

Fourier Analysis

➤Fourier series for periodic functions

>Fourier Transform for continuous functions

≻Sampling

>Discrete Fourier Transform for discrete functions

Fourier Analysis

≻Fourier series for periodic functions

>Fourier Transform for continuous functions

≻Sampling

>Discrete Fourier Transform for discrete functions

Fourier Analysis

≻Fourier series for periodic functions

≻Fourier Transform for continuous functions

≻Sampling

>Discrete Fourier Transform for discrete functions

Fourier transform

For a periodic function f with period T, the Fourier coefficients F(n) are computed at multiples nf_0 of a fundamental frequency $f_0{=}1/T$

For a non periodic function g(t), the Fourier coefficients become a continuous function of the frequencies $f\colon$

$$G(f) = \int_{-\infty}^{+\infty} g(t) e^{i2\pi f t} dt \qquad (1)$$

g(t) can then be reconstructed according to: $f^{+\infty}$ = 2-6 and 2-6 areas

$$g(t) = \int_{-\infty}^{+\infty} G(f) e^{-i2\pi f t} df$$

(1)Is referred to as the Fourier transform, while (2) is the inverse Fourier transform

(2)

Fourier transform

Notes:

-The function g(t) must be integrable; it can be real or complex

-The equations above can be obtained by looking at the limits of the Fourier series $% \left({{{\rm{D}}_{\rm{F}}}} \right)$

-The Fourier Transform can be rewritten as a function of $\omega = 2\pi f$, the angular frequency.

 Superposition (a₁ and a₂ arbitrary constants) 	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Time delay	$x(t = t_0)$	$X(f)e^{-j2\pi h_0}$
3a. Scale change	x(at)	$ a ^{-1}\chi\left(\frac{f}{2}\right)$
b. Time reversal	x(-t)	X(-f) = X * (f)
4. Duality	X(t)	x(-f)
5a. Frequency translation	$x(t)e^{j\omega_0t}$	$X(f - f_0)$
b. Modulation	$x(t) \cos \omega_0 t$	$\frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$
6. Differentiation	$\frac{d''x(t)}{dt''}$	$(j2\pi f)^*X(f)$
7. Integration	$\int_{-\infty}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t')x_2(t') dt'$	
	J	$X_1(f)X_2(f)$
	$= \int_{-\infty} x_1(t')x_2(t-t') dt'$	
9. Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f - f')X_2(f') df'$
		·

Fourier Analysis

≻Fourier series for periodic functions

 $\succ \mbox{Fourier Transform for continuous functions}$

≻Sampling

>Discrete Fourier Transform for discrete functions

Audio Sound

Sampling:

The human ear can hear sound up to 20,000 Hz: a sampling rate of 40,000 Hz is therefore sufficient. The standard for digital audio is 44,100 Hz.

Quantization:

The current standard for the digital representation of audio sound is to use 16 bits (i.e 65536 levels, half positive and half negative)

How much space do we need to store one minute of music?

- 60 seconds
- 44,100 samples
 -16 bits (2 bytes) per sample
 2 channels (stereo)

 $S = 60x44100x2x2 = 10,534,000 \text{ bytes} \approx 10 \text{ MB } !!$ 1 hour of music would be more than 600 MB !

Fourier Analysis

≻Fourier series for periodic functions

➢Fourier Transform for continuous functions

≻Sampling

>Discrete Fourier Transform for discrete functions

Discrete time Fourier Transform

Given a discrete set of values x(n), with n integer; the discrete Time Fourier transform of x is:

$$X(f) = \sum_{n=-\infty}^{n=+\infty} x(n) e^{i2\pi f n}$$

Notice that X(f) is periodic:

$$X(f+k) = \sum_{n=-\infty}^{n+\infty} x(n) e^{i2\pi (f+k)n} = \sum_{n=-\infty}^{n+\infty} x(n) e^{i2\pi fn} e^{i2\pi n} = X(f)$$

Discrete Fourier Transform

The sequence of numbers X_{0} ,..., X_{N-1} is transformed into a new series of numbers X_{0} ,..., X_{N-1} according to the digital Fourier transform (DFT) formula: $N-1 \qquad kn$

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{i2\pi \frac{kn}{N}}$$

The inverse DFT is given by:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{-i2\pi \frac{kn}{N}}$$

Discrete Fourier Transform

Notes:

-If x(n) is a time signal, and Δ is the constant time interval between two time points, then the total duration of the time signal is (N-1)* Δ ; the fundamental frequency is f0=1/(N* Δ)

-If n is a power of 2, X(k) can be computed really fast using the Fast Fourier Transform (FFT) The corresponding command in Matlab is:

X = fft(x)

-x(n) can be real or complex. X(k) is always complex.

