
\qquad

Fourier analysis: the dial tone phone \qquad We use Fourier analysis everyday...without knowing it! A dial tone phone is probably the best example: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Fourier analysis: the dial tone phone \qquad

\qquad
\qquad
\qquad

\longrightarrow

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Fourier series

\qquad
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$.
Computing the coefficients a and b :
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x$, \qquad
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x$,
$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$,

$$
10 \because \quad-\quad-\quad
$$

N-5

\qquad
\qquad

\qquad

Fourier series \qquad

For a function g with period T : \qquad
$g(x)=\sum_{n=-\infty}^{\infty} G(n) e^{i 2 \pi \frac{n}{T} x}=\sum_{n=-\infty}^{\infty} G(n) e^{i 2 \pi f_{0} x}$
where $f_{0}=1 / T$ is the fundamental frequency for the function g.
In this formula, $G(n)$ can be written as: \qquad
$G(n)=\frac{1}{T} \int_{0}^{T} g(x) e^{-i 2 \pi f_{0} x} d x$ \qquad

\qquad

Fourier Analysis

-Fourier series for periodic functions
>Fourier Transform for continuous functions
\qquad
>Sampling \qquad
>Discrete Fourier Transform for discrete functions

Fourier transform

\qquad

For a periodic function f with period T, the Fourier coefficients $F(n)$ \qquad are computed at multiples nf_{0} of a fundamental frequency $\mathrm{f}_{0}=1 / \mathrm{T}$
\qquad
For a non periodic function $\mathrm{g}(\mathrm{t})$, the Fourier coefficients become
\qquad

$$
\begin{equation*}
G(f)=\int_{-\infty}^{+\infty} g(t) e^{i 2 \pi t t} d t \tag{1}
\end{equation*}
$$

$\mathrm{g}(\mathrm{t})$ can then be reconstructed according to: \qquad

$$
g(t)=\int_{-\infty}^{+\infty} G(f) e^{-i 2 \pi f t} d f
$$

Fourier transform

\qquad
\qquad

Notes:

-The function $g(t)$ must be integrable; it can be real or complex
-The equations above can be obtained by looking at the limits of the Fourier series \qquad
-The Fourier Transform can be rewritten as a function of $\omega=2 \pi f$, the angular frequency.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sampling

\qquad
Sampling is the process of examining the value of a continuous function at regular intervals. \qquad

Sampling usually occurs at uniform intervals, which are referred to as sampling Sampling usually occurs at uniform intervals, which are referred to as sampl intervals. The reciprocal of
requency or sampling rate.
If the sampling is done in time domain, the unit of sampling interval is second and
the unit of sampling rate is Hz , which means cycles per second.

\qquad

Quantization
Quantization is the process of limiting the value of a sample of a continuous function to one of a predetermined number of allowed values, which can then be represented by a finite number of bits.

\qquad

\qquad
\qquad

Discrete time Fourier Transform \qquad

Given a discrete set of values $x(n)$, with n integer; the discrete
\qquad Time Fourier transform of x is:

$$
X(f)=\sum_{n=-\infty}^{n=+\infty} x(n) e^{i 2 \tau n}
$$

Notice that $\mathrm{X}(\mathrm{f})$ is periodic:
$X(f+k)=\sum_{n=-\infty}^{n=+\infty} x(n) e^{i 2 \pi(f+k) n}=\sum_{n=-\infty}^{n=+\infty} x(n) e^{i 2 \pi f n} e^{i 2 \pi n}=X(f)$
\qquad
\qquad
\qquad
The sequence of numbers $x_{0, \ldots}, x_{N-1}$ is transformed into a new series of numbers $X_{0, \ldots} . X_{N-1}$ according to the digital Fourier transform (DFT) formula:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{i 2 z^{\frac{k n}{N}}}
$$

The inverse DFT is given by:

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{-i 2 \pi \frac{k n}{N}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\quad Discrete Fourier Transform
Notes:
-If $x(n)$ is a time signal, and Δ is the constant time interval between
two time points, then the total duration of the time signal is $(N-1)^{*} \Delta$;
the fundamental frequency is $f 0=1 /\left(N^{*} \Delta\right)$
-If n is a power of $2, X(k)$ can be computed really fast using the
Fast Fourier Transform (FFT)
The corresponding command in Matlab is:
$X=f f t(x)$
$-x(n)$ can be real or complex. $X(k)$ is always complex.
\qquad
\qquad
-If $\mathrm{x}(\mathrm{n})$ is a time signal, and Δ is the constant time interval between two time points, then the total duration of the time signal is $(\mathrm{N}-1) * \Delta$ \qquad the fundamental frequency is $f 0=1 /\left(\mathrm{N}^{*} \Delta\right)$

If n is a power of $2, \mathrm{X}(\mathrm{k})$ can be computed really fast using the \qquad The corresponding command in Matlab is: \qquad
$x=\mathrm{fft}(\mathrm{x})$
\qquad
\qquad

