
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
$>$ Set of numbers

-Binary representation of numbers \qquad
-Floating points \qquad
>Digital sound \qquad
$>$ Vectors and matrices
\square

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Number representation

We are used to counting in base 10 : \qquad

1000	100	10	1

10^{3}	10^{2}	10^{1}	100
thousands hundreds			

\qquad
thousands hundreds tens units
Example:

| 1 | 7 | 3 | 2 |
| :--- | :--- | :--- | :--- |${ }^{7}$ digits

\qquad | 1000 | 100 | 10 | 1 |
| :--- | :--- | :--- | :--- |

\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conversion

From base 2 to base 10:
$\begin{array}{lllllllllll}1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$

1024	512	256	128	64	32	16	8	4	2
$1 \times 1 \times 1024+1 \times 512+1 \times 256+0 \times 128+1 \times 64+0 \times 32+1 \times 16+0 \times 8+1 \times 4+0 \times 2+0 \times 1$	18								

$1 \times 1024+1 \times 512+1 \times 256+0 \times 128+1 \times 64+0 \times 32+1 \times 16+0 \times 8+1 \times 4+0 \times 2+0 \times 1=1876$ \qquad
From base 10 to base 2:
$1877 \% 2=938$ Remainder 1
$938 \% 2=469$ Remainder 0
\qquad
$34 \% 2=117$ Remainder
$17 \% 2=58$ Remainder
$58 \% 2=29$ Remainder
$29 \% 2=14$ Remainder
$14 \% 2=7$ Remainder
$7 \% 2=3$ Remainder
$3 \% 2=1$ Remainder \qquad

1877 (base10) = 11101010101 (base 2)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

IEEE Floating Point

\qquad
-IEEE Standard 754

- Established in 1985 as uniform standard for floating
point arithmetic
Before that, many idiosyncratic formats
>Supported by all major CPUs
-Driven by Numerical Concerns
$>$ Nice standards for rounding, overflow, underflow
$>$ Hard to make go fast
Numerical analysts predominated over hardware types in defining standard

Floating Point Representation

\qquad

Numerical Form
$-1^{s} M 2^{E}$
Sign bit s determines whether number is negative or positive

- Significand \boldsymbol{M} normally a fractional value in range
> Exponent \boldsymbol{E} weights value by power of two
- Encoding \qquad

s	\exp	frac

MSB is sign bit

- exp field encodes E
$>$ frac field encodes M
\qquad
\qquad
\square

\qquad
\qquad
\qquad

Special Values

\qquad

Condition

$\exp =111 \ldots 1$
$>\exp =111 \ldots 1$, frac $=000 \ldots 0$

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
E.g., 1.0/0.0 $=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
exp $=111 \ldots 1$, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Foating Point Operations \qquad

Conceptual View
First compute exact result
\qquad
Make it fit into desired precision
>Possibly overflow if exponent too large $>$ Possibly round to fit into frac \qquad
-Rounding Modes (illustrate with \$ rounding) \qquad \$1.40 \$1.60 \$1.50 \$2.50 -\$1.50

- Round down ($-\infty$) $\$ 1 \quad \$ 1 \quad \$ 1 \quad \$ 2 \quad$-\$2
\qquad
- Round up $(+\infty) \quad \$ 2 \quad \$ 2 \quad \$ 2 \quad \$ 3 \quad-\$ 1$
- Nearest Even \$1 \$2 \$2 \$2
. Round down: rounded result is close to but no greater than true result

2. Round up: rounded result is close to but no less than true result.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Digital Sound
Sound is produced by the vibration of a media like air or water Audio refers to the sound within the range of human hearing. Naturally, a sound signal is analog, i.e. continuous in both time
and amplitude.

\qquad
\qquad
\qquad
To store and process sound information in a computer or to transmit it through a computer network, we must first convert the analog signal to digital form using an analog-to-digital converter (ADC); the conversion involves two steps: (1) sampling, and (2) quantization.

Sampling \qquad
Sampling is the process of examining the value of a continuous function
\qquad

\qquad
\qquad
\qquad

Samping usually occurs at uniform intervals, which are referred to as sampling intervals. The reciprocal of sampling interval is referred to as the sampling
requency or sampling rate.
If the sampling is done in time domain, the unit of sampling interval is second and the unit of sampling rate is Hz , which means cycles per second.

\qquad

Quantization
Quantization is the process of limiting the value of a sample of a continuous function to one of a predetermined number of allowed values, which can then be represented by a finite number of bits \qquad

\quad Audio Sound
Sampling:
The human ear can hear sound up to $20,000 \mathrm{~Hz}$: a sampling rate of
$40,000 \mathrm{~Hz}$ is therefore sufficient. The standard for digital audio is
$44,100 \mathrm{~Hz}$.
Quantization:
The current standard for the digital representation of audio sound is to use
16 bits (i.e 65536 levels, half positive and half negative)
How much space do we need to store one minute of music?
-60 seconds
$-44,100$ samples
-16 bits (2 bytes) per sample
-2 channels (stereo)
$\quad \mathrm{S}=60 \times 44100 \times 2 \times 2=10,534,000$ bytes $\approx 10 \mathrm{MB}$!!
1 hour of music would be more than 600 MB !
\qquad
\qquad
The human ear can hear sound up to $20,000 \mathrm{~Hz}$: a sampling rate of $40,000 \mathrm{~Hz}$ is therefore sufficient. The standard for digital audio is
$44,100 \mathrm{~Hz}$. \qquad
\qquad
\qquad
\qquad 1 hour of music would be more than 600 MB !

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vectors

- Set of numbers organized in an array

$$
v=\left(x_{1}, x_{2}, \ldots ., x_{n}\right)
$$

\qquad

- Norm of a vector: size

If $\|v\|=1, v$ is a unit vector

Example: (x, y, z), coordinates of a point in space

\qquad

$$
\underbrace{v}_{w} v \cdot w=\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=x_{1} y_{1}+x_{2} \cdot y_{2}
$$

The inner product is a SCALAR!
$v \cdot w=\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\|v\| \cdot\|w\| \cos \alpha$
$v . w=0 \Leftrightarrow v \perp w$
(2)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
arrangement of numbers in \leqslant Th
rows and columns. number of the rows and columns.

- The ENTRIES are the numbers in the matrix $\rightarrow\left[\begin{array}{ccc}6 & 2 & -1 \\ -2 & 0 & 5\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Matrix operations
 Matrix Addition:
 $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}(a+e) & (b+f) \\ (c+g) & (d+h)\end{array}\right]$

\qquad
\qquad
\qquad

Matrix Multiplication:

An ($\mathrm{m} \times \mathrm{n}$) matrix A and an ($\mathrm{n} \times \mathrm{p}$) matrix B , can be multiplied since the number of columns of A is equal to the number of rows of B.
Non-Commutative Multiplication \qquad $A B$ is NOT equal to $B A$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] *\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}(a e+b g) & (a f+b h) \\ (c e+d g) & (c f+d h)\end{array}\right]$
\qquad
\qquad

\qquad

$$
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}
$$

$$
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}
$$

$$
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
$$

If we define:
and
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
The system becomes:
$A x=b$
$x=A^{-1} b$
\qquad
\qquad
\qquad

\qquad
\qquad