$\begin{array}{c c} \hline & \hline $							
$\begin{tabular}{ c c c c c }\hline \hline Time Duration & Infinite & Infinite & \\\hline \hline Discrete FT (DFT) & Discrete Time FT (DTFT) & discr. \\\hline X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\omega_k n} & X(\omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} & time & \\\hline k = 0, 1, \dots, N-1 & \omega \in [-\pi, +\pi) & n & \\\hline Fourier Series (FS) & Fourier Transform (FT) & cont. \\\hline X(k) = \frac{1}{p} \int_{0}^{p} x(t)e^{-j\omega_k t} dt & X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt & time & \\\hline k = -\infty, \dots, +\infty & \omega \in (-\infty, +\infty) & t & \\\hline discrete freq. k & continuous freq. \omega & \\\hline \end{tabular}$	Summary table						
$\begin{array}{ c c c c c }\hline Time \ Duration \\\hline \hline Finite & Infinite \\\hline Discrete \ FT \ (DFT) & Discrete \ Time \ FT \ (DTFT) & discr. \\\hline X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\omega_k n} & X(\omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} & time \\\hline k = 0, 1, \dots, N-1 & \omega \in [-\pi, +\pi) & n \\\hline Fourier \ Series \ (FS) & Fourier \ Transform \ (FT) & cont. \\\hline X(k) = \frac{1}{\tau} \int_{0}^{t'} x(t)e^{-j\omega_k t} dt & X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt & time \\\hline k = -\infty, \dots, +\infty & \omega \in (-\infty, +\infty) & t \\\hline discrete \ freq. \ k & continuous \ freq. \ \omega & t \\\hline \end{array}$							
$\begin{tabular}{ c c c c c } \hline Time Duration \\ \hline Time Duration \\ \hline Time Discrete FT (DFT) \\ \hline Discrete FT (DFT) \\ \hline Discrete FT (DFT) \\ \hline Discrete Time FT (DTFT) \\ \hline discrete Structure for the form of the for$							
$\begin{tabular}{ c c c c c c } \hline Finite & Infinite & Infinite & \\ \hline Discrete FT (DFT) & Discrete Time FT (DTFT) & discr. \\ \hline X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\omega_k n} & X(\omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} & time & \\ \hline k = 0, 1, \dots, N-1 & \omega \in [-\pi, +\pi) & n & \\ \hline Fourier Series (FS) & Fourier Transform (FT) & cont. \\ \hline X(k) = \frac{1}{\tau} \int_{0}^{P} x(t)e^{-j\omega_k t} dt & X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt & time & \\ \hline k = -\infty, \dots, +\infty & \omega \in (-\infty, +\infty) & t & \\ \hline discrete freq. k & continuous freq. \omega & \\ \hline \end{tabular}$	Tin	e Duration					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Finite	Infinite					
$ \begin{array}{ c c c c c } \hline X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\omega_k n} & X(\omega) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} & \text{time} \\ \hline k = 0, 1, \dots, N-1 & \omega \in [-\pi, +\pi) & n \\ \hline \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Discrete FT (DFT)	Discrete Time FT (DTFT)	discr.				
$ \begin{array}{ c c c c c } \hline & n=0 & u=-\infty & n \\ \hline & k=0,1,\ldots,N-1 & \omega\in [-\pi,+\pi) & n \\ \hline & Fourier Series (FS) & Fourier Transform (FT) & cont. \\ \hline & X(k)=\frac{1}{r}\int_{0}^{P}x(t)e^{-j\omega_{h}t}dt & X(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}dt & time \\ \hline & k=-\infty,\ldots,+\infty & \omega\in (-\infty,+\infty) & t \\ \hline & discrete freq. k & continuous freq. \omega \\ \hline \end{array} $	$X(k) = \sum_{k=1}^{N-1} x(n) e^{-j\omega_k n}$	$X(\omega) = \sum_{n=1}^{+\infty} x(n)e^{-j\omega n}$	time				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$k = 0, 1, \dots, N - 1$	$\omega \in [-\pi, +\pi)$	n				
$\begin{array}{c c} X(k) = \frac{1}{r} \int_{0}^{t'} x(t) e^{-j\omega_{h}t} dt & X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega_{t}} dt & \text{time} \\ \hline k = -\infty, \dots, +\infty & \omega \in (-\infty, +\infty) & t \\ \hline \text{discrete freq. } k & \text{continuous freq. } \omega \end{array}$	Fourier Series (FS)	Fourier Transform (FT)	cont.				
$\begin{array}{c c} k=-\infty,\ldots,+\infty & \omega\in(-\infty,+\infty) & t\\ \hline \text{discrete freq. }k & \text{continuous freq. }\omega \end{array}$	$X(k) = \frac{1}{r} \int_{0}^{P} x(t)e^{-j\omega_{k}t}dt$	$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	time				
discrete freq. k continuous freq. ω	$k = -\infty, \dots, +\infty$	$\omega \in (-\infty, +\infty)$	t				
	discrete freq. k	continuous freq. ω					

