
 
 

L(Y ) = exp − 1
2
yi −Y (xi )

σ i
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Maximum Likelihood Estimators 

f (yi;Y ) = exp −
1
2
yi −Y (xi )

σ i
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L(Y ) = f (y1,…, yN ;Y ) ≈ f (y1;Y )… f (yN ;Y )

Let us suppose that: 
Ø The data points are independent of each other 
Ø Each data point has a measurement error that is random, distributed as a 
   Gaussian distribution around the “true” value Y(xi) 
 
The probability of the data points, given the model Y is then: 

€ 

P(data /Model)∝ exp −
1
2
yi −Y (xi)

σi
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A Bayesian approach 
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Application of Bayes ‘s theorem: 

€ 

P(Model /Data)∝ P(Data /Model)P(Model)
With no information on the models, we can assume that the prior probability 
P(Model) is constant. 
 
Finding the coefficients a1,…aM that maximizes P(Model/Data) is then 
equivalent to finding the coefficients that maximizes P(Data/Model). 
This is equivalent to maximizing its logarithm, or minimizing the negative of its 
logarithm, namely: 
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yi −Y (x)

σ i

$ 

% 
& 

' 

( 
) 

2

i=1

N

∑

A Bayesian approach 

Fitting data to a straight line 

Fitting data to a straight line 
This is the simplest case: 

€ 

Y (x) = ax + b
Then: 

€ 

χ2 =
yi − axi − b

σ i
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The parameters a and b are obtained from the two equations: 

€ 

∂χ2

∂a
= 0 = −2

xi yi − axi − b( )
σ i

2
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∂χ2

∂b
= 0 = −2 yi − axi − b
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Fitting data to a straight line 

Let us define: 

€ 

S =
1
σi
2

i=1

N

∑ Sx =
xi
σi
2

i=1

N

∑ Sy =
yi
σi
2

i=1
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∑ Sxx =
xi
2

σi
2

i=1
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∑ Sxy =
xiyi
σi
2
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then 

€ 

aSxx + bSx = Sxy
aSx + bS = Sy

a and b are given by: 

€ 

a =
SxyS − SxSy
SxxS − Sx

2

b =
SxxSy − SxSxy
SxxS − Sx

2

Fitting data to a straight line 

We are not done! 
 
Uncertainty on the values of a and b: 

€ 

σa
2 =

S
SSxx − Sx

2

σb
2 =

Sx
SSxx − Sx

2

Evaluate goodness of fit: 

- Compute χ2 and compare to N-M (here N-2) 

- Compute residual error on each data point:  Y(xi)-yi 

- Compute correlation coefficient R2 

Fitting data to a straight line 
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General Least Squares 

€ 

Y (x) = a1X1(x) + a2X2(x) + ...+ aM XM (x)

€ 

χ2 =
yi − a1X1(xi) − ...− aM XM (xi)
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Then: 

The minimization of χ2 occurs when the derivatives of χ2 with respect to the 
parameters a1,…aM are 0. This leads to M equations: 

€ 

∂χ2

∂ak
=

1
σ i

yi − a1X1(xi) − ...− aM XM (xi)( )Xk (xi) = 0
i=1

N

∑

General Least Squares 
Define design matrix A such that   

€ 

Aij =
X j (xi)
σi

General Least Squares 

Define two vectors b and a such that   

€ 

bi =
yi
σi

and a contains the parameters 

The parameters a that minimize χ2 satisfy:  

€ 

AT A( )a = ATb

Note that χ2 can be rewritten as: 

€ 

χ2 = Aa − b 2

These are the normal equations for the linear least square problem. 
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General Least Squares 

How to solve a general least square problem: 
 
1) Build the design matrix A and the vector b 
 
2) Find parameters a1,…aM that minimize 
 
 
 
 
(usually solve the normal equations) 
 
3) Compute uncertainty on each parameter aj: 
 
    if C = ATA, then  € 

χ2 = Aa − b 2

€ 

σ(a j )
2 = C−1( j, j)

Data Modeling 

 

Ø Data Modeling: least squares 
 
Ø Data Modeling: robust estimation 

Robust estimation of parameters 
Least squares modeling assume a Gaussian statistics for the experimental 
data points; this may not always be true however. There are other possible 
distributions that may lead to better models in some cases. 
 
One of the most popular alternatives is to use a distribution of the form: 

€ 

ρ(x) = e− x

Let us look again at the simple case of fitting a straight line in a set of  
data points (ti,Yi), which is now written as finding a and b that minimize: 

€ 

Z(a,b) = Yi − ati − b
i=1

N

∑

b = median(Y-at) and a is found by non linear minimization 
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Robust estimation of parameters 


