

N	Natural numbers	$1, 2, 3, 4 \dots,$
\mathbb{Z}	Integers	$\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots$
Q	Rational numbers	$\frac{a}{b}$ where a and b are integers and b is not zero
R	Real numbers	The limit of a convergent sequence of rational numbers
\mathbb{C}	Complex numbers	a + ib where a and b are real number and i is the square root of -1

Number representation					
Base 10	Base 2				
0	0				
1	1				
2	10				
3	11				
4	100				
5	101				
6	110				
253	11111101				
254	11111110				
255	11111111				

IEEE Floating Point

♦IEEE Standard 754

>Established in 1985 as uniform standard for floating Established in 1985 as uniform stand point arithmetic
 Before that, many idiosyncratic formats
 Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow ➤Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Floating Point Representation

Numerical Form

- -1^s M 2^E
 - M 2^c
 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range [1.0, 2.0).
 Exponent E weights value by power of two

frac

Encoding

- s <mark>exp</mark>
- MSB is sign bit
 exp field encodes E
 frac field encodes M

Floating Point Operations									
 Conceptual View First compute exact result Make it fit into desired precision >Possibly overflow if exponent too large >Possibly round to fit into frac 									
 Rounding Modes (illustrate with \$ rounding) 									
	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50				
 Round down (-∞) Round up (+∞) Nearest Even 	\$1 \$2 \$1	\$1 \$2 \$2	\$1 \$2 \$2	\$2 \$3 \$2	-\$2 -\$1 -\$2				
Note: 1. Round down: rounded result is close to but no greater than true result. 2. Round up: rounded result is close to but no less than true result.									

Audio Sound

Sampling:

The human ear can hear sound up to 20,000 Hz: a sampling rate of 40,000 Hz is therefore sufficient. The standard for digital audio is 44,100 Hz.

Quantization:

The current standard for the digital representation of audio sound is to use 16 bits (i.e 65536 levels, half positive and half negative)

How much space do we need to store one minute of music?

- 60 seconds
- 44,100 samples -16 bits (2 bytes) per sample 2 channels (stereo)
- - S = 60x44100x2x2 = 10,534,000 bytes ≈ 10 MB !! 1 hour of music would be more than 600 MB !

Matrix operations

>To add two matrices, they must have the same order. To add, you simply add corresponding entries.

 \succ To subtract two matrices, they must have the same order. You simply subtract corresponding entries.

 $\succ \mbox{To}$ multiply a matrix by a scalar, you multiply each entry in the matrix by that scalar.

 \succ To multiply two matrices A and B, A must have as many columns as B has rows.

