8/25/17

Data Modeling

Patrice Koehl
Department of Biological Sciences

National University of Singapore

http://www.cs.ucdavis.edu/~koehl/Teaching/BL5229
koehl@cs.ucdavis.edu

Data Modeling

»Data Modeling: least squares

»Data Modeling: robust estimation

Data Modeling

»Data Modeling: least squares




Least squares

Suppose that we are fitting N data points (x,y,) (with errors o; on each
data point) to a model Y defined with M parameters a;:

Y(x;a,,a,,...,a,,)

The standard procedure is least squares: the fitted values for the
parameters a;are those that minimize:

2
)

Where does this come from?
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Model Fitting

Let us work out a simple example. Let us consider we have N students, S,,...,Sy
and let us “evaluate” a variable x; for each student such that:

x=1if student S, owns a Ferrari, and x= 0 otherwise.

We want an estimator of the probability p that a student owns a Ferrari.

The probability of observing x; for student S; is given by:
x; 1-x;
f(x,p)=p*(1-p)
The likelihood of observing the values x;for all N students is:

L(p) = f(xp,...xy;p) = f(x;5p)... f(xy5 D)

Model Fitting

L(py=p> 1-p) 2

The maximum likelihood estimator of p is the value pm that maximizes L(p):

p,, = argmax L(p)
14

This is equivalent to maximizing the logarithm of L(p) (log-likelihood):

log(L(p)) = log(p) Y, x; + log(1 - p)(n = Ex,)




Model Fitting

. )

ap P

Multiplying by p(7-p):

N N
(I‘Pm)E’ﬁ —pm(n—zxi)=0
N ,:IN " N
Ex, —pmgx, —pmn+pm2x, =0

i=1 =l i=1
N
X
=1 This is the most intuitive value... and it matches
Pu= n with the maximum likelihood estimator.
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Maximum Likelihood Estimators

Let us suppose that:

> The data points are independent of each other

»Each data point has a measurement error that is random, distributed as a
Gaussian distribution around the “true” value Y(x)):

2
)

i

f(y,;Y)=eXP[—%(

The likelihood function is:
L) = fe sy V) = fY).. f (3 Y)

g,

i

N 2
L) =] [{exp —%(7y "_Y(x"))
i=1

A Bayesian approach

Let us suppose that:

> The data points are independent of each other

»Each data point has a measurement error that is random, distributed as a
Gaussian distribution around the “true” value Y(x)

The probability of the data points, given the model Y is then:

P(datal Model) -=
(data/ Model) 1_[6)(p2 pe

i=1 i

v 1 (y, —Y(x,))z




A Bayesian approach

Application of Bayes ‘s theorem:

P(Model/Data) « P(Data/ Model)P(Model)

With no information on the models, we can assume that the prior probability

P(Model) is constant.

Finding the coefficients a1,...aM that maximizes P(Model/Data) is then

equivalent to finding the coefficients that maximizes P(Data/Model).

This is equivalent to maximizing its logarithm, or minimizing the negative of its

logarithm, namely:

51y, -rm)

i
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Fitting data to a straight line
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Fitting data to a straight line
This is the simplest case:
Y(x)=ax+b
Then:

¢ogfnt

i=1 i

The parameters a and b are obtained from the two equations:

2

o’ =0=_2§M

i=l i

P Ny —ax —b
l=0=_22%
O,

i=1 i




Fitting data to a straight line

Let us define:

S=Eé S, =

i=1 i i

v
SRk

1

then aS. +bS. = S,
as,+bS = S,
aand b are given by: $,8-8.8,
a=
5.5-5;
S\\S\ - S&Sn
b= S e
S,u‘s - SX

8/25/17

Fitting data to a straight line

We are not done!

Uncertainty on the values of a and b:

Evaluate goodness of fit:

-Compute %2 and compare to N-M (here N-2)

-Compute residual error on each data point:  Y(x)-y;

-Compute correlation coefficient R?

Fitting data to a straight line
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General Least Squares
Y(x)=aX,(x)+a,X,(x)+..+a,X,,(x)

Then:

p =§ v, - aX,(x,) ;...—aMXM )Y

i=1 i

The minimization of x2 occurs when the derivatives of x2 with respect to the
parameters a,,...ay, are 0. This leads to M equations:
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=l
P Ei()’i —a X, (x)—...—ay Xy (xi))Xk(xi) =0
da, 30
General Least Squares
X, x)
Define design matrix A such that Ay :#
«—— basis functions ———
H() X() - Xd)
qf AE) D) X
o o or
’ L3 GO ORI 105}
o2 o2 G2
:
.
‘ o | K Xw . Xulw
On on On
General Least Squares
) Yi
Define two vectors b and a such that b, =

and a contains the parameters
Note that %2 can be rewritten as:
2
X =|Aa-b)
The parameters a that minimize %2 satisfy:
T T
(A"A)a=A"b

These are the normal equations for the linear least square problem.




General Least Squares

How to solve a general least square problem:
1) Build the design matrix A and the vector b
2) Find parameters aj, ...a,, that minimize

% =lAa - f
(usually solve the normal equations)
3) Compute uncertainty on each parameter a;:

if C = ATA, then
o(a,)* =C™'(j.j)
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»Data Modeling: robust estimation

Robust estimation of parameters

Least squares modeling assume a Gaussian statistics for the experimental
data points; this may not always be true however. There are other possible
distributions that may lead to better models in some cases.

One of the most popular alternatives is to use a distribution of the form:
— oM
p(x)=e

Let us look again at the simple case of fitting a straight line in a set of
data points (t, Y;), which is now written as finding a and b that minimize:

y
Z(ab) = Y|V, - at, - b
i=1

b = median(Y-at) and a is found by non linear minimization




Robust estimation of parameters

o data

robust fit
—|east square fit
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