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Simulations 

Deterministic simulations: Molecular dynamics 
 
 
 
Stochastic simulations: Monte Carlo 
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Simulations 

Deterministic simulations: Molecular dynamics 

Model 
f(x) 

x1 

x2 

…. 

xn 

y1 

y2 

What is an atom? 

�  Classical mechanics: a point particle 
 
�  Defined by its position (x,y,z) and its mass 

�  May carry an electric charge (positive or negative), 
usually partial (less than an electron) 
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What is a molecular dynamics 
simulation? 

•  Simulation that shows how the atoms in the 
system move with time 

•  Typically on the nanosecond timescale 

•  Atoms are treated like hard balls, and their 
motions are described by Newton’s laws. 

Why MD simulations? 

� Link physics, chemistry and biology 

� Model phenomena that cannot be observed 
experimentally 

� Understand protein folding… 

� Access to thermodynamics quantities (free 
energies, binding energies,…) 

How do we run a MD simulation? 
� Get the initial configuration  

 
From x-ray crystallography or NMR spectroscopy 
 

� Assign initial velocities 
  
 At thermal equilibrium, the expected value of the kinetic energy 
of the system at temperature T is: 

 
 
 
  
 This can be obtained by assigning the velocity components vi 
from a random Gaussian distribution with mean 0 and standard 
deviation (kBT/mi): 
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For each time step: 
 

  Compute the force on each atom: 
 
 
 

  
  Solve Newton’s 2nd law of motion for each atom,  
  to get new coordinates and velocities 

 
 
 
 

  Store coordinates 
 
 
Stop 
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X: cartesian vector 
    of the system 

M diagonal mass matrix 
.. means second order 
   differentiation with 
   respect to time 

Newton’s equation cannot be solved analytically: 
            Use stepwise numerical integration 

How do we run a MD simulation? 

What the integration algorithm does 

� Advance the system by a small time step Dt during 
which forces are considered constant 

 
� Recalculate forces and velocities 

� Repeat the process 
  
 
 If Δt is small enough, solution is a reasonable 
approximation 

MD as a tool for minimization 

Energy 

position 

Energy minimization 
stops at local minima 

Molecular dynamics 
uses thermal energy 
to explore the energy 
surface 

State A 

State B 
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Crossing energy barriers 
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The actual transition time from A to B is very quick (a few pico seconds). 
 
What takes time is waiting. The average waiting time for going from A to B  
can be expressed as: 

kT
G

BA Ce
Δ

→ =τ

Simulations 

Stochastic simulations: Monte Carlo 

Model 
f(x) 

x1 

x2 

…. 

xn 

y1 

y2 

Monte Carlo: random sampling 

A simple example: 
 
Evaluate numerically the one-dimensional integral: 
 
 
 
Instead of using classical quadrature, the integral can be rewritten as 

∫=
b

a
dxxfI )(

)()( xfabI −=
<f(x)> denotes the unweighted average of f(x) over [a,b], and can be 
 determined by evaluating f(x) at a large number of x values randomly 
 distributed over [a,b] 

Monte Carlo method! 
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A famous example: Buffon’s needle problem 

D
LP

π
2

=

π
2

=P

C
N2=π

D 
The probability that a needle of length 
L overlaps with one of the lines, distant 
from each other by D, with L≤D is: 

For L = D 

Buffon, G. Editor's note concerning a lecture given by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris.  
Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733. 
Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777 

Method to estimate π numerically: 
“Throw” N needles on the floor, find needles that cross one of the line (say 
 C of them). An estimate of p is: 

Monte Carlo Sampling for protein structure 
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The probability of finding a protein (biomolecule) with a total energy E(X) is: 

Partition function 

Estimates of any average quantity of the form: 

using uniform sampling would therefore be extremely inefficient. 

Metropolis and coll. developed a method for directly sampling according to the 
actual distribution. 

Metropolis et al. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087-1092 (1953) 
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Let: 

And let      be the transition probability from state X to state Y. 

Let us suppose we carry out a large number of Monte Carlo simulations, such that 
the number of points observed in conformation X is proportional to N(X).  
The transition probability must satisfy one obvious condition: it should not destroy 
this equilibrium once it is reached. Metropolis proposed to realize this using 
the detailed balance condition: 

or 

Monte Carlo Sampling for protein structure 
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There are many choices for the transition probability that satisfy the balance 
condition. The choice of Metropolis is: 

The Metropolis Monte Carlo algorithm: 
 
1.   Select a conformation X at random. Compute its energy E(X) 

2.   Generate a new trial conformation Y. Compute its energy E(Y) 

3.   Accept the move from X to Y with probability: 

4.   Repeat 2 and 3. 

Pick a random number 
RN, uniform in [0,1]. 
If RN < P, accept the 
move. 

Monte Carlo Sampling for protein structure 

Notes: 
 
1.  There are many types of Metropolis Monte Carlo simulations, 

characterized by the generation of the trial conformation. 

2.  The random number generator is crucial 

3.  Metropolis Monte Carlo simulations are used for finding thermodynamics 
quantities, for optimization, … 

4.  An extension of the Metropolis algorithm is often used for minimization: the 
simulated annealing technique, where the temperature is lowered as the 
simulation evolves, in an attempt to locate the global minimum. 

Monte Carlo Sampling for protein structure 

Thank you! 


