Problem: Starting from a given DNA sequence, find the protein sequence it may code for, as well as its predicted secondary structure content. Input strand S: 5'-TAATGGCCTTAGAAGAGGGTCTCGCGAAACACTAAGG-3'

Solution:

1)The DNA strand given as input may not be the coding strand. We first generate the sequence of the complementary strand, from 5' to 3':

Strand cS: 5'-CCTTAGTGTTTCGCGAGACCCTCTTCTAAGGCCATTA-3'

2) Once we have the DNA sequences of the DNA strand and its complementary, we transcribe them into RNA sequences:

RNA sequence R corresponding to the input strand S: 5'-UAAUGGCCUUAGAAGAGGGUCUCGCGAAACACUAAGG-3'

RNA sequence cR corresponding to the complementary strand cS: 5'-CCUUAGUGUUUCGCGAGACCCUCUUCUAAGGCCAUUA-3'

3) Identify start codons (in red) and then stop codons (in blue) in the two sequences:
RNA sequence R:
5'-UA AUG GCC UUA GAA GAG GGU CUC GCG AAA CAC UAA GG-3'

Note that there is a UAA (stop codon) at the 5' of the sequence R, which we ignore.

No start codon in the sequence cR, so this sequence does not contain a coding region.

4) Derive the corresponding ORF (Open Reading Frame), if the start and stop codon are in phase:

ORF: AUG GCC UUA GAA GAG GGU CUC GCG AAA CAC UAA

5) Translate ORF to protein sequence:

Protein sequence: Met Ala Leu Glu Glu Gly Leu Ala Lys His Or, in one-letter code: M A L E E G L A K H

6) Secondary structure prediction:

Start with prediction of helix:

Μ	Α	L	E	E	G	L	Α	K	Η
1.47	1.29	1.30	1.44	1.44	0.56	1.30	1.29	1.23	1.22

Nucleation site: MALEEG

Elongation: we can add L (1.44+1.44+0.56+1.3>4), A (1.44+0.56+1.30+1.29>4), K (0.56+1.30+1.29+1.3>4), and H (1.3+1.29+1.23+1.22>4).

Final check: (1.47+1.29+1.30+1.44+1.44+0.56+1.30+1.29+1.23+1.22)/10 = 1.254 > 1The whole peptide can be helical.

Repeat with prediction of strands:

Μ	Α	L	E	Ε	G	L	Α	K	Η
0.97	0.9	1.02	0.75	0.75	0.92	1.02	0.90	0.77	1.08

Nucleation site: None

The peptide is therefore predicted to be helical.